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Abstract
The sudden outbreak of SARS-CoV-2 has caused the shortage of medical resources
around the world, especially in developing countries and underdeveloped regions.
With the continuous increase in the duration of this disease, the control of migration
of humans between regions or countries has to be relaxed. Based on this, we propose a
two-patches mathematical model to simulate the transmission of SARS-CoV-2 among
two-patches, asymptomatic infected humans and symptomatic infected humans,where
a half-saturated detection rate function is also introduced to describe the effect of med-
ical resources. By applying the methods of linearization and constructing a suitable
Lyapunov function, the local and global stability of the disease-free equilibrium of this
modelwithoutmigration is obtained. Further, the existence of forward/backward bifur-
cation is analyzed, which is caused by the limited medical resources. This means that
the elimination or prevalence of the disease no longer depends on the basic reproduc-
tion number but is closely related to the initial state of asymptomatic and symptomatic
infected humans and the supply of medical resources. Finally, the global dynamics of
the full model are discussed, and some numerical simulations are carried to explain
the main results and the effects of migration and supply of medical resources on the
transmission of disease.
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1 Introduction

Coronaviruses are a group of viruses that are widespread in nature, so named because
it looks like a crown under electron microscopy. So far it has been found that coron-
aviruses have multiple hosts and can infect a variety of mammals such as pigs, cattle,
cats, dogs,mink, camels, bats, rats, hedgehogs, andmany species of birds in addition to
humans, causing respiratory, gastrointestinal, and neurological diseases in humans and
animals (National Institute of Allergy and Infectious Disease 2022). Thankfully not
all coronaviruses are fatal, except for SARS (severe acute respiratory syndrome coro-
navirus) and MERS (middle east respiratory syndrome coronavirus). And, of course,
there is also the famous SARS-CoV-2 (severe acute respiratory syndrome coronavirus
2) which caused a pandemic of novel coronavirus disease (named COVID-19 by the
World Health Organization). In December 2019, the first case of COVID-19 in China
is diagnosed in Wuhan. For the moment (May 3, 2021), a total of 103,694 cases of
novel coronavirus pneumonia have been confirmed in China, with a total of 4858
death. There are cumulative total of 152,534,452 cases and the cumulative total of
3,198,528 death in the world (World Health Organization 2021).

In the past year, lots of mathematical models are proposed to describe the trans-
mission of SARS-CoV-2 and to estimate the basic reproduction number, the effective
reproduction number or the control reproduction number of this disease, etc. These
research results not only explain the effectiveness of prevention and control strategies
in certain countries or regions, but also predict the development trend of this disease
and provide suggestions for the prevention and control. For example, Li et al. (2020a)
proposed three-phase models to simulate and explain how the Fangcang shelter hos-
pitals (rapidly built temporary hospitals) and the group isolation strategy helped to
prevent the epidemic in Wuhan. Their theoretical results show that if family isolation
or social distancing is not enough to suppress the spread of this virus, and then effec-
tive group isolation of a large number of lightly infected humans in Fangcang-type
facilities can suppress the epidemic of COVID-19. Britton et al. (2020) introduced a
mathematical model to reveal the effect of human heterogeneity on the herd immunity
to SARS-CoV-2. Consider that South Africa is currently the epicenter for COVID-
19 in Africa, Garba et al. (2020) established a compartmental model to simulate the
transmission dynamics of this disease and assessed the effects of various control and
mitigation strategies. For other related research results, seeRefs. (Asamoah et al. 2021;
Chen et al. 2020; Ho 2021; Hu and Nie 2021; Perkins and Espan̈a 2020; Sadun 2020;
Tang et al. 2020; Wu et al. 2020; Zu et al. 2020; Zhao et al. 2020a) and the references
therein, to just a few.

As we all know, many countries and regions in the world have implemented lock-
downs to curb the rapid spread of SARS-CoV-2 and achieved phased victory at the
early stage of the outbreak. From the perspective of mathematical modeling, Sun
et al. (2020) proposed a two-patches model to reflect the mobility of humans between
Hubei and regions outside Hubei, and estimated the effective reproduction numbers
for two patches, and also discussed the impact of the resumption of work and produc-
tion in Wuhan and the lifting of lockdown on the spread of COVID-19. Glass (2020)
introduced a two-stage SEIR with different basic reproduction numbers pre- and post-
lockdown to investigate the effects of lockdowns and relax the lockdown on the spread
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of SARS-CoV-2 in France, Germany, Italy, Spain, the UK. And author pointed out that
the current levels of relaxation in these countries may lead to a second wave of epi-
demics and the duration may also exceed the first wave. Zhao and Feng (2020) devised
a modified SEIR epidemic model with stage structured to discuss the risk from lock-
down and social distancing measures and suggested that taking reasonable measures
to lift restrictions on specific groups of people would stimulate economic recovery
without affecting the prevention and control of COVID-19. Other investigations on
the impact of lockdowns on the spread of COVID-19 or other infectious disease can
be found in Refs. (Acuña-Zegarra et al. 2020; Bagal et al. 2020; Boulmezaoud 2020;
Buaglia et al. 2020; Gao 2020; Gressman and Peck 2020; Sun et al. 2020; Lalwani
et al. 2020), and related studies are still continuous.

On the other hand, the sudden outbreak of COVID-19 and the rapid increase of
cases in a short period of time have made medical resources in various countries
urgently, especially in developing states and underdeveloped regions. The shortage
of protective clothing, nucleic acid kit, oxygen, the emergency of hospital beds, are
all problems that have to be faced in the process of epidemic prevention and control.
Limited medical resources have increased the difficulty of epidemic prevention and
control, especially the treatment of patients. Based on the above considerations, Li et al.
(2020b) proposed a mathematical model to assess the impact of the heavy pressure
on the medical system caused by people’s excessive panic about COVID-19 and the
arrival of flu season, where two saturated functions are introduced to describe the effect
of cross-infection of influenza and COVID-19 patients, and the limitation of medical
resources. Salman et al. (2021) used a SIRS model with half-saturation coefficient to
describe the effects of the shortage of medical resources and mimicked the trend of
infection cases of COVID-19 in Malaysia. Authors also pointed out that in developing
countries like Malaysia, which faces the question of limited medical resources, there
maybe a long-lasting epidemic or the risk of another outbreak.Other researchworks on
the impact of limited medical resources on the transmission and control of infectious
diseases can be found in Refs. (Abdelrazec et al. 2016; Sepulveda-Salcedo et al. 2020;
Saha and Samanta 2019; Wang et al. 2018; Zhao et al. 2020a).

In this work, we propose a two-patches mathematical model to study the effects of
limited medical resources and humans migration between two regions on the trans-
mission dynamics of SARS-CoV-2. The rest of this paper is organized as follows. In
Sect. 2, we derive a two-patches epidemic model with half-saturation coefficient to
describe the effect of limited medical resources for the screening of asymptomatic
infected humans. In Sect. 3, the dynamics of patch-i without migration are discussed,
which includes the non-negative and boundedness of solutions, the existence of multi-
endemic equilibria and forward/backward bifurcation. The dynamics of the full model
are studied in Sect. 4, and some numerical simulations are carried to explain the main
results in Sect. 5. A brief discussion and conclusion are provided in the last section.

