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Abstract
We consider a continuum mathematical model of biological tissue formation inspired
by recent experiments describing thin tissue growth in 3D-printed bioscaffolds. The
continuum model, which we call the substrate model, involves a partial differential
equation describing the density of tissue, û(x̂, t̂) that is coupled to the concentration
of an immobile extracellular substrate, ŝ(x̂, t̂). Cell migration is modelled with a non-
linear diffusion term, where the diffusive flux is proportional to ŝ, while a logistic
growth term models cell proliferation. The extracellular substrate ŝ is produced by
cells and undergoes linear decay. Preliminary numerical simulations show that this
mathematical model is able to recapitulate key features of recent tissue growth exper-
iments, including the formation of sharp fronts. To provide a deeper understanding
of the model we analyse travelling wave solutions of the substrate model, showing
that the model supports both sharp-fronted travelling wave solutions that move with a
minimum wave speed, c = cmin, as well as smooth-fronted travelling wave solutions
that move with a faster travelling wave speed, c > cmin. We provide a geometric
interpretation that explains the difference between smooth and sharp-fronted travel-
ling wave solutions that is based on a slow manifold reduction of the desingularised
three-dimensional phase space. In addition, we also develop and test a series of use-
ful approximations that describe the shape of the travelling wave solutions in various
limits. These approximations apply to both the sharp-fronted and smooth-fronted trav-
elling wave solutions. Software to implement all calculations is available at GitHub.
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1 Introduction

Over the last decade, tissue engineering has been revolutionised through the use of 3D
printing technologies that produce 3D bioscaffolds upon which in vitro tissues can be
grown in biologically realistic geometries (Ambrosi et al. 2019; Dzobo et al. 2018).
In vitro tissues grown on 3D scaffolds are more reproducible and more biologically
realistic than tissues grown in traditional two-dimensional tissue culture (Lanaro et al.
2021). The experimental images in Fig. 1a show the evolution of thin 3D tissues that
are produced by seeding a 3D-printed scaffold with osteoblast precursor cells (Buen-
zli et al. 2020; Browning et al. 2021). In this experiment, cells are seeded onto the
perimeter of 3D-printed square shaped pores, where each pore has sides of approxi-
mately 300 μm in length. Each subfigure in Fig. 1a shows four adjacent pores. As the
experiment proceeds, individual cells migrate off the scaffold into the pore, and then
combined cell migration and cell proliferation lead to the formation of a sharp-fronted
tissue profile that invades into the pore. This process eventually forms a thin tissue that
closes or bridges the pore after approximately 14 days (Buenzli et al. 2020; Browning
et al. 2021). A notable feature of these experiments is that tissue formation involves a
well-defined moving front that is very obvious in Fig. 1a. Closer inspection of these
experimental images shows that cells not only migrate and proliferate during the pore
bridging process, but they also produce an extracellular medium that is laid down onto
the surface of the pore (Lanaro et al. 2021).

Continuum mathematical models of tissue formation have a long history, with
many early examples based on the classical Fisher-KPP model (Ablowitz and Zep-
petella 1979; Canosa 1973; Fisher 1937; Kolmogorov et al. 1937). The Fisher-KPP
model describes cell migration using a one-dimensional linear diffusion term, and cell
proliferation is treated using a logistic source term. Different types of tissue formation
experiments have been successfully modelled using the Fisher-KPP model (Maini
et al. 2004; Jin et al. 2016, 2017; Warne et al. 2019) or two-dimensional extensions
(Sherratt and Murray 1990; Swanson et al. 2003). While these studies show that sim-
ple mathematical models based on the Fisher-KPP framework successfully capture
certain features of tissue formation, there are several well-known limitations that can
be addressed by considering extensions of that model (Murray 2002). One such criti-
cism is that the linear diffusion term in the Fisher-KPP model leads to smooth density
profiles that do not represent well-defined fronts, such as those we see in Fig. 1a.

Oneway to overcome this limitation is to work with the Porous-Fisher model where
the linear diffusion term is generalised to a degenerate nonlinear diffusion term with
a power law diffusivity (Fadai and Simpson 2020; Sanchez and Maini 1994; Sengers
et al. 2007; Witeslki 1994; Witelski 1995). While the Porous-Fisher model leads to
sharp-fronted density profiles, this approach introduces a separate complication of
having to justify the choice of the exponent in the power law diffusivity (Jin et al.
2016; McCue et al. 2019; Sherratt andMurray 1990; Simpson et al. 2011; Warne et al.
2019). A further weakness of both the Fisher-KPP and Porous-Fisher models is that
they deal with a single species, such as a density of cells, and do not explicitly describe
how the population of cells invades into surrounding cells, or interacts with the sur-
rounding environment. This second limitation has been addressed by introducingmore
complicated mathematical models, such as the celebrated Gatenby–Gawlinski model
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Fig. 1 Experimental and simulated osteoblast tissue formation within a square-shaped 3D-printed pore. (a)
Composite fluorescence microscopy images of pore bridging experiments (Buenzli et al. 2020; Browning
et al. 2021). Cell nuclei are shown in blue; tissue and cytoskeleton are shown in green. Each subfigure
shows four adjacent square pores, each with side length of L̂ = 300µm. Images are shown at various times,
t̂ = 4, 7, 10 and 14 days, as indicated. For clarity, in each subfigure we outline the border of the upper-left
pore (red dashed). Experimental images are reproduced from Buenzli et al. (2020) with permission. (b)–(c)
Numerical solution of Eqs. (1)–(2) on a square domain with side length L̂ = 300 µm. (b) Evolution of
û. (c) Evolution of ŝ. Each column of the figure corresponds to t̂ = 4, 7, 10 and 14 days, as indicated.
Parameter values for the mathematical model are D̂ = 300 µm2/day, λ̂ = 0.6 /day, K̂u = 1 cells/µm2,
K̂s = 1 mol/µm2, r̂1 = 1 mol/(cells day), r̂2 = 1 /day. The numerical solution of (1)–(2) is obtained on a
101 × 101 mesh. Temporal integration is performed with uniform time steps of duration �t̂ = 1 × 10−2

day (colour figure online)

of tumour invasion (Gatenby and Gawlinski 1996), which explicitly describes how
a population of tumour cells degrades and invades into a population of surrounding
healthy tissue by explicitly modelling both populations and their interactions. Since
the Gatenby–Gawlinski framework was proposed in 1996, subsequent studies have
since analysed the relationship between individual-level mechanisms and the result-
ing population-level continuum descriptions (Painter et al. 2003), calibrating these
mathematical models to match experimental measurements of melanoma invasion
(Browning et al. 2019), as well as analysing travelling wave solutions of these types
of multi-species mathematical models (Colson et al. 2021; El-Hachem et al. 2021b;
Gallay and Mascia 2021).

In this work, we study a continuum mathematical model of cell invasion that is
motivated by the experimental images in Fig. 1a. The mathematical model explicitly
describes the evolution of the cell density, û(x̂, t̂), and the density of substrate produced
by the cells, ŝ(x̂, t̂), giving rise to a coupled system of nonlinear partial differential
equations (PDEs). We first explore numerical solutions of the mathematical model in
two spatial dimensions to mimic the same patterns of tissue development that we see
in the experimental images in Fig. 1a.

