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Abstract
To uncover the effective interventions during the pandemic period, a novel math-
ematical model, which incorporates separate compartments for incubation and
asymptomatic individuals, has been developed in this paper. On the basis of a general
mixing, final size relation and next-generationmatrix are derived for ameta-population
model by introducing thematrix blocking. Thefinal size (F) and the basic reproduction
number (R0) are no longer a simple monotonous relationship. The analytical results
of heterogeneity illustrate that activity is more sensitive than the others. And the pro-
portion of asymptomatic individuals is a key factor for final epidemic size compared
to the regulatory factor. Furthermore, the impact of preferential contact level onF and
R0 is comparatively complex. The isolation can effectively reduce the final size, which
further verifies its effectiveness. When vaccination is considered, the mixing methods
maybe influence the doses of vaccination used and its effective. Moreover, using the
present predictive model, we can provide the valuable reference about identifying the
ideal strategies to curb the pandemic disease.

Keywords Meta-population · Population heterogeneity · Mixing methods · Final
epidemic size

Mathematics Subject Classification 92D30 · 35A24

1 Introduction

Epidemic dynamic is an important method to study the transmission rules of infectious
diseases. The research purpose of epidemic model is to reveal the epidemic law of
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diseases, predict their development trend and harm degree. Another purpose is to
determine sensitivity of parameters to provide theoretical basis for seeking effective
control measures and optimal intervention strategies (Ma et al. 2004).

Epidemic model includes the homogeneous and heterogeneous model. A common
conclusion of the existing research is that F and R0 are positively related in homo-
geneous model. Homogeneous model is popular in the study of infectious diseases
because of its simple form. However, due to the over-simplification and idealization of
the model, sometimes the analytical results deviate from the reality. With the outbreak
of emerging diseases such asMERS, SARS and COVID-19, homogeneousmodel can-
not meet the requirement. Actually, heterogeneity is a common phenomenon among
biological species, which can directly affect the spread scope and harm degree of
infectious diseases. Therefore, it is vital to introduce the heterogeneous factors into
the infectious disease model in order to solve the practical issue.

Some progress has been made in the research of the final scale relationship in het-
erogeneity epidemic model. This relation had been extensively discussed in Brauer
(2008a, b, 2017) using different models to predict how serious an epidemic could be
during a disease outbreak. Andreasen (2011) studied the effect of heterogeneity on
final epidemic size for the case of proportionate mixing and discussed the relationship
between F and R0. Cui et al. (2019) analyzed the role of heterogeneity on final epi-
demic size and discussed the relationship between F andR0 for preferential mixing,
which concluded thatF andR0 aremonotonous negatively correlated. Sattenspiel and
Dietz (1995) proposed the model incorporating geographic mobility among regions
for the case of foot-and-mouth disease. Feng et al. (2016) evaluated targeted inter-
ventions via meta-population models with multi-level mixing and generalized this
function by including preferential contacts between grandparents and grandchildren.
David (2018) analyzed the influences of heterogeneous mixing and indirect transmis-
sion on the basic reproduction number and used the final size relation to analyze the
ability of disease to invade over a short period of time. Research related to heterogene-
ity can be seen in other literature (Annett 1980; Arino et al. 2007; Glasser et al. 2016;
Rodríguez and Torres-Sorando 2001; Wang and Zhao 2004). In addition, incubation
and asymptomatic individuals are critical factors to the outbreak of infectious disease.
Calculation of the average incubation period will help to determine the time of expo-
sure. However, determinants of variation may be related to the early clinical outcome
or pathogenic procedures of infection (Dhouib et al. 2021). None of the above studies
have been considered the influences of heterogeneous factors on final epidemic size
or relationship betweenF andR0 in a meta-population model, in which we introduce
incubation period and asymptomatic infected individuals in the case of consideration
a general mixing and isolated mixing.

In this paper, in the case of general mixing method, the effect of heterogeneity on
the final epidemic size, basic reproduction number and the relationship betweenF and
R0 will be discussed with the SEIAR model, which introduces incubation period and
asymptomatic infected individuals. Moreover, the sensitivity of heterogeneous factors
is also analyzed. The present research is the improvement and generalization of the
results in Cui et al. (2019).

However, in this paper, we will conclude that F and R0 are the opposite or some
other irregular relationship and the amount of vaccine used is minimal to the same
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immune effect in the case of combination of proportional mixing and preferential
mixing. Moreover, F and R0 are not just monotonous negatively relationship any-
more in the case of isolated mixing. The sensitivity of activity is higher than other
heterogeneous factors.

The paper is organized as follows: Sect. 2 includes the establishment of the model
with n subpopulations and non-homogeneous mixing, and the derivations of the repro-
duction number and a final epidemic size relation. Section 3 investigates the effects of
heterogeneity in various subpopulation factors and mixing on the final epidemic size
during an outbreak. Section 4 includes discussion and conclusion remarks.