2 Model Formulation and Preliminaries

Taking into account the spread of SARS-CoV-2 and the prevention and control mea-
sures in various places, the total human population Ni in patch i (i = 1, 2) at time
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t is split into five classes: susceptible class Si (t), asymptomatic infected class Ai (t),
symptomatic infected class Ii (t), hospital isolation treatment class Qi (t) and recov-
ered class Ri (t). Assuming that susceptible persons are likely to be infected after
contact with infected humans, one part becomes asymptomatic infection and the other
part becomes symptomatic infection. Due to the nucleic acid screening measures
adopted by the government, asymptomatic infected humans became hospital isolation
treatment class, where the saturation phenomenon of the limited medical resources is
considered (see Refs. Qin et al. 2013; Zhou and Fan 2012 for more detail). According
to the assumptions above, a two-patches SARS-CoV-2 transmission model reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)

dt
=�1 − β1S1(t)(I1(t) + θ1A1(t)) − μ1S1(t) − mS1(t),

dA1(t)

dt
=(1 − ε1)β1S1(t)(I1(t) + θ1A1(t)) − (μ1 + p1 + ω1 + mρ)A1(t)

− q1A1(t)

k1 + A1(t)
,

dI1(t)

dt
=ε1β1S1(t)(I1(t) + θ1A1(t)) − μ1 I1(t) − c1 I1(t) + p1A1(t),

dQ1(t)

dt
= q1A1(t)

k1 + A1(t)
+ c1 I1(t) − γ1Q1(t) − μ1Q1(t) − α1Q1(t),

dR1(t)

dt
=γ1Q1(t) − μ1R1(t) + ω1A1(t) − mR1(t),

dS2(t)

d
=�2 − β2S2(t)(I2(t) + θ2A2(t)) − μ2S2(t) + mS1(t),

dA2(t)

dt
=(1 − ε2)β2S2(t)(I2(t) + θ2A2(t)) − (μ2 + p2 + ω2)A2(t)

− q2A2(t)

k2 + A2(t)
+ mρA1(t),

dI2(t)

dt
=ε2β2S2(t)(I2(t) + θ2A2(t)) − μ2 I2(t) − c2 I2(t) + p2A2(t),

dQ2(t)

dt
= q2A2(t)

k2 + A2(t)
+ c2 I2(t) − γ2Q2(t) − μ2Q2(t) − α2Q2(t),

dR2(t)

dt
=γ2Q2(t) − μ2R2(t) + ω2A2(t) + mR1(t),

(1)

with the initial value (S1(0), · · · , R1(0), S2(0), · · · , R2(0)) ∈ R
10+ := {(x1, x2, · · · ,

x10) : xi ≥ 0, i = 1, 2, · · · , 10}. Other parameters of model (1) are non-negative
constants, and their biological interpretations are given in Table 1.

On the non-negative and boundedness of solutions for model (1), the following
result is obvious.
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Table 1 The biological interpretations of the basic parameters for model (1)

Param. Description

�i Recruitment rate of humans in patch-i (day−1)

1/μi Average lifespan of humans in patch-i (days)

βi Infection rate for symptomatic infected humans to susceptible humans in
patch-i

θiβi Infection rate for asymptomatic infected humans to susceptible humans in
patch-i , θ ∈ [0, 1)

εi Probability of an infected humans becoming symptomatic infected humans,
ε ∈ [0, 1)

m Migration rate of susceptible and recovered humans from path-1 to patch-2
(day−1)

mρ Migration rate of asymptomatic infected humans from path-1 to patch-2,
ρ ∈ [0, 1) (day−1)

pi Conversion rate from symptomatic infected humans to asymptomatic humans
for patch-i (day−1)

1/ωi Recovery cycle of disease for asymptomatic infected humans in patch-i (days)

qi Maximal medical resources supplied per unite time in patch-i

ki Half-saturation constant in patch-i

1/ci Average nucleic acid screening cycle of COVID-19 of symptomatic infected
humans in patch-i (days)

1/γi Average recovery cycle of isolate infected humans in patch-i (days)

αi Excess death rate of infected humans in patch-i

Lemma 1 Solution for model (1) with the initial value in the interior of R10+ at time
t0 = 0 is globally exist and non-negative for all t ∈ [0,∞). Further, the region


 =
{

(S1, · · · , R2) ∈ R
10+ : 0 ≤ S1 + · · · + R1 ≤ �1

μ1
, 0 ≤ S2

+ · · · + R2 ≤ �2μ1 + m�1

μ1μ2

}

is positively invariant set with respect to model (1).

Following Lemma 2 is given by Castillon-Charez and Song (2004), which is usu-
ally used to determine the existence forward or backward bifurcation of the general
differential system with a parameter

dx(t)

dt
= f (x, ϕ), (2)

where f (x, ϕ) : Rn ×R → R
n with f ∈ C

2(Rn ×R), and f (0, ϕ) ≡ 0 for all ϕ ∈ R.
Denote that J = Dx f (0, 0) = (∂ fi (0, 0)/∂x j ) is the linearization matrix of system
(2) around the equilibrium 0 with ϕ = 0. Further, 0 is a simple eigenvalue of matrix
J and all other eigenvalues of J have negative real parts. In addition, matrix J has
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a non-negative right eigenvector u and a left eigenvector v corresponding to the zero
eigenvalue.

Lemma 2 (Castillon-Charez and Song 2004) Let fk be the k-th component of function
f and

a =
n∑

k,i, j=1

vkui u j
∂2 fk

∂xi∂x j
(0, 0), b =

∑

k,i=1

vkui
∂2 fk
∂xi∂ϕ

(0, 0),

then, the local dynamics of system (2) around 0 are totally determined by a and b.

(i) a > 0 and b > 0. If ϕ < 0 with | ϕ |� 1, then 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium; if 0 < ϕ � 1, 0 is unstable and
there exists a negative and locally asymptotically stable equilibrium.

(ii) a < 0 and b < 0. If ϕ < 0 with | ϕ |� 1, then 0 is unstable; if 0 < ϕ � 1, then 0
is locally asymptotically stable, and there exists a positive unstable equilibrium.

(iii) a > 0 and b < 0. If ϕ < 0 with | ϕ |� 1, then 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; if 0 < ϕ � 1, then 0 is stable,
and a positive unstable equilibrium appears.

3 Dynamics of Model in Patch-iWithout Migration

We discuss, in this section, the dynamics of the spread of SARS-CoV-2 in patch-i
(i = 1, 2). Since the state variables Qi and Ri do not appear in the first to third
(or sixth to eighth) equations of model (1), the dynamical model of the transmission
of SARS-CoV-2 in patch-i can be decoupled into the following three-dimensional
system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSi (t)

dt
=�i − βi Si (t)(Ii (t) + θi Ai (t)) − μi Si (t),

dAi (t)

dt
=(1 − εi )βi Si (t)(Ii (t) + θi Ai (t)) − (μi + pi + ωi )Ai (t) − qi Ai (t)

ki + Ai (t)
,

dIi (t)

dt
=εiβi Si (t)(Ii (t) + θi Ai (t)) − μi Ii (t) − ci Ii (t) + pi Ai (t).