Within this modelling framework, it is natural for us to ask how the duration of
time required for the pore to close is affected by the dynamics of substrate deposi-
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tion and decay. We address this question by nondimensionalising the mathematical
model and numerically exploring travelling wave solutions in one dimension. Not
only does travelling wave analysis of the mathematical model has a direct link to the
application in question, we note that travelling wave analysis provides mathematical
insight into various models of invasion with applications including tissue engineer-
ing (Landman and Cai 2007), directed migration (Krause and Van Gorder 2020),
disease progression (Strobl et al. 2020), and various applications in ecology (Hogan
and Myerscough 2017; El-Hachem et al. 2021a). Our preliminary numerical explo-
rations suggest that, similar to the well-known Porous-Fisher model, the substrate
model supports both sharp-fronted and smooth travelling wave solutions. Working in
three-dimensional phase space, we show that travelling wave solutions exist for all
wave speeds c ≥ cmin, where cmin > 0 is some minimum wave speed, and we pro-
vide a geometric argument based on a slow manifold reduction to distinguish between
sharp-fronted travelling wave solutions that move with the minimum speed cmin, from
smooth travelling wave solutions that move faster than the minimum speed, c > cmin.
The three-dimensional phase space arguments are supported by some analysis of the
time-dependent PDEproblemwherewe showhow the long-time travellingwave speed
relates to the initial decay rate of the cell density. All phase-space and time-dependent
PDE analyses throughout this work are supported by detailed numerical simulations
of the full time-dependent PDE model. For completeness we also present various per-
turbation solutions that give accurate mathematical expressions describing the shape
of the travelling waves profiles in various limits.

Overall, we show that the substrate invasionmodel can be viewed as bridge between
the relatively simple Porous-Fisher model and more detailed mathematical models
of biological invasion. The substrate model supports various types of travelling wave
solutions that are reminiscent of travelling wave solutions of the Porous-Fisher model,
but the analysis of these travelling wave solutions is quite different, as we shall now
explore.

2 Results and Discussion

In this work all dimensional variables and parameters are denoted with a circumflex,
and nondimensional quantities are denoted using regular symbols.

2.1 Biological Motivation

Following Buenzli et al. (2020), we consider the following minimal model of cell
invasion

∂ û

∂ t̂
= D̂∇ ·

(
ŝ

K̂s
∇û

)
+ λ̂û

(
1 − û

K̂u

)
, x̂ ∈ �, (1)

∂ ŝ

∂ t̂
= r̂1û − r̂2ŝ, x̂ ∈ �, (2)
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where û(x̂, t̂) ≥ 0 is the density of cells, ŝ(x̂, t̂) ≥ 0 is the substrate concentration,
D̂ > 0 is the cell diffusivity and λ̂ > 0 is the cell proliferation rate. Thismodel assumes
that cells produce an adhesive and immobile substrate at rate r̂1 > 0 and that the
substrate decays at a rate r̂2 > 0. We assume that the carrying capacity density of cells
is K̂u > 0 and that a typical maximum substrate density is K̂s > 0. The key feature of
thismathematicalmodel is that the diffusive flux of cells is proportional to the substrate
density, ŝ. This assumption couples the cell density to the substrate concentration in
a way that the diffusive flux vanishes when ŝ = 0. In this model the evolution of the
cell density is affected by the substrate through the cell migration term, without any
direct coupling in the cell proliferation term. This assumption is consistent with recent
two-dimensional studies that explored how different surface coatings affect combined
cell migration and cell proliferation in wound healing assays (Jin et al. 2020). This
work showed that different surface coatings have a dramatic impact on cell migration,
whereas cell proliferation is less sensitive.

In this modelling framework we make use of the fact that the tissues produced in
the experiments in Fig. 1a are thin; the horizontal length scale is approximately 300
μm whereas the depth of tissue is approximately one cell diameter only, which is
around 10–20 μm. In this setting it is appropriate to use a depth-averaged modelling
framework where variations in the vertical direction are implicit, rather than being
explicitly described (Simpson 2009).

We begin by considering Eqs. (1)–(2) on a two-dimensional square-shaped domain,
� = {(x̂, ŷ) : 0 ≤ x̂ ≤ L̂, 0 ≤ ŷ ≤ L̂} to match the geometry of the experiments
in Fig. 1a. For simplicity we work with Dirichlet boundary conditions by setting
û = K̂u along all boundaries, with spatially uniform initial conditions û = ŝ = 0,
at t̂ = 0. A numerical solution of Eqs. (1)–(2) in Fig. 1b, c shows the evolution of û
and ŝ, respectively. Full details of the numerical methods used to solve Eqs. (1)–(2)
are given in Supplementary Material. While these initial conditions are inconsistent
with the boundary data, our numerical results are grid-independent, suggesting that this
initial discontinuity is regularised in the usual way. The evolution of û in Fig. 1b shows
that the model predicts the sharp-fronted tissue growth that qualitatively matches the
spatial and temporal patterns observed in the experiment. The evolution of ŝ in Fig. 1c
shows that the invading cell density profile is associated with an invading substrate
profile. The coupling between the spatial and temporal distribution of the tissue and the
underlying substrate is similar to that observed in the experiments (Lanaro et al. 2021).
Given this experimental motivation we will now set about analysing the mathematical
model to provide insight into how the substrate dynamics affect the speed of invasion.

2.2 One-Dimensional Numerical Exploration

For the purpose of studying travellingwave solutions of the substratemodel we rewrite
Eqs. (1)–(2) in the one-dimensional Cartesian coordinate system. Introducing the fol-

lowing dimensionless quantities: u = û/K̂u , s = ŝ/K̂s , x = x̂
√

λ̂/D̂, t = λ̂t̂ ,

r1 = r̂1 K̂u/(λ̂K̂s) and r2 = r̂2/λ̂, gives the following non-dimensional model
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∂u

∂t
= ∂

∂x

(
s
∂u

∂x

)
+ u(1 − u), 0 < x < ∞ (3)

∂s

∂t
= r1u − r2s, 0 < x < ∞, (4)

∂u(0, t)

∂x
= 0, and u(x, t) → 0, x → ∞. (5)

This dimensionless model involves just two free parameters that relate to the rate of
substrate production and the rate of substrate decay, r1 and r2, respectively. Note that
Eq. (4) does not involve any spatial derivatives so there is no need to specify any
boundary conditions for s.

In this study we will consider two different types of initial conditions: (i) a biologi-
cally realistic initial condition describing the situation where the initial cell population
occupies a particular region, and the cell density vanishes outside of this region (Maini
et al. 2004; Sengers et al. 2007), and (ii) a mathematically insightful, but less biolog-
ically realistic initial condition where the initial cell density decays exponentially as
x → ∞. For the biologically realistic initial conditions we always consider

u(x, 0) = 1 − H(β), (6)

s(x, 0) = 0, (7)

on 0 < x < ∞, where H(x) is the usual Heaviside function and β > 0 is a con-
stant describing the initial length of the domain that is occupied at t = 0. For the
mathematically interesting initial condition we always consider

u(x, 0) =
{
1, x < β,

exp[−a(x − β)], x > β,
(8)

s(x, 0) = 0, (9)

on 0 < x < ∞, where a > 0 is the decay rate. For all results we set β = 10, and we
note that this choice has no impact on the long-time travelling wave solutions.