2 Dynamical Model

The present model comprises n subpopulations, the population in group i includes
Si (susceptible), Ei (exposed), Ii (symptomatic), Ai (asymptomatic), Ri (recovered).
Let Ni = Si + Ei + Ii + Ai + Ri (1 ≤ i ≤ n) be the total population number of group
i . Because we mainly focus on the final epidemic size of a single disease outbreak,
births and deaths are ignored. The dynamic model with n subpopulations consists of
the following ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i (t) = −aiβi Si

n∑

j=1

ci j
I j + δA A j

N j
,

E ′
i (t) = aiβi Si

n∑

j=1

ci j
I j + δA A j

N j
− qEi ,

I ′
i (t) = pqEi − γI Ii ,

A′
i (t) = (1 − p)qEi − γA Ai ,

R′
i (t) = γA Ai + γI Ii ,

(1)

with the nonnegative initial condition:

Si (0) = Ni − Ei0 − Ii0 − Ai0,

Ei (0) = Ei0, Ii (0) = Ii0, Ai (0) = Ai0, Ri (0) = 0.
(2)

In model (1), ai is the average contact rate (referred to as activity). βi is the prob-
ability of infection upon contacting an infectious person. γI , γA are denoted as the
recovery rate. δA is the regulatory factor. (1 − p) is proportion of the asymptomatic.
The contact between subpopulations is described by ci j , where ci j is the proportion
of the i th subpopulation’s contacts that is with members of the j th subpopulation.
I j/N j is the probability that a proportionally encountered member of subpopulation
j is symptomatic infectious. δA A j/N j is the probability that a proportionally encoun-
tered member of subpopulation j is asymptomatic infectious and n is the number of
subpopulations. The mixing function needs to satisfy the following basic conditions
(Stavros and Carlos 1991):
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ci j ≥0,
n∑

j=1

ci j = 1,

ai Ni ci j = a j N j c ji .

The preferential mixing function has the following form:

ci j = εiδi j + (1 − εi ) f j , where f j = (1 − ε j )a j N j
n∑

k=1
(1 − εk)ak Nk

.

In the preferentialmixing function, εi is the fraction of preferential contacts for one’s
own group, and δi j is the Kronecker function (1 when i = j and 0 otherwise). f j is
the proportional mixing for other groups. Assume that all parameters are nonnegative.

2.1 The Basic Reproduction Number

By using the next-generation matrix approach (van den Driessche and Watmough
2002), the following isolated basic reproduction number for group i can be obtained:

R0i = aiβi

[
p

γI
+ δA(1 − p)

γA

]

, (1 ≤ i ≤ n).

We derive the next-generation matrix for the meta-population in “Appendix,” and
the next-generation matrix for the meta-population is:

FV−1= diag

( ∗
f11 v−1

11 ,
∗
f22 v−1

22 , · · · ,
∗
fnn v−1

nn

)

⎡

⎢
⎢
⎢
⎣

C11 C12 · · · C1n
C21 C22 · · · C2n
...

...
...

...

Cn1 Cn2 · · · Cnn

⎤

⎥
⎥
⎥
⎦

. (3)

The basic reproduction number for the meta-population is:

R0 = ρ(FV−1),

where R0 = ρ(FV−1) denotes the dominant eigenvalue of FV−1.
Two special mixing ways are proportionate (i.e., when εi = 0) and isolated (i.e.,

when εi = 1). In two cases, the basic reproduction numbers are, respectively, given
by:

R0 =
n∑

i=1

R0i cii (εi = 0), and R0 = max
1≤i≤n

{R0i }(εi = 1).
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If the susceptible individuals were vaccinated before the epidemic starts, a certain
level of population immunity can be achieved via vaccination. Let pi denote the
vaccination coverage for subpopulation i at time t = 0(0 ≤ pi ≤ 1). Then, the
modified initial conditions have the following forms:

Si (0) = (1 − pi )(Ni − Ei0 − Ii0 − Ai0), Ei (0) = Ei0, Ii (0) = Ii0,

Ai (0) = Ai0, Ri (0) = pi (Ni − Ei0 − Ii0 − Ai0)(1 ≤ i ≤ n).

Accordingly, the isolated effective reproduction number for group i is:

Rei = (1 − pi )R0i .

The next-generation matrix for the meta-population is:

FeV
−1
e =diag

( ∗
f 11v

−1
11 ,

∗
f22 v−1

22 , · · · ,
∗
fnn v−1

nn

)
⎡

⎢
⎣

C11 (1 − p1) · · · C1n (1 − p1)
...

...
...

Cn1 (1 − pn) · · · Cnn (1 − pn)

⎤

⎥
⎦ .