(3)

Following Theorem 1 is on the existence, uniqueness and boundedness of solution
of model (3), which is obvious.

Theorem 1 Solution for model (3) with the initial value in the interior of R3+ at time
t0 = 0 is globally exist and non-negative for all t ∈ [0,∞), and the region 
 =
{(Si , Ai , Ii ) ∈ R

3+ : 0 ≤ Si + Ai + Ii ≤ �i/μi } is positively invariant set (i = 1, 2).

3.1 The Stability of the Disease-Free Equilibrium

Obviously, model (3) admits a disease-free equilibrium E0i (�i/μi , 0, 0). Further, by
using the next generation matrix formulated in Refs. (Diekmann et al. 1990; van den
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Driessche and Watmough 2002, 2008), the basic reproduction number of model (3)
is defined by

R0i =
[

(1 − εi )βiθi

μi + pi + ωi + qi/ki
+ (1 − εi )piβi

(μi + pi + ωi + qi/ki )(μi + ci )
+ εiβi

μi + ci

]
�i

μi
.

Following Theorem 2 is on the local asymptotical stability of model (3).

Theorem 2 If R0i < 1, then the disease-free equilibrium E0i of model (3) is locally
asymptotically stable. IfR0i > 1, then E0i is unstable.
Proof According to the proof of Theorem 2 in Ref. (van den Driessche andWatmough
2002), the local asymptotical stability of the disease-free equilibrium E0i is determined
by the following characteristic equation

(λ + μi )(λ
2 + a1λ + a2) = 0, (4)

where

a1 =
(

μi + pi + ωi + qi
ki

)(

1 − (1 − εi )βiθi�i

(μi + pi + ωi + qi/ki )μi

)

+ (μi + ci )

(

1 − εiβi�i

(μi + ci )μi

)

,

a2 =
(

μi + pi + ωi + qi
ki

)

(μi + ci )(1 − R0i ).

This is easy to verify that a1 > 0, a2 > 0 for R0i < 1 and a2 < 0 for R0i > 1.
Therefore, all eigenvalues of Eq. (4) have negative real parts forR0i < 1 and (4) has a
positive root forR0i > 1. Thus, the disease-free equilibrium E0i is stable forR0i < 1
and unstable for R0i > 1. The proof is complete. 	

Remark 1 For patch-i , if we consider the effect of population migration, this can also
obtain the expression of the basic reproduction number Rm

01 as follows

Rm
01 =

[
(1 − εi )βiθi

μi + pi + ωi + mρ + qi/ki
+ (1 − εi )piβi

(μi + pi + ωi + mρ + qi/ki )(μi + ci )

+ εiβi

μi + ci

]
�i

μi + m

by the next-generation matrix formulated. It is also easy to see from this expression
that Rm

01 is inversely proportional to m or mρ (the migration rate of population)
and q1 (maximal medical resources supplied per unite time in patch-i and positively
proportional to k1) (half-saturation constant in patch-1).

On the global asymptotical stability of the disease-free equilibrium E0i , we have
the following result.
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Theorem 3 If Ř0i = max
{Ra

0i ,Rb
0i

}
< 1, where

Ra
0i = βi�i

(μi + ci )μi
, Rb

0i = βiθi�i

(μi + ωi + qi/(ki + �i/μi ))μi
,

then the disease-free equilibrium E0i of model (3) is global asymptotical stable.
Proof We choose a positive differentiable function V (t) = Ai (t)+ Ii (t) and calculate
its total derivative directly along model (3) to get that

dV (t)

dt
=βi Si (t)(Ii (t) + θi Ai (t)) − (μi + ωi )Ai (t) − qi Ai (t)

ki + Ai (t)
− μi Ii (t) − ci Ii (t)

≤
(

βi
�i

μi
− μi − ci

)

Ii (t) +
(

βiθi�i

μi
− (μi + ωi ) − qi

ki + �i/μi

)

Ai (t)

=(μi + ci )
(Ra

0i − 1
)
Ii (t) +

(

μi + ωi + qi
ki + �i/μi

)(
Rb

0i − 1
)
Ai (t).

Obviously, the LaSalle’s invariance principle implies that the disease-free equilibrium
E0i is global asymptotical stability in 
 for Ř0i < 1. The proof is complete. 	

Remark 2 Theorem 3 gives the criterion for quickly determining the extinction of the
disease which does not depend on the initial state for the disease outbreak.

3.2 The Existence and Stability of the Endemic Equilibria

Now, we deal with the existence of endemic equilibrium of model (3). Let the deriva-
tiveswith time t inmodel (3) equal to zero,we obtain the following algebraic equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = �i − βi Si (I1 + θi Ai ) − μi Si ,

0 = (1 − εi )βi Si (Ii + θi Ai ) − (μi + pi + ωi )Ai − qi Ai

ki + Ai
,

0 = εiβi Si (Ii + θi Ai ) − μi Ii − ci Ii + pi Ai .

(5)

From the first equation of (5), one has

Si = �i

βi (Ii + θi Ai ) + μi
. (6)

This yields from the third equation of (5) that

Ii =
[

(μi + pi + ωi )εi

(1 − εi )(μi + ci )
+ εi qi

(1 − εi )(μi + ci )(ki + Ai )
+ pi

μi + ci

]

Ai . (7)

Substituting (6) and (7) into the second equation of (5) and simplifying it, we can get

123



Effects of Migration and Limited Resources of SARS-CoV-2 Model Page 9 of 25 55

(1 − εi )βi�i

{[
(μi + pi + ωi )εi (ki + Ai )

2

(1 − εi )(μi + ci )
+ εi qi (ki + Ai )

(1 − εi )(μi + ci )
+ pi (ki + Ai )

2

μi + ci

]

+ θi (ki + Ai )
2
}

= [
(μi + pi + ωi )(ki + Ai ) + qi

]
{

βi

[(
(μi + pi + ωi )εi (ki + Ai )

(1 − εi )(μi + ci )
+ εi qi

(1 − εi )(μi + ci )

+ pi (ki + Ai )

μi + ci

)

Ai + θi Ai (ki + Ai )

]

+ μi (ki + Ai )

}

. (8)

For εi > 0, from (8), the existence of endemic equilibrium of model (3) is deter-
mined by the positive roots of the following cubic equation

aA3
i + bA2

i + cAi + d = 0, (9)

where

a = βi (μi + pi + ωi )

[
(μi + pi + ωi )εi

(1 − εi )(μi + ci )
+ pi

μi + ci
+ θi

]

,

b = [(μi + pi + ωi )ki + qi ]
[
(μi + pi + ωi )βiεi

(1 − εi )(μi + ci )
+ βi pi ki

μi + ci
+ βiθi

]

+ (μi + pi + ωi )

[
βi (μi + pi + ωi )εi ki + βiεi qi

(1 − εi )(μi + ci )
+ βi pi ki

μi + ci
+ βiθi ki + μi

]