We focus on long-timenumerical solutions ofEqs. (3)–(4) to explore travellingwave
solutions. Details of the numerical method we use to solve the governing equations
are given in Supplementary Material. Of course, the travelling wave analysis of this
model is relevant on an infinite domain, but numerically we must always work with a
truncated domain 0 < x < X , where X is chosen to be sufficiently large that the late-
time numerical solutions are unaffected by the choices of X . All analysis corresponds
to 0 < x < ∞, which is analogous to our numerical simulation domain.All algorithms
required to recreate the results in this work are available on GitHub.

Before we present and discuss particular travelling wave solutions, it is convenient
to state at the outset that we find the substrate invasion model leads to two types of
travelling wave solutions, shown schematically in Fig. 2 where we define
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(b)(a)

Fig. 2 Schematic showing sharp and smooth-fronted travelling wave solutions.a Schematic showing a
sharp-fronted travelling wave. b Schematic showing a smooth-fronted travelling wave. Arrows show the
direction of movement (color figure online)

R = r1
r2

. (10)

The travelling wave solution in Fig. 2a arises from the biologically relevant initial
conditions (6)–(7), where we see that there is a well-defined sharp front with u =
s = 0 ahead of the front, and u → 1− and s → R− well-behind the travelling
wave front as x → 0+. Here the superscripts + and − indicate a one-sided limit
from above and below, respectively. In this case, as we will show, the travelling wave
solution corresponds to the minimum wave speed, c = cmin, which depends on the
value of r1 and r2. In contrast, the travelling wave solution in Fig. 2b arises from the
mathematically interesting initial conditions (8)–(9). In this second type of travelling
wave we have the same behaviour well-behind the wave front as in Fig. 2a, since
u → 1− and s → R− as x → 0+. However, in this case we have a smooth travelling
wave with u → 0+ and s → 0+ as x → ∞. Further, as we will show, these smooth-
fronted travelling wave solutions move with a faster travelling wave speed, c > cmin.

The fact that the substrate model gives rise to both smooth and sharp-fronted trav-
elling wave solutions is very interesting and worthy of exploration. Throughout this
work we will explore parallels between the substrate model and the Porous-Fisher
model, and an obvious point of similarity is that both these models support smooth
and sharp-fronted travelling wave solutions (Murray 2002; Sanchez and Maini 1994;
Sherratt and Marchant 1996). As we will explore in this work, however, the differ-
ences between the smooth and sharp-fronted travelling waves in the substrate model
are more subtle than the Porous-Fisher model, and we must use different methods of
analysis to understand these differences.

In addition to the schematic solutions in Fig. 2,we present a range of time-dependent
PDE solutions in Fig. 3 where we explore the role of varying the substrate dynamics
by choosing different values of r1 and r2.

The results in Fig. 3a–c for the sharp-fronted travellingwave solutions show that the
long-time minimum travelling wave speed, cmin, depends on r1 and r2. In particular,
comparing the results in (a)–(d) shows that cmin appears to increasewith r1. In contrast,
the smooth-fronted travelling wave solutions in Fig. 3e–h lead to travelling wave
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(d)(c)(b)(a)

(h)(g)(f)(e)

Fig. 3 Time-dependent PDE solutions showing smooth and sharp-fronted travelling wave solutions. Sharp-
fronted travelling wave solutions in (a)–(d) are obtained by solving Eqs. (3)–(5) with (6)–(7). Smooth-
fronted travelling wave solutions in (e)–(h) are obtained by solving Eqs. (3)–(5) with (8)–(9) and a = 1/2.
Values of r1 and r2 are indicated on each subfigure, and the long-time estimate of the travelling wave speed
c is also given to two decimal places. Each subfigure shows profiles for u(x, t) (blue) and s(x, t) (green) at
t = 20, 40 and 60, with the arrow showing the direction of increasing t . All numerical solutions correspond
to �x = 1 × 10−2, �t = 1 × 10−3 and ε = 1 × 10−10 (colour figure online)

solutions where the wave speed c > cmin appears to be independent of r1 and r2.
These numerical solutions confirm that s → R− as x → 0−.

Now we have established that the long-time travelling wave speed for the sharp-
fronted travelling wave solutions depends upon r1 and r2, we generate a suite of
sharp-fronted travelling wave solutions numerically and estimate cmin as a function
of r1 and r2, as reported in Fig. 4a. This heat map suggests that holding r2 constant
and increasing r1 leads to an increase in cmin. In contrast, holding r1 constant and
increasing r2 reduces cmin. To further explore this relationship we superimpose three
straight lines on the heat map in Fig. 4a. These straight lines correspond to R = 0.5
(yellow), R = 1 (red) and R = 2 (blue). Plotting cmin as a function of r1 for these three
fixed values of R in Fig. 4b suggest that cmin → √

R/2− for fixed R, as r1 → ∞.
As we will explain later in Sect. 2.6, this numerical observation is related to the fact
that the substrate model simplifies to the Porous-Fisher model when r1 and r2 are
sufficiently large (Buenzli et al. 2020).

The results in Fig. 4b explore the fast substrate production limit, r1 → ∞ for fixed
R, whereas the results in Fig. 4c explore the small substrate production limit, r1 → 0.
In this case we plot cmin as a function for r1, for R = 0.5, 1 and 2, and we see that the
results for different values of R are identical, suggesting that cmin is independent of
r2 as r1 → 0. Furthermore, the straight line relationship on the log–log plot in Fig. 4c
suggests that we have cmin ∼ A

√
r1 as r1 → 0 for some constant A > 0.

In summary, the results in Fig. 4 summarise the numerically determined relationship
between cmin, r1, and r2 for sharp-fronted travelling wave solutions of the substrate
model. These numerical results are of interest because some results are consistent with
well-known results for the Porous-Fisher model as we further explore in Sect. 2.6. In
contrast, we also observe different behaviour that is inconsistent with the Porous-
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(a) (b) (c)

Fig. 4 Numerical exploration of the relationship between cmin, r1 and r2. (a) heat map of cmin as a function
of r1 and r2 obtained by solving (3)–(5)with (6)–(7). The three straight lines superimposed on (a) correspond
to R = 0.5 (yellow), R = 1 (red) and R = 2 (blue), and the relationship between cmin and r1 for these
fixed values of R is given in (b), showing that cmin → √

R/2− as r1 → ∞. (c) shows cmin as a function of
r1 for R = 0.5, 1 and 2, suggesting that cmin ∼ A

√
r1 as r1 → 0, for some constant A > 0. All numerical

solutions correspond to �x = 1 × 10−2, �t = 1 × 10−2 and ε = 1 × 10−10 (color figure online)

Table 1 Key features of travelling wave solutions of the substrate-mediated invasion model with travelling
wave solutions of the Porous-Fisher model

Porous-Fisher Substrate-mediated model
Smooth front Sharp front Smooth front Sharp front

c =

⎧⎪⎨
⎪⎩
1

a
a <

√
2

1√
2

a ≥ √
2

cmin = 1√
2

c = 1

a

lim
r1→∞
r2→∞

c =
√

R

2

−

lim
r1→0+ cmin = 0+

lim
r1→∞
r2→∞

cmin =
√

R

2

−

Fisher model. For example, the non-dimensional Porous-Fisher model has a positive
minimum wavespeed cmin = 1/

√
2 � 0.71, whereas the substrate-mediated inva-

sion model supports sharp-fronted travelling wave solutions with vanishingly small
minimum wave speed, cmin → 0 as r1 → 0. Table 1 summarises the differences and
similarities between travelling wave solutions of the Porous-Fisher model and the sub-
strate model. While some of these results have only been numerically explored so far,
in later sections we will provide more thorough evidence to support these numerically
based observations.