The whole effective reproduction number for the meta-population is:

Re = ρ(FeV
−1
e ).

As a special case, when the influences of incubation period and asymptomatic indi-
viduals are ignored, the whole basic reproduction number is same as formula (3) in
Cui et al. (2019).

2.2 The Final Epidemic Size

Next, we use model (1) with the initial condition (2) to derive the relation for the final
epidemic size.

Adding the equations from S′
i (t) to A′

i (t) in model (1), we can achieve

(S′
i (t) + E ′

i (t) + I ′
i (t) + A′

i (t)) = −γA Ai − γI Ii . (4)

It is not difficult to know Si (t) ≥ 0, Ei (t) ≥ 0, Ii (t) ≥ 0, Ai (t) ≥ 0; we can show
that(S′

i (t)+E ′
i (t)+ I ′

i (t)+ A′
i (t)) is uniformly continuous. And then limt→∞(S′

i (t)+
E ′
i (t) + I ′

i (t) + A′
i (t)) = 0. Thus, Ii (∞) = Ai (∞) = 0 and Ei (∞) = 0 as t → ∞

by a similar approach in Lv et al. (2020). Hence, we can conclude that Si (∞) exists.
Integrating equation (4) from 0 to ∞, we get

Ni − Si (∞) = γA

∫ ∞

0
Ai (t)dt + γI

∫ ∞

0
Ii (t)dt . (5)
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Next, we claim that Si (t) > 0 and then Si (∞) > 0. In fact, (5) hints that

γA

∫ ∞

0
Ai (t)dt + γI

∫ ∞

0
Ii (t)dt .

is convergent. Therefore,

Si (t) = Si (0)e
−aiβi

n∑

j=1

1
N j

(
∫ t
0 I j (θ)dθ+δA

∫ t
0 A j (θ)dθ)

> 0,

Si (∞) = Si (0)e
−(γA

∫ ∞
0 Ai (t)dt+γI

∫ ∞
0 Ii (t)dt) > 0.

Adding and integrating the equations of I ′
i (t), A

′
i (t), R

′
i (t), we can obtain

∫ ∞

0
Ei (t)dt = (Si (0) − Si (∞)) + Ei0

q
.

Adding and integrating the equations of S′
i (t), E

′
i (t), A

′
i (t) and substitution into

(4), we can obtain

∫ ∞

0
Ii (t)dt = p(Si (0) − Si (∞) + Ei0) + Ii0

γI
,

∫ ∞

0
Ai (t)dt = (1 − p)(Si (0) − Si (∞) + Ei0) + Ai0

γA
.

Dividing both sides of the first equation of model (1) by Si (t), we get

S′
i (t)

Si (t)
= −aiβi

n∑

j=1

ci j
I j + δA A j

N j
. (6)

Integrating equation (6) from 0 to ∞, we obtain

ln
Si (∞)

Si (0)
= −

n∑

j=1

R0i ci j
(S j (0) − S j (∞)) + E j0 + γA I j0+γI δA A j0

pγA+(1−p)γI

N j
. (7)

Let Zi = Si (0) − Si (∞) denote the final epidemic size for the isolated group,

Zi = Si (0)

⎛

⎝1−exp

⎛

⎝−
n∑

j=1

R0i ci j
1

N j
(Z j +E j0)+ γA I j0+δAγI A j0

pγA+(1 − p)γI

⎞

⎠

⎞

⎠ . (8)
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Let N = ∑n
i=1 Ni denote the total population size andFi = Zi/Ni is the proportion

of infected individuals for group i . We define the final epidemic size F by

F =
n∑

i=1

Fi =
n∑

i=1

Zi

N
.

In the special case that the population is homogeneous mixing, i.e., the param-
eter values are identical for all subpopulations (ai = a, βi = β, εi = 0, Ni =
N/n, Si (0) = S(0)/n, Ei (0) = E(0)/n, Ii (0) = I (0)/n, Ai (0) = A(0)/n), the final
size relation is simplified as:

Z = S(0)

(

1 − exp

(

−R0
1

N
(Z + E0) + γA I0 + δAγI A0

pγA + (1 − p)γI

))

, (9)

where Z = ∑n
i=1 Zi andR0 = R0i = aβ(

p
γI

+ δA(1−p)
γA

). If we varyR0 by changing
β and the other parameters remain unchanged, the final size relation (9) is shown in
line with Fig. 1 in reference Cui et al. (2019), which shows that F is an increasing
function of R0.

As can be seen,F andR0 are positively related, which shows thatF is an increasing
function of R0. Furthermore, it has the conclusion (7) of Cui et al. (2019) when
incubation period and asymptomatic individuals are ignored, i.e., E0 = 0, A0 =
0, p = 0, δA = 0, γA = γI = γ .