− (1 − εi )βi�i

[
(μi + pi + ωi )εi

(1 − εi )(μi + ci )
+ pi

μi + ci
+ θi

]

,

c = [(μi + pi + ωi )ki + qi ]
[

βi ki
(μi + pi + ωi )εi

(1 − εi )(μi + ci )
+ βiεi qi

(1 − εi )(μi + ci )
+ βi ki pi

μi + ci

+ βi kiθi + μi

]

+ ki (μi + pi + ωi )μi − (1 − εi )βi�i

×
(
2kiεi (μi + pi + ωi )

(1 − εi )(μi + ci )
+ εi qi

(1 − εi )(μi + ci )
+ 2ki pi

μi + ci
+ 2θi ki

)

,

d = [
ki (μi + pi + ωi ) + qi

]
μi ki − (1 − εi )βi�i

[
(μi + pi + ωi )εi k2i
(1 − εi )(μi + ci )

+ εi qi ki
(1 − εi )(μi + ci )

+ k2i pi
μi + ci

+ θi k
2
i

]

= [
ki (μi + pi + ωi ) + qi

]
μi ki (1 − R0i ) .

Obviously, a > 0 and d ≤ 0 ⇔ R0i ≤ 1. Let f (Ai ) = aA3
i + bA2

i + cAi + d,
� = 4b2 − 12ac and

x̄1 = −2b − √
4b2 − 12ac

6a
, x̄2 = −2b + √

4b2 − 12ac

6a
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Table 2 Numbers of possible positive real roots of f (Ai ) = 0 for R0i < 1, R0i = 1 and R0i > 1,
respectively

R0i b c � Number of possible positive real roots

+ + 0

+ − 0, f (x̄2) > 0

+ − 1, f (x̄2) = 0

+ − 2, f (x̄2) < 0

− + � ≤ 0 0

R0i < 1 − + � > 0 0, f (x̄2) > 0

− + � > 0 1, f (x̄2) = 0

− + � > 0 2, f (x̄2) < 0

− − 0, f (x̄2) > 0

− − 1, f (x̄2) = 0

− − 2, f (x̄2) < 0

+ + 0

+ − 1

R0i = 1 − + 0, b2 − 4ac < 0

− + 1, b2 − 4ac = 0

− + 2, b2 − 4ac > 0

− − 1

+ + 1

+ − 1

− + � ≤ 0 1

R0i > 1 − + � > 0 1, f (x̄1) < 0, or f (x̄1) > 0 and f (x̄2) > 0

− + � > 0 2, f (x̄1) = 0, or f (x̄1) > 0 and f (x̄2) = 0

− + � > 0 3, f (x̄1) > 0 and f (x̄2) < 0

− − 1

According to the relationship between the real roots and coefficients of cubic equation
(9), we have following Table 2 about the existence of the various possibilities for the
roots of equation f (Ai ) = 0.

Combining all the possibilities enumerated inTable 2,we have the following results.

Theorem 4 On the existence of endemic equilibria of model (3), one of the following
statements is valid.

(I) R0i < 1

• If one of the following conditions holds
(i) b > 0, c < 0 and f (x̄2) = 0; (ii) b < 0, c > 0, � > 0 and f (x̄2) = 0;
(iii) b < 0 and c < 0;
then model (3) has a unique endemic equilibrium.

• If one of the following conditions holds
(i) b > 0 and c < 0; (ii) b < 0, c > 0 and � > 0; (iii) b < 0, c < 0 and
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(a) (b)

Fig. 1 The existence ofmultiple positive roots of equation (9): aR0i = 0.9934 < 1; bR01 = 19.4510 > 1

f (x̄2) < 0;
then model (3) has two endemic equilibria.

(II) R0i = 1

• If one of the following conditions holds
(i) b > 0 and c < 0; (ii) b < 0, b > 0 and b2 − 4ac = 0; (iii) b < 0 and
c < 0;
then model (3) has a unique endemic equilibrium.

• If b < 0, c > 0 and b2 − 4ac > 0, then model (3) has two endemic equilibria.

(III) R0i > 1

• If one of the following conditions holds
(i) b > 0 and c > 0; (ii) b > 0 and c < 0; (iii) b < 0, c > 0, � > 0,
f (x̄1) < 0 (or, f (x̄1) > 0 and f (x̄2) > 0); (iv) b < 0 and c < 0;
then model (3) has a unique endemic equilibrium.

• If b < 0, c > 0, � > 0 and f (x̄1) = 0 (or, f (x̄1) > 0, f (x̄2) = 0), then
model (3) has two endemic equilibria.

• If b < 0, c > 0, � > 0, f (x̄1) > 0 and f (x̄2) < 0, then model (3) has three
endemic equilibria.

Remark 3 From Table 2 or Fig. 1, we can easily find that the existence of positive
roots of characteristic equation (9) becomes more complicated, whether the basic
reproduction number R0i is greater than 1 or less than 1. This is also cased by the
limited medical resources.

Noting that the existence of the endemic equilibria ofmodel (3) is very complicated,
whether the basic reproduction numberR0i is greater than 1 or less than 1. Therefore,
we only discuss the existence of the endemic equilibrium and backward bifurcation
of model (3) for a special case εi = 0. That is, assume that all infected humans will
experience asymptomatic stage first, and then asymptomatic infected humans will
produce symptoms and become symptomatic infected humans. This situation is also
consistent with the current spread of COVID-19. It is easy to calculate that the basic
production number of model (3) with εi = 0 is

R0
0i =

[
θi

μi + pi + ωi + qi/ki
+ pi

(μi + pi + ωi + qi/ki )(μi + ci )

]
βi�i

μi
.
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Further, for εi = 0, by simplifying Eq. (8) and merging similar terms, we can get a
quadratic equation of one variable about Ai as

a2A
2
i + a1Ai + a0 = 0,

where

a2 = βi (μi + pi + ωi )

(
pi

μi + ci
+ θi

)

,

a1 = βi [ki (μi + pi + ωi ) + qi ]
(

pi
μi + ci

+ θi

)

+ μi (μi + pi + ωi )

− βi�i

(
pi

μi + ci
+ θi

)

= βi�i

(
pi

μi + ci
+ θi

)
⎡

⎣
ki (μi + pi + ωi ) + qi

βi�i
+ μi (μi + pi + ωi )

βi�i

(
pi

μi+ci
+ θi

) − 1

⎤

⎦

a0 = μi [ki (μi + p2 + ωi ) + qi ] − βi�i ki

(
pi

μi + ci
+ θi

)

= μi [ki (μi + pi + ωi ) + qi ]
(
1 − R0

0i

)
.

Obviously, a2 is always greater than zero, andR0
0i < 1 if and only if a0 > 0. Further,

it yields from � = a21 − 4a2a0 = 0 that

R0c
0i = 1 − a21

4ωiμi [ki (μi + pi + ωi ) + qi ] .

Based on the above discussion, we have the following conclusions about the exis-
tence of positive equilibrium for model (3) with εi = 0.