Given the numerical evidence developed in this section, we will now use phase
space techniques to understand the differences between the sharp-fronted and smooth-
fronted travelling wave solutions of the substrate model.

2.3 Phase Space Analysis for Smooth TravellingWave Solutions

In the usual way, we seek to study travelling wave solutions of Eqs. (3)–(4) by writing
u(x, t) = U (z) and S(x, t) = S(z), where z is the travelling wave variable, z = x−ct
(Murray 2002) to give

d

dz

(
S
dU

dz

)
+ c

dU

dz
+U (1 −U ) = 0, −∞ < z < ∞, (11)
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c
dS

dz
+ r1U − r2S = 0, −∞ < z < ∞. (12)

Boundary conditions for the smooth travelling wave solutions are U (z) → 1 and
S(z) → R as z → −∞, and U (z) → 0 and S(z) → 0 as z → ∞. Given such a
smooth-fronted travelling wave solution for U (z), we can solve Eq. (12) to give

S(z) = r1
c
exp

[r2z
c

] ∫ ∞

z
exp

[−r2y

c

]
U (y) dy. (13)

We will make use of this result later.
Following the usual approach to studying smooth travelling wave solutions, we

rewrite Eqs. (11)–(12) as a first-order system

dU

dz
= W , (14)

dS

dz
= −

(
r1U − r2S

c

)
, (15)

dW

dz
= W

(
r1U − r2S − c2

cS

)
− U (1 −U )

S
. (16)

There are two equilibrium points of the phase space: (i) (Ū , S̄, W̄ ) = (1, R, 0) as
z → −∞, which corresponds to the invaded boundary; and, (ii) (Ū , S̄, W̄ ) = (0, 0, 0)
as z → ∞, which corresponds to the uninvaded boundary.

To explore the possibility of a heteroclinic orbit connecting the two equilibrium
points in the three-dimensional phase space, the Jacobian of this system is

⎡
⎢⎢⎢⎣

0 0 1

−r1
c

r2
c

0

r1W̄ − c(1 − 2Ū )

cS̄

(−r1Ū + c2)W̄ + cŪ (1 − Ū )

cS̄2
−r2 S̄ + r1Ū − c2

cS̄

⎤
⎥⎥⎥⎦ . (17)

We see immediately that we cannot follow the usual practice of evaluating the Jacobian
at the uninvaded equilibrium point since it is not defined at (Ū , S̄, W̄ ) = (0, 0, 0) and
so linearisation is not useful here. In contrast, the Jacobian at the invaded equilibrium
point (Ū , S̄, W̄ ) = (1, R, 0) is

⎡
⎢⎢⎣

0 0 1

−r1
c

r2
c

0
r2
r1

0 −cr2
r1

⎤
⎥⎥⎦ . (18)

The eigenvalues of this Jacobian are λ1 = r2/c and λ2,3 = (−c ± √
c2 + 4R)/(2R).

Since these eigenvalues are all real valued, with λ1,2 > 0 and λ3 < 0, the invaded
equilibrium point is a three-dimensional saddle point.
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As just mentioned, linearisation about the uninvaded equilibrium point is not pos-
sible, and so we revisit the dynamical system (14)–(16) as z → ∞ in more detail in
Sect. 2.5. For now, we suppose that a smooth travelling wave U (z) decays exponen-
tially, say

U (z) ∼ Cexp (−bz) z → ∞, (19)

where b > 0. Under this assumption it follows from (13) that

S(z) ∼ r1
bc + r2

U (z), (20)

W (z) ∼ −bU (z), (21)

suggesting that S(z) and W (z) both decay to zero exponentially, at the same rate as
U (z), as z → ∞. Further, to leading order as z → ∞, (16) gives

dW

dz
∼ (bc − 1)

(
bc + r2

r1

)
as z → ∞. (22)

At first glance this result appears inconsistent with our arguments so far, since for
smooth travelling wave solutions we expect dW/dz → 0 as z → ∞, but here we
have dW/dz approaching a constant. However, by choosing c = 1/b we avoid this
inconsistency. This choice implies that the speed of the smooth-fronted travelling
wave is related to the far-field decay rate of U (z). We have tested this hypothesis
numerically and found an excellent match between (19) and (21) and the shape of the
smooth-fronted travelling waves for different choices of r1, r2 and c, with one example
discussed in the Supplementary Material. In addition, we provide further evidence for
this far-field behaviour in Sect. 2.5.

2.4 Dispersion Relationship

We now explore how the decay rate of the initial condition, a in Eq. (8), affects the
long-time travelling wave speed for smooth-fronted travelling wave solutions. To be
consistent with our observations in Sect. 2.3, we assume that smooth-fronted travelling
wave solutions for U (z) and S(z) decaying at the same rate, and we seek solutions of
the form ũ(x, t) ∼ C exp [a(x − ct)] and s̃(x, t) ∼ D exp [a(x − ct)] as x → ∞.
Substituting these solutions into Eq. (3), and focusing on the leading edge of these
solutions where ũ(x, t) 
 1, we obtain

c = 1

a
, (23)

which relates the long-time speed of the travelling wave solution to the decay rate of
the initial condition, u(x, 0).

The results in Fig. 5 explore the validity of Equation (23) by taking time-dependent
PDE solutions with initial conditions (8)–(9) and varying the decay rate of u(x, 0) for
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(c)(b)(a)

Fig. 5 Dispersion relationship. (a)–(c) shows c as a function of the initial decay rate, a, for R = 0.5, 1
and 2, respectively. Numerical travelling wave speeds are estimated from long-time numerical solutions
of Eqs. (3)–(5) with the initial condition given by Eqs. (8)–(9) with various values of a. The dispersion
relationship, Equation (23), is plotted (solid blue) and results for r1 = 1, 5, 10 and 20 are shown in orange
discs, yellow squares, purple triangles and green triangles, respectively. Each plot shows a horizontal line
at

√
R/2, which is an upper bound for the wavespeed for large a. All numerical PDE solutions correspond

to �x = 1 × 10−2, �t = 1 × 10−3 and ε = 1 × 10−10 (color figure online)

various values of r1 and r2. In particular, we generate travelling wave solutions for
r1 = 1, 5, 10 and 20, for fixed R = 0.5, 1 and 2. The results in Fig. 5a–c corresponding
to R = 0.5, 1 and 2, respectively, show that for sufficiently small a, we see that the
long-time travelling wave speedmatches Eq. (23) regardless of r1 and r2. These results
are consistent with the initial explorations in Fig. 3e–h where we saw that the wave
speed of certain smooth-fronted travelling wave solutions was independent of r1 and
r2. As a increases, however, we see that c behaves differently. For large a > acrit we see
that c approaches a constant value cmin that is independent ofa.Our numerical evidence
suggests that this limiting constant value depends on r1 and r2. For completeness, on
each subfigure we plot a horizontal line at c = √

R/2, and we note that this value
appears to be an upper-bound for c as a becomes large.