As shown in referenceCui et al. (2019),F can be influenced by the pattern ofmixing
in a significant way. Heterogeneity in various subpopulation characteristics may have
the opposite or complex effect onF andR0. Furthermore, the relationship ofF andR0
may not be illustrated in Fig. 1 in reference Cui et al. (2019). In the following sections,
we will investigate how population heterogeneity in model with preferential mixing
may influence F , the relationship between F and R0 and evaluation of intervention
measures.

2.3 The Relationship ofF andR0

F is an increasing function of R0 in the case of homogeneous mixing. Moreover,
the change of R0 is mainly caused by altering βi . And the heterogeneous factors
include activity (ai ), preferential contact (εi ), proportion of asymptomatic individuals
(1 − p), regulatory factor (δA). When the heterogeneity factors are introduced in
meta-population model, F and R0 will vary in a complicated way (8).

Due to the high dimension of heterogeneity model and complexity of analysis,
it is difficult to figure out the specific expression of final epidemic size. In order to
simplify the analysis process, we first study the case of n = 2 groups, which can
be easily extended to the case of n > 2. To explore the dependence of Zi on other
parameters numerically, we rewrite equation (8) as

F(Z1, Z2) = 1, G(Z1, Z2) = 1,
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where

F(Z1, Z2) = S1(0)

Z1

⎛

⎜
⎝1 − e

−
2∑

j=1
R01c1 j

1
N j

(Z j+E j0)+ γA I j0+γI δA A j0
pγA+(1−p)δAγI

⎞

⎟
⎠ ,

G(Z1, Z2) = S2(0)

Z2

⎛

⎜
⎝1 − e

−
2∑

j=1
R02c2 j

1
N j

(Z j+E j0)+ γA I j0+γI δA A j0
pγA+(1−p)δAγI

⎞

⎟
⎠ .

(10)

In the following section, we will conduct numerical simulation to analyze the effect
of various heterogeneities on the final epidemic size.

3 Influence of Heterogeneous Factors andMixingMethods

To investigate the impact of various heterogeneous factors and mixing methods on
model prevention, we fixed the parameter values N1 = N2 = 5000, Ei (0) = Ai (0) =
Ii (0) = 1, β1 = β2 = 0.035, q = 0.3, γA = 1/7, γI = 1/5. The values of other
parameters vary according to the applications. Heterogeneous characteristics include
activity (ai ), regulatory factor (δA), asymptomatic individuals (1 − p), preferential
contact level (εi ), vaccine coverage (pi ).

3.1 Heterogeneity of Activity (ai)

In the case of preferential mixing (ε1 = 0.4, ε2 = 0.3), we discuss the effect of
heterogeneity and variability in activity on the final epidemic size. We fixed δA =
0.2, p = 0.9. By simulating equation (10) and model (1), Fig. 1 is obtained, in which
the activity is (a1, a2) = (10, 10), (a1, a2) = (14, 6), (a1, a2) = (18, 2), respec-
tively. Accordingly, the basic reproduction numbers are R0 = 1.624, 1.963, 2.734,
respectively, while the final epidemic sizes areF = 0.654, 0.636, 0.554, respectively.
Combined with the data of three different activities, we can conclude that

• F decreases;

• R0 increases;

• The peak size of an outbreak increases;

• The time of epidemic peak decreases.

In order to illustrate the effect of ai on F , R0 and the relationship between them,
Figs. 2 and 3 show F ,R0 for several different sets of activities (a1, a2) with different
preferential contact level (ε1, ε2).

Figure 2 indicates that the homogeneous activity (a1, a2) = (10, 10) corresponds
to the smallest R0 = 1.624 and the largest F = 0.654. While the heterogeneity
activity (a1, a2) = (18, 2) to the largest R0 = 2.734 and the smallest F = 0.554.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Comparison of F , R0 peak, peak time when activities vary from homogeneous to heterogeneous.
The left column shows the final epidemic size, as the intersection of F = 1 and G = 1 (marked by the dot).
The right column shows the epidemic curves based on the simulations of model (1) (Color figure online)

Thus, it confirms thatF andR0 are not a positive correlation, which is consistent with
conclusion of the reference Cui et al. (2019). Controlling disease outbreak by reducing
activity in one group, it may lead to a sharp increase in infection in another group.Most
of the contribution ofR0 come from the group with high activity, and the increase in
the number of infected individuals is less than the decrease in the other group. It results
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Fig. 2 Effects of (a1, a2) on F and R0 when (a1, a2) varies from (10,10) to (18,2) with the same mean
activity 10. Mixing is preferential (ε1, ε2) = (0.4, 0.3) (Color figure online)

in F decreases and R0 increases. This conclusion may have an important impact on
public health policy-making.

In order to reveal the effects of activity on F andR0 in different mixing methods,
Fig. 3 exhibits F and R0 for several sets of activities (a1, a2) in case of preferential
contact level (ε1 = ε2 = 1).