Theorem 5 For model (3) with εi = 0, there always exists a disease-free equilibrium
E0i and
(a) IfR0

0i < R0c
0i , orR0

0i ≤ 1 and a1 > 0, then there is no endemic equilibrium;
(b) If R0

0i > 1, or R0
0i = R0c

0i ≤ 1 and a1 < 0, then there is a unique endemic
equilibrium Ē0

i (S̄0i , Ā
0
i , Ī

0
i );

(c) If R0c
0i < R0

0i < 1 and a1 < 0, then there are two distinct endemic equilibria

Ẽ0
i (S̃0i , Ã

0
i , Ĩ

0
i ) and Ê0

i (Ŝ0i , Â
0
i , Î

0
i ).

Remark 4 The conditions of conclusion (a) of Theorem 5 require that both R0
0i ≤ 1

and a1 > 1. From their expressions, we can obtain

R0
0i < 1 ⇐⇒ βi�i [θi (μi + ci ) + pi ] ≤ μi (μi + ci )(μi + pi + ωi ) + μi (μi + ci )qi/ki ,

a1 > 0 ⇐⇒ βi�i [θi (μi + ci ) + pi ] < μi (μi + ci )(μi + pi + ωi )
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+ βi ki (μi + pi + ωi + qi/ki )[θi (μi + ci ) + pi ].

Obviously, the above two inequalities can hold simultaneously. Similarly, for the con-
dition of conclusion (b) (or (c)) of Theorem 5,R0i ≤ 1 (orR0i < 1) and a1 < 0 are,
respectively, equivalent to

R0
0i < 1 ⇐⇒ βi�i [θi (μi + ci ) + pi ] ≤ μi (μi + ci )(μi + pi + ωi )

+ μi (μi + ci )qi/ki ,

a1 < 0 ⇐⇒ βi�i [θi (μi + ci ) + pi ] > μi (μi + ci )(μi + pi + ωi )

+ βi ki (μi + pi + ωi + qi/ki )[θi (μi + ci ) + pi ].

In fact, the above two inequalities can also hold simultaneously for some specific
parameters.

Now, we consider the stability of the endemic equilibria for εi = 0. To do this,
linearizing model (3) with εi = 0 around a point E∗

i (S∗
i , A∗

i , I
∗
i ) yields the Jacobian

matrix

JE∗
i

=
⎛

⎜
⎝

−βi (I ∗
i + θi A∗

i ) − μi −βi S∗
i θi −βi S∗

i
βi (I ∗

i + θi A∗
i ) βiθi S∗

i − μi − pi − ωi − qi ki
(ki+A∗

i )
2 βi S∗

i

0 pi −μi − ci

⎞

⎟
⎠ .

Further, through a series of calculations, we can get the corresponding characteristic
equation is

λ3 + b2(A
∗
i )λ

2 + b1(A
∗
i )λ + b0(A

∗
i ) = 0, (10)

where

b2(A
∗
i ) = 3μi + ci + pi + ωi + qi ki

(ki + A∗
i )

2 + βi

(
pi

μi + ci
+ θi

)

A∗
i

− βi θi�i

βi (pi/(μi + ci ) + θi )A∗
i + μi

,

b1(A
∗
i ) = μi

(

2μi + ci + pi + ωi + qi ki
(ki + A∗

i )
2

)

+ (μi + ci )

(

μi + pi + ωi

+ qi ki
(ki + A∗

i )
2

)

+ βi

(
pi

μi + ci
+ θi

)(

2μi + ci + pi + ωi + qi ki
(ki + A∗

i )
2

)

A∗
i

− [
μiβi θi + (μi + ci )βi θi + βi pi

] βi θi�i

βi (pi/(μi + ci ) + θi )A∗
i + μi

,

b0(A
∗
i ) = (μi + ci )[μi + βi (Ii + θi Ai )]

(

μi + pi + ωi + qi ki
(ki + A∗

i )
2

)

×
[

1 − R0
0i

(μi + pi + ωi + qi/ki )μ2
i

(μi + pi + ωi + qi ki/(ki + A∗
i )

2)
[
μi + βi (pi/(μi + ci ) + θi )A∗

i

]2

]

.
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By using Routh-Hurwitz criterion, it is easy to get that all roots of equation of (10)
have negative real parts if and only if the following conditions satisfy

b1(A
∗
i ) > 0 (i = 0, 1, 2), b1(A

∗
i )b2(A

∗
i ) − b0(A

∗
i ) > 0. (11)

Based on the above discussion, we have the following result on the stability of the
endemic equilibrium for model (3) with εi = 0.

Theorem 6 If model (3) with εi = 0 admits a endemic equilibrium E∗(S∗
i , A∗

i , I
∗
i )

and A∗
i satisfies conditions (11), then E∗ is locally asymptotically stable.

Following Theorem 7 is on the existence of the forward/backward bifurcation for
model (3) with εi = 0.

Theorem 7 For εi = 0 and R0
0i = 1, one of the following statements is valid.

(a) If 1 − 4(μi + pi + ωi )ki < 0, then model (3) exhibits a forward bifurcation for
all qi > 0.

(b) If 1− 4(μi + pi + ωi )ki = 0, then model (3) admits a forward bifurcation for all
qi ∈ (0, 1/4) ∪ (1/4,+∞).

(c) If1−4(μi+pi+ωi )ki > 0, thenmodel has a backwardbifurcation for qi ∈ (q̂i , q̆i )
and has a forward bifurcation for all qi ∈ (0, q̂i ) ∪ (q̆i ,+∞), where

q̂i = 1 − 2(μi + pi + ωi )ki − √
1 − 4(μi + pi + ωi )ki

2
,

q̆i = 1 − 2(μi + pi + ωi )ki + √
1 − 4(μi + pi + ωi )ki

2
.

(12)

Proof Let Si (t) = x1(t), Ai (t) = x2(t) and Ii (t) = x3(t), then model (3) can be
rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= �i − βi (x3 + θi x2)x1 − μi x1 := f1,

dx2
dt

= βi (x3 + θi x2)x1 − (μi + pi + ωi )x2 − qi x2
ki + Ai

:= f2,

dx3
dt

= pi x2 − μi x3 − ci x3 := f3.

(13)

Further, the Jacobian matrix of the disease-free equilibrium E0
0i for model (13) is

JE0
0i

=
⎛

⎜
⎝

−μi −βiθi
�i
μi

−βi
�i
μi

0 βiθi
�i
μi

− μi − pi − ωi − qi
ki

βi
�i
μi

0 pi −μi − ci

⎞

⎟
⎠ .

Therefore, the corresponding characteristic equationofJE0
0i
withR0

0i = 1 is as follows

λ(λ + μi )(λ + ai ) = 0, (14)
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where

ai =
(

μi + pi + ωi + qi
ki

)(

1 − βiθi�i

(μi + pi + ωi + qi/ki )μi

)

+ μi + ci > 0

due to the fact R0
0i = 1. Obviously, all eigenvalues of equation (14) are λ1 = 0,

λ2 = −μi and λ3 = −ai . Therefore, λ1 = 0 is a simple zero eigenvalue and all other
eigenvalues of JE0

0i
are real and negative. Thus, the center manifold theory in Guck-

enheimer and Holmes (1983) can be used to discuss the occurrence of bifurcations.
Now, we choose the transmission rate βi as the bifurcation parameter. It is obvious

to calculate that R0
0i = 1 is equivalent to

βi = β∗
i = (μi + pi + ωi + qi/ki )(μi + ci )

θi (μi + ci ) + pi

μi

�i
.