The transition from c = 1/a for a < acrit to constant c for a > acrit in Fig. 5 is
further explored in Fig. 6 for r1 = r2 = 1. The long-time travelling wave solution
in Fig. 6a, b evolves from an initial condition with decay rate a = 1. This solution
evolves into a smooth travelling wave with c = 1.00, which is consistent with the
dispersion relationship (23). Although it is clear that the travelling wave solution in
Fig. 6a is smooth at this scale, we also plot a magnification of the leading edge of
that travelling wave in Fig. 6b. We now explore a series of travelling wave solutions
as a increases to visualise the transition reported in Fig. 5. The long-time travelling
wave solution in Fig. 6c, d evolves from an initial condition with a faster decay rate,
a = 2, leading to a smooth-fronted travelling wave with c = 0.50. Again, this result
is consistent with the dispersion relationship, and the magnification of the density
profiles near the leading edge in Fig. 6d confirms that the travelling wave solution is
smooth. The travelling wave solution in Fig. 6e for a = 10/3 leads to a travelling
wave solution with c = 0.29. This estimate from the long-time numerical solution of
the PDE is close to the travelling wave speed predicted by the dispersion relationship.
At the scale shown in Fig. 6e it might seem, at first glance, that the travelling wave
is sharp, but the magnification in Fig. 6f confirms that this travelling wave is indeed
smooth-fronted. Finally, the travelling wave solution in Fig. 6g for a = 5 evolves to a
travelling wave solution with c = 0.29, which is much larger than the speed predicted
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by the dispersion relationship that would give c = 1/5 = 0.2. Again, while the
travelling wave solution in Fig. 6g appears to be sharp at this scale, the magnification
of the solution in Fig. 6h confirms that this solution is indeed smooth-fronted.

In summary, the dispersion relationship suggests that long-time speed of smooth-
fronted travelling wave solutions is given by c = 1/a, where a is far-field the decay
rate of u(x, 0). Our numerical explorations in Figs. 5, 6 confirms that this result holds
for sufficiently small decay rates, a < acrit. As the decay rate increases, a > acrit, we
observe an interesting transition for smooth-fronted travelling waves where c becomes
independent of a, and greater than the speed predicted by the dispersion relationship.
While these travellingwave solutions remain smooth-fronted asa increases, it becomes
increasingly difficult to draw a visual distinction between these smooth-fronted trav-
elling wave solutions and sharp-fronted travelling wave solutions that evolve from
initial conditions with compact support, such as those travelling waves in Fig. 3a–d.
We now seek to provide a geometric interpretation of the differences between these
two classes of travelling wave solutions by returning to the phase space.

2.5 Desingularised Phase Space and SlowManifold Reduction

We now return to the phase space for travelling wave solutions and introduce a change
of variables

ζ(z) =
∫ z

0

dy

S(y)
, (24)

which removes the singularity in Eq. (16) when S(z) = 0. A similar transformation to
desingularise the phase plane is often used in the analysis of sharp-fronted travelling
wave solutions of the Porous-Fisher model (Murray 2002). The desingularised system
is given by

dU

dζ
= SW , (25)

dS

dζ
= −S

(
r1U − r2S

c

)
, (26)

dW

dζ
= W

(
r1U − r2S − c2

c

)
−U (1 −U ). (27)

There are two equilibrium points of the desingularised phase space: (i) (Ū , S̄, W̄ ) =
(1, R, 0) as ζ → −∞, corresponding to the invaded boundary; and, (ii) (Ū , S̄, W̄ ) =
(0, 0, 0) as ζ → ∞, corresponding to the uninvaded boundary. It is important to point
out that the phase space analysis in Sect. 2.3 was relevant only for smooth-fronted
travelling wave solutions, whereas the desingularised phase space is appropriate for
both the sharp-fronted and smooth-fronted travelling wave solutions. The Jacobian of
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(a)

(c)

(e)

(b)

(d)

(f)

(g) (h)

Fig. 6 Smooth-fronted travelling wave solutions. Travelling wave solutions U (z) and S(z) are obtained by
considering long-time numerical solutions of Eqs. (3)–(5) with initial conditions given by Eqs. (8)–(9) with
variable decay rate, a. All results correspond to r1 = r2 = 1, and results in (a)–(b), (c)–(d), (e)–(f) and
(g)–(h) correspond to a = 1, 2, 10/3 and 5, respectively, as indicated. The results in the left-most column
show the various travelling wave solutions plotted on the usual scale with 0 ≤ U (z), S(z) ≤ 1. The results
in the right-most column show a magnification of the leading edge of the travelling waves (color figure
online)

123



A Continuum Mathematical Model of Substrate-Mediated Tissue Growth Page 15 of 27 49

this system is

⎡
⎢⎢⎢⎣

0 W̄ S̄

−r1 S̄

c

−r1Ū + 2r2 S̄

c
0

r1W̄ − c(1 − 2Ū )

c
−r2W̄

c

−r2 S̄ + r1Ū − c2

c

⎤
⎥⎥⎥⎦ . (28)

We can now consider both equilibrium points (Ū , S̄, W̄ ) = (1, R, 0) and (Ū , S̄, W̄ ) =
(1, 0, 0).

The Jacobian at the invaded equilibrium point, (Ū , S̄, W̄ ) = (1, R, 0), is

⎡
⎢⎢⎢⎣

0 0
r1
r2

−r21
r2

r1
c

0

1 0 −c

⎤
⎥⎥⎥⎦ . (29)

The eigenvalues of this Jacobian are λ1 = r1/c and λ2,3 = (−c±√
c2 + 4R)/2. Since

λ1,2 > 0 and λ3 < 0, the uninvaded equilibrium point is a three-dimensional saddle.
These expressions are identical to the corresponding expressions in Sect. (2.3), which
is not surprising since ζ = z near the invaded equilibrium point, z → −∞.

The Jacobian at the uninvaded equilibrium point, (Ū , S̄, W̄ ) = (0, 0, 0), is

⎡
⎣ 0 0 0

0 0 0
−1 0 −c

⎤
⎦ . (30)

The eigenvalues are λ1 = −c and λ2 = λ3 = 0, which means that (Ū , S̄, W̄ ) =
(0, 0, 0) is a non-hyperbolic equilibrium point suggesting that the dynamics near this
point take place on a slow manifold (Wiggins 2003). To explore these local dynamics
near (Ū , S̄, W̄ ) = (0, 0, 0) we apply the centre manifold theory to identify the slow
manifold. To proceed we rotate the coordinate system using a transformation defined
by the eigenvectors [−c, 0, 1]�, [0, 1, 0]� and [0, 0, 1]� that are associated with λ1,
λ2 and λ3, respectively. The relationship between the original unrotated coordinate
system (U , S,W ) and the rotated coordinate system (U ,S ,W ) is given by the
transformation (Maclaren 2020),