In Fig. 3, the change rule ofF andR0 is not consistent with the previous conclusion.
F = 0.434 is the lowest point when activity is (a1, a2) = (14, 6). Furthermore, it is
obviously F(12,8) > F(15,5) > F(14,6). Reducing the activity of individual population
can reduce the epidemic final size. If (ε1, ε2) = (1, 1), Fig. 3 shows that the values of
F are smaller than that in Fig. 2, but R0 is the opposite. Therefore, we can conclude
that isolation is an effective way to reduce the final epidemic size and control the
outbreak of disease by comparing Figs. 2 and 3.

Interestingly enough, there is a turning point aboutF at activity value of (a1, a2) =
(14, 6). The implement of isolationmeasures should be combinedwith the activity gap
between groups. Otherwise, the isolation effect will rebound due to rapid outbreak of
single group. If the increase in the number of infected individuals in the high-activity
group is greater than the decrease in the other group,F will rise up again. The isolation
effect is obvious, while the activity gap is kept in reasonable limits.

3.2 Heterogeneity in Regulatory Factor (ıA) and Asymptomatic Individuals (1− p)

The influence of δA and (1 − p) on F and R0 can be examined by fixing the other
parameter values (ε1, ε2) = (0.4, 0.3), (a1, a2) = (15, 5). For example, Fig. 4a illus-
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Fig. 3 Effects of (a1, a2) on F and R0 when (a1, a2) varies from (10,10) to (18,2) with the same mean
activity 10. Mixing is preferential (ε1, ε2) = (1, 1) (Color figure online)

(a) (b)

Fig. 4 Effect of δA , (1 − p) on F , R0. The red line shows the basic reproduction number(R0). The blue
line shows the final size(F ) (Color figure online)

trates the effect of δA on F and R0 when p = 0.9. Figure 4b shows the impact of
(1 − p) on F and R0 when δA = 0.2.

It can be seen from Fig. 4a that F and R0 vary with δA positively and slightly.
The main reason is that the proportion of asymptomatic infected is very small and
the change of regulatory factor does not cause a big variation on F and R0. The
pharmaceutical measures to reduce the regulatory factor can modestly decrease the
final size, while the effect is not obvious.

123



38 Page 12 of 22 J. Cui et al.

Fig. 5 Effect of δA , p on F ,R0. We fixed parameter value δA ∈ (0.1, 0.8), p ∈ (0.1, 0.8). The left figure
is the effect on F . The right figure is the effect on R0 (Color figure online)

To further explore the influence of asymptomatic individuals (1 − p) on F and
R0, Figure 4b also plots F ,R0 by fixing the parameter values δA = 0.2. And Fig. 4b
indicates that F , R0 both decrease with the increasing of (1 − p). R0 changes with
(1− p) linearly. AndR0 reduces to 1 when (1− p) approaches to 0.65. ButF changes
with (1 − p) nonlinearly. F declines slowly when (1 − p) is between 0.2 and 0.5.
While (1 − p) is greater than 0.5, F decreases fast.

This shows that asymptomatic individuals will affect the final size and basic repro-
duction number. In the choice of prevention and control measures, asymptomatic
individuals can be reduced to achieve the purpose of disease control by early detec-
tion and early isolation. It is further verified that the influence of asymptomatic
individuals on the outbreak of disease is related to the asymptomatic proportion in
meta-population.

Figure 5 illustrates the effect of δA and p onF ,R0. FromFig. 5,wecan conclude that
the effect of δA onF ,R0 is linear,while the effect of p onF ,R0 is nonlinear. The effect
of p is greater than δA, which further verifies the results of Fig. 4. Therefore, the main
strategy to control the outbreak of disease is to reduce the number of asymptomatic
infected individuals. The pharmaceutical and non-pharmaceutical interventions can
reduce the morbidity of asymptomatic and effectively reduce the final epidemic size
(Fig. 6).

3.3 Heterogeneity in Preferential Contact ("i)

The mixing method of meta-population is reflected in ci j . There are mainly activity
(ai ), preferential contact level (εi ), subpopulation size (Ni ). And the preferential con-
tact level (εi ) is a significant influence factor for the final epidemic size. The other
parameter values are fixed the same as Sect. 3, including (a1, a2) = (12, 8). The effect
of εi on F and R0 can be found in Fig. 7.