Hence, if βi = β∗
i the disease-free equilibrium E0

0i is a non-hyperbolic equilibrium
and the assumption (H1) of Lemma 2 is satisfied.

Denote that U = (u1, u2, u3)T a right eigenvector associated with the zero eigen-
value λ1 = 0, which is formulated by JE0

0i
U = 0. That is,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− μi u1 − β∗
i θi�i

μi
u2 − β∗

i �i

μi
u3 = 0,

(
β∗
i θi�i

μi
− μi − pi − ωi − qi

ki

)

u2 + β∗
i �i

μi
u3 = 0,

piu2 − (μi + ci )u3 = 0.

It can be obtained by direct calculation and simplification that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 =
[

θi

μi

(μi + pi + ωi + qi/ki )(μi + ci )

(μi + ci )θi + pi
− θi�i

μ2
i

− μi + pi + ωi + qi/ki
μi

]

× (μi + pi + ωi + qi/ki )(μi + ci )

(μi + ci )θi + pi
,

u2 = (μi + pi + ωi + qi/ki )(μi + ci )

(μi + ci )θi + pi
,

u3 =μi + pi + ωi + qi
ki

− θi
(μi + pi + ωi + qi/ki )(μi + ci )

(μi + ci )θi + pi
.

(15)

Similarly, a left eigenvector associated with the zero eigenvalue λ1 = 0 is given by
V = (v1, v2, v3), where

v1 = 0, v2 = pi , v3=μi + pi +ωi + qi
ki

− θi
(μi + pi + ωi + qi/ki )(μi + ci )

(μi + ci )θi + pi
.

(16)
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Next, we compute the partial derivatives at the disease-free equilibrium E0
0i . From

model (13), it can be obtained that

∂2 f1
∂x21

= ∂2 f1
∂x22

= ∂2 f1
∂x23

= ∂2 f1
∂x2∂x3

= ∂2 f1
∂x3∂x2

= 0,

∂2 f1
∂x1∂x3

= ∂2 f1
∂x3∂x1

= −β∗
i ,

∂2 f1
∂x1∂x2

= ∂2 f1
∂x2∂x1

= −θiβ
∗
i ,

∂2 f2
∂x21

= ∂2 f2
∂x23

= ∂2 f2
∂x2∂x3

= ∂2 f2
∂x3∂x2

= 0,
∂2 f2
∂x22

= 2qi ki
(ki + x2)3

, (17)

∂2 f2
∂x1∂x2

= ∂2 f2
∂x2∂x1

= θiβ
∗
i ,

∂2 f2
∂x1∂x3

= ∂2 f2
∂x3∂x1

= β∗
i ,

∂2 f3
∂x2i

= ∂2 f3
∂x22

= ∂2 f3
∂x23

= ∂2 f3
∂x1∂x2

= ∂2 f3
∂x2∂xi

= 0,

∂2 f3
∂x1∂x3

= ∂2 f3
∂x3∂x1

= ∂2 f3
∂x2∂x3

= ∂2 f3
∂x3∂x2

= 0.

Further, from (15), (16), (17), and some tedious symbolic calculations, we can get that

a =
3∑

k,i, j=1

vkui u j
∂2 fk

∂xi∂x j
(E0

0i )

=2vi (−θiβ
∗
i ui u2 − β∗

i ui u3) + 2v2

(

θiβ
∗
i ui u2 + β∗

i ui u3 + qi
k2i

u22

)

=2pi

(

uiu2θiβ
∗
i + uiu3β

∗
i + u22

qi
k2i

)

=2
pi ki
Q2 hi (q

∗
i ),

and

b =
3∑

k,i=1

vkui
∂2 fk
∂xi∂b

(E0
0i ) = pi

(

θi
�i

μi
u2 + �i

μi
u3

)

= pi
�i

μi

(

α + qi
ki

)

,

where

Q= θi (μi + ci ) + pi
(μi + pi + ωi + qi/ki )(μi + ci )

, hi (qi )=−q2i + (1 − 2(μi + pi + ωi )ki )qi

−(μi + pi + ωi )
2k2i .

Obviously, the coefficientb is always positive and the signofa is determinedby the sign
of function hi (qi ). Note that the image of function hi (qi ) is a parabola with an opening
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downward, and the maximum value is obtained at q∗
i = (1 − 2(μi + pi + ωi )ki )/2

and the maximum value is hi (q∗
i ) = (1− 4(μi + pi + ωi )ki )/4. Therefore, there are

three cases to consider:

(a) If hi (q∗
i ) < 0, that is, 1 − 4(μi + pi + ωi )ki < 0, we have a < 0 for all qi > 0;

(b) If hi (q∗
i ) = 0, that is, 1− 4(μi + pi + ωi )ki = 0, it yields that a < 0 for all qi ∈

(0, 1/4)∪(1/4,+∞), whereweuse the factq∗
i = (1−2(μi+pi+ωi )ki )/2 = 1/4;

(c) If hi (q∗
i ) > 0, that is, 1 − 4(μi + pi + ωi )ki > 0, it follows that the quadratic

equation of one variable hi (qi ) = 0 has two unequal positive real roots q̂i and q̆2,
which are given by (12). Thus, we have a < 0 for all qi ∈ (0, q̂i )∪ (q̆i ,+∞), and
a > 0 for all qi ∈ (q̂i , q̆i ).

Based on the above discussion and Lemma 2, it is not difficult to find that the
model has backward bifurcation if the coefficient a is positive and admits a backward
bifurcation if the coefficient a is positive. The proof is complete. 	


4 Dynamics of Full Model

In this section, we discuss the dynamics of the spread of COVID-19 in patch-1 and
patch-2. Since the state variables Qi and Ri (i = 1, 2) are decoupled from other
variables, model (1) reduces to the following six-dimensional system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)

dt
= �1 − β1S1(t)(I1(t) + θ1A1(t)) − μ1S1(t) − mS1(t),

dA1(t)

dt
= (1 − ε1)β1S1(t)(I1(t) + θ1A1(t)) − (μ1 + p1 + ω1 + mρ)A1(t)

− q1A1(t)

k1 + A1(t)
,

dI1(t)

dt
= ε1β1S1(t)(I1(t) + θ1A1(t)) − μ1 I1(t) − c1 I1(t) + p1A1(t),

dS2(t)

d
= �2 − β2S2(t)(I2(t) + θ2A2(t)) − μ2S2(t) + mS1(t),

dA2(t)

dt
= (1 − ε2)β2S2(t)(I2(t) + θ2A2(t)) − (μ2 + p2 + ω2)A2(t)

− q2A2(t)

k2 + A2(t)
+ mρA1(t),

dI2(t)

dt
= ε2β2S2(t)(I2(t) + θ2A2(t)) − μ2 I2(t) − c2 I2(t) + p2A2(t).