⎡
⎣U
S
W

⎤
⎦ =

⎡
⎣−c 0 0

0 1 0
1 0 1

⎤
⎦

⎡
⎣U
S
W

⎤
⎦ , (31)

and the associated inverse transformation
⎡
⎣U
S
W

⎤
⎦ = 1

c

⎡
⎣−1 0 0

0 c 0
1 0 c

⎤
⎦

⎡
⎣U
S
W

⎤
⎦ . (32)
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These transformations allowus to rewrite the dynamical system in the following format

⎡
⎢⎢⎢⎢⎢⎣

dU

dζ
dS

dζ
dW

dζ

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎣0 0 0
0 0 0
0 0 −c

⎤
⎦

⎡
⎣U
S
W

⎤
⎦

+ 1

c

⎡
⎣ − [S (U + W )]

[S (r1cU + r2S )][
(U + W ) [−r1cU + (1 − r2)S ] + c2U (1 + cU )

]
⎤
⎦ . (33)

To find the slow manifold we take the usual approach of writing the fast dynamics
associated with λ1 as a function of the slow dynamics that are associated with the zero
eigenvalues by assuming that slow manifold can be locally expressed as a quadratic
inU and V . Equating coefficients with the tangency condition (Wiggins 2003) gives
the slow manifold,

W (U ,S ) = 1

c2

[
c(c2 − r1)U

2 + (1 − r2)U S
]
, (34)

and the dynamics on the slow manifold are given by

dU

dζ
= − 1

c3

[
c(c2 − r1)U

2S + (1 − r2)U S 2 + c2SU
]
, (35)

dS

dζ
= 1

c

[
r2S

2 + r1cU S
]
. (36)

We can now rewrite the slow manifold and the dynamics on the slow manifold in the
original, unrotated coordinate system, giving

W (U , S) = 1

c3

[
(c2 − r1)U

2 − (1 − r2)US − c2U
]
, (37)

and

dU

dζ
= 1

c3

[
(c2 − r1)SU

2 − (1 − r2)US2 − c2SU
]
, (38)

dS

dζ
= 1

c

[
r2S

2 − r1US
]
, (39)

which could alternatively be derived usingmathematical software (Roberts 2015). The
advantage of the coordinate transformation method is the process is quite transparent
and geometrically intuitive, whereas the advantage of the alternative approach is that
it avoids the change of basis. Regardless, we arrive at the same result using either
approach.
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With these tools we may now plot the phase space including the two equilibrium
points, and superimpose the slow manifold and the heteroclinic orbit obtained be
rewriting the long-time PDE solution in terms of the (U (ζ ), S(ζ ),W (ζ )) coordinates.
This information is summarised in Fig. 7 for two smooth-fronted travelling waves and
one sharp-fronted travelling wave, each with r1 = r2 = 1. Before considering Fig. 7 in
detail, note that a small S andU analysis of (38)–(39) shows that the heteroclinic orbit
must have U ∼ (r2 + 1)S/r1 as S → 0+, meaning that the slope of the heteroclinic
orbit is r1/(r2 + 1) in the US-plane near the origin, and U ∼ Aexp(−z/c) and
S ∼ Bexp(−z/c), for some constants A > 0, B > 0, as z → ∞ for smooth-fronted
travelling wave solutions. These results for the flow on the slow manifold confirm
(19)–(20) with c = 1/b.

Figure 7a shows the three-dimensional desingularised phase space together with
the invaded equilibrium point in green, the uninvaded equilibrium point in blue, the
heteroclinic orbit in solid blue and the slow manifold in grey. In this case we have
c2 = 10 and we see that, as expected, the heteroclinic orbit enters the uninvaded
equilibrium point after moving along the slow manifold. In Fig. 7b we plot the slow
manifold locally around the uninvaded equilibrium point together with the vector field
defined by Eqs. (38)–(39). The heteroclinic orbit from the long-time PDE solution is
shown in blue. We see that the heteroclinic orbit is tangential to the vector field and
enters the uninvaded equilibrium point. For completeness we also solve Eqs. (38)–(39)
numerically to show a number of other solution trajectories on the slow manifold in
red. While these other solution curves are valid solutions of Eqs. (38)–(39), they are
unphysical in the sense that they are not associated with the travelling wave solution
since they do not form a heteroclinic orbit joining the invaded and uninvaded equi-
librium points. Figure 7b, c shows a similar set of results to those in Fig. 7a, b for a
different smooth-fronted travelling wave, this time with c1 = 1. Again we see that the
heteroclinic orbit moves into the uninvaded equilibrium point along the slowmanifold
in Fig. 7c, with additional details shown on the slowmanifold in Fig. 7d. Interestingly,
the results in Fig. 7e, f, for a sharp-fronted travelling wave with cmin = 0.29 are quite
different to the smooth-fronted travelling waves in Fig. 7a–d. Here the heteroclinic
orbit joining the invaded and uninvaded equilibrium points enters the uninvaded equi-
librium point directly, without moving along the slow manifold. This difference is
highlighted in Fig. 7d where we see that there is no component of the heteroclinic
orbit on the slow manifold. These results in Fig. 7 are for one particular choice of
r1 = r2 = 1, and similar results for different choices of r1 and r2 show the same
qualitative behaviour (Supplementary Material).

In summary, these results show us that we can make a simple geometric distinction
between smooth-fronted travelling waves and sharp-fronted travelling waves using
the slow manifold reduction. Smooth-fronted travelling waves involve a heteroclinic
orbit joining (Ū , S̄, W̄ ) = (1, R, 0) and (Ū , S̄, W̄ ) = (0, 0, 0), such that the hetero-
clinic orbit enters (0, 0, 0) along the slow manifold, given by Eq. (37). In contrast,
sharp-fronted travelling waves involve a heteroclinic orbit joining the same two equi-
librium points, with the difference being that the heteroclinic orbit enters (0, 0, 0)
directly, without moving along the slow manifold. These differences are summarised
schematically in Fig. 8.
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(c)

(f)

(b)

(d)

(e)

(a)

Fig. 7 Desingularised phase space and slow manifold reduction. All results correspond to r1 = r2 = 1.
Results in: (a)–(b) correspond to a smooth-fronted travelling wave with c2 = 10; (c)–(d) correspond
to a smooth-fronted travelling wave with c1 = 1; and, (e)–(f) correspond to a sharp-fronted travelling
wave with cmin = 0.29. The results in the left-most column show the three-dimensional desingularised
phase space with the invaded equilibrium point (green dot), the uninvaded equilibrium point (blue dot) and
the slow manifold (grey surface). The results in the right-most column show the vector field on the slow
manifold, superimposed with several solution trajectories, including the heteroclinic orbit (blue) and several
unphysical trajectories (red). The heteroclinic orbit is obtained by solving Eqs. (3)–(5) numerically with
appropriate initial conditions. For (a)–(b) and (c)–(d) the initial conditions are given by Eqs. (8)–(9) with
a = 1/10 and a = 1, respectively. For (e)–(f) the initial conditions are given by Eqs. (6)–(7). All numerical
PDE solutions correspond to �x = 1 × 10−4, �t = 1 × 10−3 and ε = 1 × 10−4 (color figure online)
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(a) (b)

Fig. 8 Schematic distinction between smooth-fronted and sharp-fronted travelling wave solutions. The
schematic in a corresponds to a smooth-fronted travelling wave solution with c > cmin, where the het-
eroclinic orbit (blue) in the desingularised phase space moves into the (0, 0, 0) along the slow manifold
(grey surface). The schematic in b corresponds to a sharp-fronted travelling wave solution with c = cmin,
where the heteroclinic orbit (blue) enters the uninvaded equilibrium point, (0, 0, 0), without moving along
the slow manifold (grey surface) (color figure online)