Figure 7 shows that the variation ofF andR0 with εi is nonlinear. Figure 8 illustrates
that F and R0 have a negative correlation when (ε1, ε2) is fixed in twopopulations.
In fact, Fig. 8 is a partial graph of Fig. 7, which explains the conclusions of Fig. 7 in
more detail. And it further verifies the results of Fig. 2. Furthermore,F increases with
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(a) (b)

(c) (d)

Fig. 6 Effect of p on F and R0. The left column shows F and R0 increase with p when δA is fixed as
0.7. The right column shows that F andR0 decrease with p when δA is fixed as 0.8 (Color figure online)

Fig. 7 Influence of εi (i = 1, 2) on F andR0. The preferential εi varies from 0.01 to 0.99 and the case of
εi = 1 is not considered here (Color figure online)
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(a) (b)

(c) (d)

Fig. 8 Influence of εi (i = 1, 2) on F and R0. The blue figures show the influence of εi on F . The green
figures show the influence of εi onR0. The variation ofF andR0 is nonlinear with εi . TheF andR0 are
positively related (Color figure online)

ε1 when 0.4 < ε1 < 0.8, while F decreases with ε1 in the case of ε1 > 0.8 under any
case of ε2. This proves that activity and preferential contact level in subpopulations are
the key factors affecting the final size. The significant factor about the final size will
transform from activity into mixing method when preferential contact level is higher
than a certain value. This change may reduce the final size, which confirms the results
of Fig. 3. Additionally, Figs. 7 and 8 verify the conclusion of Fig. 9 simultaneously.

It can be seen that isolation is an effective way to control the disease outbreak,
but too strong isolation measure will only delay the process of disease outbreak and
present a temporary safe period. Thus, excessive isolation will lead to the factors that
affect disease outbreak change.

Figure 9 shows the influences of (ai , a j ) onF andR0 when the preferential contact
level increases in the same proportion, i.e., (ε1 = ε2). The sapphire bar charts illustrate
that F first increases and then decreases with the increase in εi . Actually, this is the
case for the diagonal in Fig. 7. The saffron bar charts show the opposite conclusion
with the sapphire bar charts. And the saffron and army green bar charts declare that
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(a) (b)

Fig. 9 Influence of various preferential contact levels εi (i = 1, 2) and activity variability (ai , a j ) on F
andR0. The variation of F is nonlinear butR0 is linear with the increase in εi and (ai , a j ). The sapphire
bar charts verify the results of Fig. 7 (Color figure online)

F monotonously decreases with the increase in εi . The only difference is that R0 is
always monotonously increasing under the various cases of (ai , a j ) and εi .

It is widely known that activity and preferential contact level are the significant
heterogeneity factors on the final size. To control the outbreak of disease, reducing the
activity of population and taking appropriate quarantine measures are effective ways.

3.4 Heterogeneity in Vaccine Coverage (pi)

The initial condition in model changes when the vaccine coverage is considered.
Assume that the vaccine efficacy is 100% so that the vaccination coverage in group i
is the same as the immunity pi , and the total number of vaccine dose is p1 + p2. Thus,
we can examine the effect of heterogeneity in vaccine allocation (p1, p2) on F and
R0 for a fixed number of vaccinations p1 + p2 = 1.2. The values of other parameters
are the same as before, except for (ε1, ε2) = (0.4, 0.3).

3.4.1 Shortages of Vaccine Stockpiles

Consider the case of the general mixing. The effects of vaccine coverage on F , R0,
I (t), A(t) are illustrated in Figs. 10, 11 and 12. The activity is fixed (a1, a2) = (14, 6).

FromFig. 10, it canbe seen that the solid line of the corresponding color is lower than
dot-dashed line, which illustrates that vaccination can reduce the final epidemic size
effectively. In the case of p1 < 0.25,F andR0 both decrease as p1 increases.However,
as p1 continuously increases from 0.25 to 0.35,F increases andR0 decreases. AndF
and R0 both decrease as p1 > 0.3. Thus, p0.351 < p0.251 < p0.31 . A vaccine coverage
of p1 = 0.3 does not reach the immunity threshold of vaccination. On the contrary,
the final size of the disease outbreak rises up again.

Figures 11 and 12 illustrate that F , I (t) and A(t) all nonlinearly decrease with the
increase in p1. Additionally, it further demonstrates the conclusion of Fig. 10.
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Fig. 10 Change of F and R0 with the vaccine coverage pi . The blue line shows F . The red line shows
R0. The solid line shows vaccinated. The dot-dashed line shows non-vaccinated (Color figure online)

Fig. 11 Effect of vaccine allocation p1 on cumulative infections (the values of p1 for different curves are
marked in the legend) (Color figure online)

3.4.2 Sufficient of Vaccine Stockpiles

National support and the development of medical standards have made the vaccines
no longer exist in the limited stocks. However, for the sake of saving resources, it is
important to find the best vaccination strategies for controlling the disease outbreak.
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(a) (b)

Fig. 12 The epidemic curves I (t) and A(t) for various vaccine allocations with p1 + p2 = 1.2 (the values
of p1 for different curves are marked in the legend) (Color figure online)

Based on this idea, Fig. 13 shows the result of numerical simulation of R0 when the
other parameter values for model (1) are fixed as before expect for (a1, a2) = (12, 8).