(18)

Obviously, full model (18) admits a disease-free equilibrium E0(Ŝ01 , 0, 0, Ŝ02 , 0, 0),
where

Ŝ01 = �1

μ1 + m
, Ŝ02 = �2(μ1 + m) + m�1

μ2(μ1 + m)
.
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Further, by using the next-generation matrix approach, the basic reproduction number
of model (18) is defined by

R0 = max{R̃01, R̃02},

where

R̃01 =
[

(1 − ε1)β1θ1

μ1 + p1 + ω1 + mρ + q1/k1
+ (1 − ε1)p1β1

(μ1 + p1 + ω1 + mρ + q1/k1)(μ1 + c1)

+ ε1β1

μ1 + c1

]

Ŝ01 ,

R̃02 =
[

(1 − ε2)β2θ2

μ2 + p2 + ω2 + q2/k2
+ (1 − ε2)p2β2

(μ2 + p2 + ω2 + q2/k2)(μ2 + c2)
+ ε2β2

μ2 + c2

]

Ŝ02 .

Remark 5 In particular, if there is no migration between patches 1 and 2, that is, the
migration rate m = 0, then R̃0i = R0i , i = 1, 2.

Following Theorem 8 is on the local asymptotical stability of E0 for model (18).

Theorem 8 The disease-free equilibrium E0 of model (18) is locally asymptotically
stable for R0 < 1 and is unstable forR0 > 1.

Proof According to the proof of Theorem 2 in Ref. (van den Driessche andWatmough
2002), the local asymptotical stability of the disease-free equilibrium E0 is determined
by the following characteristic equation

(λ + μ1 + m)(λ2 + a11λ + a12)(λ + μ2)(λ
2 + a21λ + a22) = 0, (19)

where

a11 =
(

μ1 + p1 + ω1 + mρ + q1
k1

)(

1 − (1 − ε1)β1θ1 Ŝ01
μ1 + p1 + ω1 + mρ + q1/k1

)

+ (μ1 + c1)

(

1 − ε1β1 Ŝ01
μ1 + c1

)

,

a12 =
(

μ1 + p1 + ω1 + mρ + q1
k1

)

(μ1 + c1) (1 − R01) ,

a21 =
(

μ2 + p2 + ω2 + q2
k2

)(

1 − (1 − ε2)β2θ2 Ŝ02
μ2 + p2 + ω2 + q2/k2

)

+ (μ2 + c2)

(

1 − ε2β2 Ŝ02
μ2 + c2

)

,

a22 =
(

μ2 + p2 + ω2 + q2
k2

)

+ (μ2 + c2) (1 − R02) .
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This is easy to verify that ai1 > 0, ai2 > 0 for R0i < 1 and ai2 < 0 for R0i > 1,
i = 1, 2. Therefore, all eigenvalues of Eq. (19) have negative real parts for R0 < 1
and (19) has at least one positive root forR0 > 1. Thus, the disease-free equilibrium
E0 is stable for R0 < 1 and is unstable for R0 > 1. The proof is complete. 	


On the global asymptotical stability of E0, we have the following result.

Theorem 9 If Ř0 = max{Ř01, Ř02} < 1, then the disease-free equilibrium E0 of
model (18) is global asymptotical stable, where Ř0i (i = 1, 2) is given in Theorem 3.

Proof Choosing a positive differentiable function V (t) = ∑2
i=1(Ai (t) + Ii (t)) and

calculating its total derivative directly along model (18), one has

dV (t)

dt
=

2∑

i=1

[

βi Si (t)(Ii (t) + θi Ai (t)) − (μi + ωi )Ai (t) − qi Ai (t)

ki + Ai (t)
− μi Ii (t) − ci Ii (t)

]

≤
2∑

i=1

[(

βi
�i

μi
− μi − ci

)

Ii (t) +
(

βiθi�i

μi
− (μi + ωi ) − qi

ki + �i/μi

)

Ai (t)

]

≤
2∑

i=1

[

(μi + ci )(Ra
0i − 1)Ii (t) +

(

μi + ωi + qi
ki + �i/μi

)

(Rb
0i − 1)Ai (t)

]

,

where Ra
0i and Rb

0i are given in Theorem 3. Obviously, the LaSalle’s invariance
principle implies that the disease-free equilibrium E0 is global asymptotical stability
in 
 for Ř0 < 1. The proof is complete. 	

Remark 6 From Theorem 7, it is also not difficult to find that when the basic repro-
duction numbers of both patches are less than 1, full model (18) also exists backward
bifurcation. In other words, the persistence or extinction of the disease is no longer
dependent on the basic reproduction but on the initial size of the infected population.

Regarding the existence and stability of other equilibria ofmodel (18), the following
conclusions are clearly valid.

Theorem 10 If R̃01 < 1 and R̃02 > 1, thenmodel (18) admits a boundary equilibrium
(Ŝ01 , 0, 0, S

∗
2 , A

∗
2, I

∗
2 ). That is, the disease in patch-1 is extinct and disease is endemic

in patch-2.

Theorem 11 If R̃01 > 1 and mρ > 0, then model (18) exists an endemic equilibrium
(S∗

1 , A
∗
1, I

∗
1 , S∗

2 , A
∗
2, I

∗
2 ) and disease is endemic in patch-1 and patch-2.

5 Numerical Simulation

In this section, some numerical simulations are carried to explain the effect of migra-
tion and limited medical resources for the transmission of SARS-CoV-2 using the
Runge–Kutta method in the software MATLAB.We consider, firstly, the transmission
dynamics of disease in patch-1 without migration. To do so, we choose basic model

123



55 Page 20 of 25 L. Hu et al.

(a) (b)

Fig. 2 The stability of the disease-free equilibrium E01 of model (3) with �1 = 750, μ1 = 1/(65 × 365),
ω1 = 1/20, p1 = 0.001, θ1 = 0.35, q1 = 0.35, k1 = 4500, c1 = 1/14, β1 = 5.22× 10−9 and ε1 = 0.25,
where R01 ≈ 0.9025 < 1

parameters as follows: �1 = 750, μ1 = 1/(65× 365), β1 = 5.22× 10−9, ε1 = 0.25,
m = 0, p1 = 0.001, θ1 = 0.35, q1 = 0.35, k1 = 4500. Further, according to the
biological significance of other model parameters in Table 1, as well as the current
treatment cycle and nucleic acid testing cycle for SARS-CoV-2,we chooseω1 = 1/20,
c1 = 1/14, γ1 = 1/14. By the direct calculation, one has R01 ≈ 0.9025 < 1; there-
fore, the disease-free equilibrium E01 is stable. This also implies that the disease is
extinct and is shown in Fig. 2a and b.

Further, if we just change the values of parameters as q1 = 0.015, β1 = 5.22×10−8

and other model parameters are fixed as Fig. 2. Through direct calculation, the basic
reproduction number R01 ≈ 9.0322 > 1. Therefore, from Theorems 2 and 3, the
disease-free equilibrium is unstable and model (3) has an endemic equilibrium. This
is shown in Fig. 3a and b. Additionally, numerical simulations in Fig. 3c and d show
that the solutions with differential values converge to the same endemic equilibrium,
where the initial values are A1(0) = I1(0) = 500, A1(0) = I1(0) = 500500, A1(0) =
I1(0) = 1500500, A1(0) = I1(0) = 3500500 and A1(0) = I1(0) = 10500500,
respectively. Perhaps, the endemic equilibrium is stable under this set of parameters.
So far, we have an interesting question: ifR0i > 1, then model (3) without migration
admits an endemic equilibrium which is locally asymptotically stable.