It is worth noting that the computational phase space tools in Figure 7a, c and e
provide physical insight into the interpretation of the minimum wave speed, cmin, for
the substrate model. While it is not possible to compute a long-time PDE solution
with c < cmin, it is straightforward to plot the three-dimensional phase space and
integrate Eqs. (25)-(27) numerically to explore various trajectories in the relevant
octant whereU ≥ 0, S ≥ 0 andW ≤ 0. These explorations show that we can identity
a unique trajectory that enters the origin just like we did for c ≥ cmin, however part
of this trajectory hasU < 0 which is why it can never be associated with a physically
relevant travelling wave solutions (Supplementary Material). This observation shares
similarities and differences with the phase plane analysis of the classical Fisher-KPP
model, where the exact result cmin = 2 is found by ensuring thatU > 0 near the origin
(Murray 2002). In the simpler Fisher-KPPmodel, the origin is an equilibriumpoint and
so linearisation gives us the local properties of the phase plane, leading to this result.
Similar methodology applies for more complicated generalisations of the Fisher-KPP
model (Vittadello et al. 2018). In the case of our substrate model, it appears that cmin
is also defined by requiring that U > 0 along the heteroclinic orbit (Supplementary
Material). Conversely, numerical explorations show that when c < cmin we observe
that U < 0 for portions of the orbit that do not pass through a neighbourhood of the
equilibrium point. This observation suggests that linearisation cannot be used to find
a mathematical expression for cmin.

2.6 Approximate Solution for Sharp-Fronted TravellingWaves

For the next part of this work we further develop an understanding of how the shape of
the travelling wave profiles depends upon the parameters in the mathematical model.
We will derive two approximations: one for sharp-fronted travelling wave solutions,
and the other for smooth-fronted travelling wave solutions. In both cases we test
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our approximations using full time-dependent PDE solutions. These results are both
inherently mathematically interesting as well as being of practical value because relat-
ing properties of the travelling wave solutions, such as their speed and shape, to the
parameters in the mathematical model is useful if we consider estimating parameters
to match experimental observations.

The numerical results in Sect. 2.2 imply a relationship between the substrate model
and the Porous-Fisher model, which we now explore further. For fast substrate pro-
duction and decay, r1 � 1 and r2 � 1, respectively, we anticipate that Eq. (4) gives
approximately s = Ru, and that Eq. (3) is approximately

∂u

∂t
= R

∂

∂x

(
u

∂u

∂x

)
+ u(1 − u), 0 < x < ∞, (40)

which is the non-dimensional Porous-Fisher model with the diffusion term scaled by
the constant R. Therefore, we can make use of known results for the Porous-Fisher
model in this limit. In particular, sharp-fronted travellingwave solutions of the Porous-
Fisher model are known to have the closed-form solution (Murray 2002; Sherratt and
Marchant 1996)

U (z) =
⎧⎨
⎩
1 − exp

(
z − zc
2c

)
, z < zc,

0, z > zc,
(41)

S(z) = RU (z) − ∞ < z < ∞, (42)

where c = cmin = √
R/2 and zc is the location of the sharp front (Murray 2002). Note

that Eq. (42) is equivalent to substituting (41) into (13) and evaluating the resulting
expression in the limit that r1 → ∞ and r2 → ∞.

The results in Fig. 9 examine how late-time numerical PDE solutions can be
approximated by Eqs. (41)–(42). Results in (a)–(c), (d)–(f) and (g)–(i) correspond
to R = 0.5, 1 and 2, respectively, and in each case we see that Equations (41)–(42)
provide a good match with the shape of the travelling wave solution of the substrate
model as r1 and r2 increase.

2.7 Approximate Solution for Smooth-Fronted TravellingWaves

Previous results in Fig. 8 suggest that smooth-fronted travelling waves become less
steep as c increases, implying that W (z) = dU/dz → 0 as c → ∞. Following the
work of Canosa we make use of this observation to develop a perturbation solution by
re-scaling the independent variable, ẑ = z/c to give (Canosa 1973),

1

c2
d

dẑ

(
S
dU

dẑ

)
+ dU

dẑ
+U (1 −U ) = 0, −∞ < ẑ < ∞, (43)

dS

dẑ
+ r1U − r2S = 0, −∞ < ẑ < ∞. (44)
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(i)(h)(g)

(c)(b)(a)

(f)(e)(d)

Fig. 9 Approximate shape of sharp-fronted travelling wave solutions. Various numerical travelling wave
solutions, U (z) and S(z), obtained by solving Eqs. (3)–(7) are compared with the approximation given by
Equations (41)–(42), where z is shifted so that zc = 0. Results in (a)–(c), (d)–(f) and (g)–(i) correspond to
R = 0.5, 1 and 2, respectively. Each subfigure shows the appropriate value of r1, r2 and cmin. All numerical
PDE solutions correspond to �x = 1 × 10−2, �t = 1 × 10−3 and ε = 1 × 10−10 (color figure online)

To proceed, we seek a perturbation solution in terms of the small parameter 1/c2 by
expanding the dependent variables in a power series (Murray 1984),

U (ẑ) =
∞∑
n=0

c−2nUn(ẑ), S(ẑ) =
∞∑
n=0

c−2n Sn(ẑ). (45)

Substituting these power series into Eqs. (43)–(44) and truncating after the first few
terms gives

dU0

dẑ
+U0(1 −U0) = 0, (46)

dS0
dẑ

+ r1U0 − r2S0 = 0, (47)

d

dẑ

(
S0

dU0

dẑ

)
+ dU1

dẑ
+U1(1 − 2U0) = 0, (48)

with boundary conditions U0 → 1, U1 → 0 and S0 → R as ẑ → −∞, and U0 → 0,
U1 → 0 and S0 → 0 as ẑ → ∞. It is straightforward to solve these differential
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equations for U0(ẑ), U1(ẑ) and S0(ẑ); however, additional terms in the perturbation
solution are governed by differential equations that do not have closed-form solutions.
Regardless, as we shall now show, these first few terms in the perturbation solution
provide accurate approximations, even for relatively small values of c.