Figure 13 plots that different doses of vaccine are used in the different diverse
mixing patterns to achieve the same effect, i.e.,R0 ≤ 1. The plane ofR0 = 1 and the
region below the intersection of the inclined plane are feasible regions. Obviously, the
feasible region of proportional mixing is larger than general mixing. Meanwhile, the
dose of vaccine used is also more than that when the effectiveness of vaccine is the
same.

Thus, public health institutions can choose the best vaccination strategy by taking
into account key factors such as the feasible region and dose of vaccine. In order
to achieve the goal of disease control, the most critical step is to select the suitable
model, which is in accord with the dynamics of disease transmission. Furthermore,
for the infectious diseases with heterogeneity factors, the mixing methods of (a) and
(b) overestimate the value of R0. And if we use the vaccine coverage of (a) and (b),
a certain amount of vaccine will be wasted to control the outbreak of disease, i.e.,
R0 ≤ 1. Therefore, it is critical to build a model that is more consistent with the real
dynamics of disease transmission.

4 Discussion and Conclusion Remarks

In this paper, we introduce a novel epidemiological model which includes the explicit
separate compartments for incubation and asymptomatic individuals, taking into
account the effect of population heterogeneity and mixing methods on the final epi-
demic size. The purpose of modelling and evaluation is to reduce the final epidemic
size, decline the basic reproduction number,minimize the peak, andmaximize the time
to reach the peak, so as to avoid the early surge of potential transmission cases. The
novel model can well describe the dynamic process of disease transmission and pro-
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Fig. 13 Effect of mixing methods on the dose of vaccine. The isolated mixing (a), proportional mixing (b)
and general mixing (c) are three differential mixing methods (Color figure online)

vide many important insights for disease transmission dynamics and related effective
control strategies.

The main contributions and conclusions are described below:

• Based on the incubation and asymptomatic infectious individuals, a subpopulation
dynamic model has been established, which can provide a theoretical basis for the
study of some diseases with asymptomatic. And it further illustrates the effect of
asymptomatic individuals on the outbreak of disease.

• Taken into account the characteristic of population heterogeneity, it mainly
includes asymptomatic proportion, regulatory factor, mixing methods and other
factors. The model is aimed to analyze the sensitivity of heterogeneous factors and
provide a number of valuable references for the optimizing control strategies.

• The relationship of F andR0 is explicitly calculated. The expression of the next-
generation matrix and threshold value of R0 are proposed.

• The conclusions are as follows:

1. In Fig. 1, theR0 increases but F decreases with the variation of activity in the
left column. Moreover, the peak size of an outbreak shows a rising trend and
the time to the peak is postponed with the increasing of activity in the right
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column.We conclude thatF andR0 are negatively correlated, and inhibition of
the activity of population is a effective measure to control the disease outbreak.

2. The relationship of final epidemic size (F) and basic reproduction number (R0)
is negative or other complicated with various heterogeneities. F decreases but
R0 increases with the increase in |a1−a2| in Fig. 2, which further verifies the
results of Fig. 4 in reference Cui et al. (2019), while the variation of F and
R0 is rather complex in Fig. 3, not a simple monotonous relationship. For the
numerical of F , Fig. 3 is generally lower than Fig. 2, while R0 in Fig. 3 is
higher than that in Fig. 2. And it is a new finding in our study. Furthermore, it
shows that isolation can reduce the final epidemic size.

3. Another interesting finding of this study is that F rises up with the increasing
of |a1−a2| due to the preferential mixing. The excessive isolation will make the
disease present a temporary safe period and rapidly increase theR0i in a meta-
population group, which results in the devastating damage to the high-active
group and the increasing of F again.

4. The relationship of F andR0 as well as heterogeneous analysis demonstrates
how the heterogeneity and mixing methods effect F and R0. The influence
of preferential contact level is very complex on F and R0, which shows the
different pattern of variation in Figs. 7, 8 and 9.

5. Whether asymptomatic infection causes a big variation in the final epidemic
size mainly depends on the asymptomatic proportion. Therefore, this factor is
more sensitive than regulatory factor, and its activity has the highest sensitivity
among the heterogeneity. The vaccination can also decrease the final epidemic
size effectively, and the different mixing methods change the amount of vac-
cination used and feasible region with the sufficient of vaccine stockpiles.

6. When considering the influence of heterogeneity, we should evaluate not only
the effect of measures on R0, but also the impact of measures on F . In this
paper, the results show thatF andR0 are not a simplemonotonous relationship
as the same conclusion we got before.