Next, we discuss the effect of migration rate m on the transmission of SARS-CoV-
2 in the two patches. To this end, we fixed the parameters of model (18) as follows:
�i = 950, μi = 1/(65 × 365), pi = 0.3, εi = 0.015, θi = 0.6, ωi = 0.03, qi = 0.1,
ci = 0.05, β1 = 2.97 × 10−8, β2 = 2.002 × 10−9, k1 = 4000, k2 = 6000 and
ρ = 0.0002, i = 1, 2. Further,we choosem = 0, 1/50000, 1/30000, 1/10000, 1/7000
and 1/4000, respectively. Correspondingly, one can calculate the basic reproduction
numbers in six case as shown in following Table 3.

Numerical calculations are shown that the basic reproduction number R̃01 decreases
and R̃02 increases as themigration ratem increases. Further, the numerical simulations
in Fig. 4a and b also show that when m = 0, the disease is endemic in the patch-1 and
extinct in patch-2. With the increase ofm, the disease spreads in the two patches at the
same time, although the migration rate mρ of asymptomatic infection is very small.
In addition, numerical simulations also show that the time and peak of this disease
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(a) (b)

(c) (d)

Fig. 3 The existence and stability of the endemic equilibrium of model (3) with �1 = 750, μ1 = 1/(65×
365), ω1 = 1/20, p1 = 0.001, θ1 = 0.35, q1 = 0.015, k1 = 4500, c1 = 0.07, β1 = 5.22 × 10−8,
ε1 = 0.25, where R01 ≈ 9.0322 > 1

Table 3 The effects of migration rate m on the basic reproduction numbers R̃01 and R̃02 of full model
(18)

case m R̃01 R̃02 case m R̃01 R̃02

(i) 0 13.3751 0.9016 (iv) 1
10000 3.6959 1.5359

(i i) 1
50000 9.0709 1.1917 (v) 1

7000 3.0472 1.5978

(i i i) 1
30000 7.4686 1.2297 (vi) 1

4000 1.9297 1.6731

outbreak in the patch-1 are delayed and decreased with the increase of m, while
the situation in patch-2 is just the opposite. Both theoretical results and numerical
simulations show that the prevalence of SARS-CoV-2 between different regions is
closely related to the migration rate m. The control of COVID-19 is the common
responsibility of different countries and regions around the world. After all, in the
context of economic globalization, it is impossible for countries and regions to be
completely lockdown.

Finally, we discuss the sensitivity of the main parameters of full model (18) to the
basic reproduction numbers R̃01 and R̃02. It is not difficult to see from Fig. 5a–d, the
infection rates of β1 and β2 are positively correlated with R̃01 and R̃02, while other
parameters, such as mρ, c1, c2 and q2, are negatively correlated. More specifically,
susceptible humans wear masks and keep a safe social distance, and the relevant
institutions can provide enough medical materials to quickly screen out asymptomatic
infected people and take effective isolation measures for the infected humans, which
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(a) (b)

(c) (d)

Fig. 4 The effect of migration rate m on the transmission of SARS-CoV-2 in the two patches

Fig. 5 Sensitivity of the main parameters of full model (18) on the basic production numbers R̃01 and R̃02

can greatly reduce the basic reproduction number, so as to achieve the purpose of
disease control.

6 Conclusion and Discussion

Since the worldwide outbreak of SARS-CoV-2, the human lifestyles and frequency of
travel have changed considerably. However, some necessary migration of the popula-
tion is inevitable, such asworking across regions, studying, visiting relatives, traveling.
In addition, due to the rapid spread of the epidemic, countries around the world are
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experiencing varying degrees of medical resource scarcity, which greatly restricts the
screening of patients with SARS-CoV-2 and the treatment of this disease, which poses
a great problem for the prevention and control of the disease. From the perspective of
mathematical modeling, we construct, in this paper, a dynamical model to describe
the transmission of SARS-CoV-2 between two patches, where asymptotic infected
class, isolation treatment class and limited medical resources are introduced. Among
them, limited medical resources are described by the saturation function. Firstly, the
dynamics of the model without migration in patch-i are studied, which includes the
stability of the disease-free equilibrium, the existence of multi-endemic equilibria and
forward/backward bifurcation. This means that the basic reproduction number is no
longer the threshold condition for determining the prevalence of this disease, and the
persistence or extinction of disease may depend more on the initial state of infected
classes. Further, the local/global asymptotical stability of the disease-free equilibrium
of the full model is obtained. In addition, the prevalence of disease is also discussed
when the reproduction numbers of two patches are larger than or less than one. Finally,
numerical simulations are carried to explain the main theoretical results, especially
the effect of migration rate on the spread of SARS-CoV-2 in two patches.

In addition, some interesting findings are obtained from the theoretical results of this
paper. Since we apply a saturation function to portray the limited medical resources,
which complicates the existence of the endemic equilibria of our model. The model
may have multiple endemic equilibria even in the case where the basic reproduction
number is less than one (see Theorem 7). This makes the persistence and extinction of
the disease no longer dependent on the basic reproduction number of our model but
on the size of the infected population at the initial moment. Thus, it is not difficult to
imagine a scenario in which the basic reproduction numbers in both patches are less
than 1 and the disease is extinct in both patches, but the basic reproduction number in
patch-2 is closer to 1 and the populationmigrating from patch-1 to patch-2 has infected
individuals, which causes the initial size of infected population in patch-2 to jump from
the attraction domain of the disease-free equilibrium to the attraction domain of the
endemic equilibrium. This leads to the persistence of the disease in patch-2, where the
basic reproduction number is less than 1. Even if this population migration is a one-
time event. From these interesting results, it is easy to see that the control of the current
COVID-19 is not sufficient to control the basic reproduction of this disease in a region
or country to less than 1, but to make it much less than 1. Even if the basic reproduction
number of the disease in all regions is less than 1, local outbreaks may occur with
limited medical resources. In addition, in the case of international epidemics, strict
quarantine and testing measures for population migration, especially those imported
frommedium and high risk regions, are in place. Therefore, “to prevent the coronavirus
from entering and spreading within the cit/regio” remains an effective measure for
the prevention and control of the new epidemic. These imply that, in the context of
economic globalization, the control of COVID-19 is the common responsibility of
different countries and regions around the world since it is impossible for countries
and regions to be completely lockdown. No one or country can be left alone in the
face of an epidemic.

Of course, there are many factors that are not reflected in our model. For example,
if the migration of humans in two patches is two way, how about the spread of this
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disease? In the process of the transmission of disease, there aremany uncertain factors.
What impact do these factors have on the prevention and control of disease? The
effectiveness and coverage of vaccine have an impact on disease, and so on. These are
all issues that need further discussion.
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