The solution of Eq. (46) is

U0(z) = 1

1 + exp
(
ẑ
) , (49)

where we have arbitrarily chosen the integration constant so thatU0(0) = 1/2. Given
U0(z), we solve (47) using an integrating factor to give

S0(ẑ) = −r1exp
(
r2 ẑ

) ∫ ∞

ẑ

exp
(−r2 ẑ

)
1 + exp

(
ẑ
) dẑ. (50)

If r2 is an integer we obtain

S0(ẑ) = (−1)r2exp
(
r2 ẑ

)
r1

[
ln

(
exp

[−ẑ
] + 1

) +
r2∑
n=1

exp
(−nẑ

)
n (−1)n

]
. (51)

If r2 is not an integer there is no closed-form expression for S0(ẑ) that we could
find. For particular integer choices of r1 the expression for S0(ẑ) is quite simple. For
example, with r2 = 1 we have S0(ẑ) = r1

[
1 − exp

(
ẑ
)
ln(exp

[−ẑ
] + 1)

]
, whereas

for r2 = 2 we have S0(ẑ) = r1
[
1/2 − exp

(
ẑ
) + exp

(
2ẑ

)
ln(exp

[−ẑ
] + 1)

]
. The

solution for U1(ẑ) is obtained by integrating Eq. (48) using an integrating factor to
give

U1(ẑ) = exp
(
ẑ
)

(1 + exp
[
ẑ
]
)2

∫ ∞

ẑ

d

dẑ

[
S0

exp
(
ẑ
)

(1 + exp
[
ẑ
]
)2

] [
(1 + exp

[
ẑ
]
)2

exp
(
ẑ
)

]
dẑ. (52)

Since this expression for U1(ẑ) depends upon the expression for S0(ẑ), we can only
obtain closed-form expressions for U1(ẑ) for integer values of r2. In these cases,
expressions for U1(ẑ) are relatively complicated and so we include these expressions
in Supplementary Material. We note that care is required when evaluatingU1(ẑ) since
the expression is indeterminate for large ẑ. We address this simply by expandingU1(ẑ)
in a Taylor series as ẑ → ∞ and plotting the series expansion for large ẑ.

Results in Fig. 10 compare the shapes of various smooth-fronted travelling wave
solutions, for c = 2 and c = 4, with the O(1) perturbation solution for S(z) and the
O(c−2) perturbation solution for U (z). These comparisons are made across a range
of values of r1 and r2, and for c = 4 the perturbation solutions are indistinguishable
from the late-time numerical solutions. In cases where c = 2 we begin to see a small
departure between the numerical and perturbation approximations. Given that the
perturbation solutions are valid in the limit c → ∞, the quality of match in Fig. 10
for c = 2 and c = 4 is quite good.
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(a) (c)(b)

(e)(d) (f)

(g) (i)(h)

(j) (l)(k)

Fig. 10 Approximate shape of smooth-fronted travelling wave solutions. Results in (a)–(f) and (g)–(l)
compare the numerical and perturbation solutions for c = 2.00 and c = 4.00, respectively. The results in the
left-most column correspond to R = 0.5, those in the central column correspond to R = 1, and those in the
right-most column correspond to R = 2. Numerical solutions correspond to late-time numerical solutions of
Eqs. (3)–(5), with initial conditions given by Eqs. (8)–(9) with appropriate values of a. Numerical solutions
of U (z) and S(z) are shown in blue and green, respectively. Each numerical solution is superimposed with
anO(1) perturbation solution for S(z) and anO(1/c2) forU (z), and these perturbation solutions are shown
in yellow and purple dashed curves, respectively (color figure online)

3 Conclusion and FutureWork

In this study we investigated a minimal model of cell invasion that couples cell migra-
tion, cell proliferation and cell substrate production and decay. A key feature of the
mathematical model is that the diffusive flux is proportional to the substrate density
so that the flux vanishes when the substrate is absent. This feature leads to predic-
tions of tissue formation involving the propagation of well-defined sharp fronts, and
two-dimensional numerical simulations of the mathematical model recapitulate key
features of recent experiments that involved the formation of thin tissues grown on
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3D-printed scaffolds (Lanaro et al. 2021). To gain a deeper understanding of how the
rate of substrate production and decay affects the rate of tissue production, the focus of
this work is to study solutions of the substrate model in a one-dimensional geometry.

Preliminary numerical simulations of the substratemodel in one dimension indicate
that the mathematical model supports two types of travelling wave solutions. As we
show, sharp-fronted travelling waves that propagate with a minimum wave speed,
cmin, evolve from initial conditions with compact support, whereas smooth-fronted
travelling waves that move with a faster wave speeds, c > cmin, evolve from initial
conditions where the density decays exponentially with position. These numerical
features are reminiscent of established features of travelling wave solutions of the
well-known Porous-Fisher model.

Much of our analysis focuses on exploring the relationships between smooth-
fronted and sharp-fronted travelling wave solutions, and here key features of the
analysis of the substrate model are very different to the analysis of the Porous-Fisher
model. For example, there are three equilibrium points in the desingularised phase
plane for the Porous-Fisher model whereby smooth-fronted travelling wave solutions
are characterised by a heteroclinic orbit that enters (Ū , V̄ ) = (0, 0), whereas sharp-
fronted travelling wave solutions involves a heteroclinic orbit that enters (Ū , V̄ ) =
(0,−c). In contrast, the desingularised phase space for the substrate model involves
two equilibrium points only. This means that both smooth-fronted and sharp-fronted
travelling waves correspond to heteroclinic orbits that enter (Ū , S̄, W̄ ) = (0, 0, 0),
which is fundamentally different to the Porous-Fisher model. We provide a geometric
interpretation that explains the difference between sharp-fronted and smooth-fronted
travelling wave solutions since smooth-fronted travelling wave solutions are associ-
ated with a heteroclinic orbit that enters the origin in the desingularised phase space by
moving along a slowmanifold. In contrast, sharp-fronted travelling wave solutions are
associated with a heteroclinic orbit that enters the origin of the desingularised phase
space directly, without moving along the slowmanifold. Additionally, we also develop
and test useful closed-form expressions that describe the shape of the travelling wave
solutions in various limits. In particular, we provide accurate approximations for the
shape of sharp-fronted travelling waves for sufficiently large r1 and r2, as well as
accurate approximation of the shape of the smooth-fronted travelling wave solutions
relevant for large c.

There are many avenues for extending the current work, and these options include
further analysis of the current model as well as conducting parallel analysis for related
mathematical models. In terms of the current model, our analysis has not provided any
relationship between cmin and the two parameters in the nondimensional model, r1 and
r2. For simpler mathematical models, such as the Fisher-KPP model, the relationship
between theminimumwave speed and the parameters in themodel arises by linearising
about the leading edge of the travelling wave (Murray 2002). As we have shown,
an interesting feature of the substrate model is that standard techniques to linearise
about the leading edge do not apply. Another possibility for extending the analysis of
this model would be to consider the mathematical model in two-dimensions, such as
describing the late-time dynamics of hole-closing phenomena (McCue et al. 2019).
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A different class of extensions of this work would be to consider generalising the
nonlinear diffusion term in the substrate model, such as

∂u

∂t
= ∂

∂x

(
D(s)

∂u

∂x

)
+ u(1 − u), 0 < x < ∞ (53)

∂s

∂t
= r1u − r2s, 0 < x < ∞. (54)

This generalised substrate model involves a nonlinear diffusivity function, D(s). We
anticipate that nonlinear diffusivity functions with the propertyD(0) = 0 will support
sharp-fronted travelling wave solutions, and there are many such candidate functions.
One option of interest is a power-law diffusivityD(s) = sn , where n is some exponent.
It would be interesting to explore how different choices of n affect various qualitative
and quantitative features of the travelling wave solutions that have been established
in the present study for n = 1. Other options for generalising the model include con-
sidering nonlinear source terms and/or an additional linear diffusion term in Eq. (54).
Preliminary numerical investigations suggest that both these generalisations lead to
travelling wave solutions; however, introducing a linear diffusion term for s means
that the travelling wave solutions are always smooth-fronted.Wewill return to analyse
these extensions more thoroughly in the future.
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