We acknowledge several limitations of our study. The predictions are dependent
on the model assumptions, and there are several assumptions that could be worth
revisiting in future iterations of the model. Additionally, some of the assumptions in
the simplified model might not be realistic in all settings, necessitating the analysis
of the full model. However, the conclusions of this study should be considered in
policy-making and measure selection.

In addition to the above limitations, further expansion is needed. The epidemio-
logical data are used to estimate the parameters to increase the accuracy of the model
prediction as far as possible. Another consideration for future modeling work is that
since all individuals transmit through the asymptomatic compartments, those who
continue to develop symptoms in our model are more infectious than asymptomatic
individuals. Elasticity of the implementation of control measures and cognition degree
of population about disease are what we need to think about.
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Appendix

In the following, we introduce the idea of block matrix to calculate the basic repro-
duction number R0 of the meta-population.

The increasing rate of secondary infection and disease progress in disease compart-
ment i are denoted by Fi and Vi , respectively.

Fi =
⎡

⎢
⎣

aiβi Si
(
ci1

I1+δA A1
N1

+ ci2
I2+δA A2

N2
+ . . . + cin

In+δA An
Nn

)

0
0

⎤

⎥
⎦ ,

Vi =
⎡

⎣
qEi

−pqEi + γI Ii
(p − 1)qEi + γA Ai

⎤

⎦ .

The Jacobian matrices of Fi and Vi (1 ≤i≤ n) at (N1, 0, 0, · · · , Ni , 0, 0, · · · , Nn,

0, 0, ) are

Fi =
⎡

⎣
0 aiβi Ni ci1

1
N1

aiβi Ni ci1
1
N1

δA · · · 0 aiβi Ni cin
1
Nn

aiβi Ni cin
1
Nn

δA

0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0

⎤

⎦ ,

and

Vi =
⎡

⎣
0 0 0 · · · q 0 0 · · · 0 0 0
0 0 0 · · · −pq γI 0 · · · 0 0 0
0 0 0 · · · (p − 1)q 0 γA · · · 0 0 0

⎤

⎦ ,

respectively. Let

fi j =
⎡

⎣
0 aiβi Ni

ci j
N j

aiβi NiδA
ci j
N j

0 0 0
0 0 0

⎤

⎦ , vi i =
⎡

⎣
q 0 0

−pq γI 0
(p − 1)q 0 γA

⎤

⎦ , vi j =0(i 	= j).

The above matrix can be converted into the following simple forms

Fi = [
fi1 · · · fin

]
, Vi = [

0 · · · vi i · · · 0
]
(vi j = 0(i 	= j)).
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Furthermore,F ,V are defined as the increasing rate of secondary infection and disease
progress in meta-population, respectively.

F =
⎡

⎢
⎣

F1
...

Fn

⎤

⎥
⎦ , V =

⎡

⎢
⎣

V1
...

Vn

⎤

⎥
⎦ .

In order to reveal the relationship of the basic reproduction number and the next-
generation matrix, the following isolated basic reproduction number for group i is
defined as: R0i . Let

∗
fi j =

⎡

⎣
0 aiβi Ni aiβi NiδA
0 0 0
0 0 0

⎤

⎦ , Ci j =
⎡

⎢
⎣

ci j
N j

0 0

0
ci j
N j

0

0 0
ci j
N j

⎤

⎥
⎦ .

Then, it is easy to see that fi j = ∗
fi j Ci j ,

∗
fi j = ∗

fii , i, j = 1, 2, · · · , n. Consequently,
we have

F =
⎡

⎢
⎣

F1
...

Fn

⎤

⎥
⎦ =

⎡

⎢
⎣

f11 · · · f1n
...

...
...

fn1 · · · fnn

⎤

⎥
⎦ , V =

⎡

⎢
⎣

V1
...

Vn

⎤

⎥
⎦ =

⎡

⎢
⎣

v11 · · · 0
...

...
...

0 · · · vnn

⎤

⎥
⎦ ,

and

FV−1 =

⎡

⎢
⎢
⎣

∗
f11 v−1

11 C11 · · · ∗
f1n v−1

nn C1n
...

...
...

∗
fn1 v−1

11 Cn1 · · · ∗
fnn v−1

nn Cnn

⎤

⎥
⎥
⎦.

Note that v−1
i i = v−1

j j , i, j = 1, 2, · · · , n, the next-generation matrix can be written
as:

FV−1= diag

( ∗
f11 v−1

11 ,
∗
f22 v−1

22 , · · · ,
∗
fnn v−1

nn

)

⎡

⎢
⎢
⎢
⎣

C11 C12 · · · C1n
C21 C22 · · · C2n
...

...
...

...

Cn1 Cn2 · · · Cnn

⎤

⎥
⎥
⎥
⎦

,

where

∗
fii v

−1
i i =

⎡

⎣
R0i Ni ∗ ∗

0 0 0
0 0 0

⎤

⎦ .
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