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Abstract
As phylogenetic networks grow increasingly complicated, systematic methods for
simplifying them to reveal properties will become more useful. This paper considers
how to modify acyclic phylogenetic networks into other acyclic networks by contract-
ing specific arcs that include a set D. The networks need not be binary, so vertices
in the networks may have more than two parents and/or more than two children. In
general, in order to make the resulting network acyclic, additional arcs not in D must
also be contracted. This paper shows how to choose D so that the resulting acyclic
network is “pre-normal”. As a result, removal of all redundant arcs yields a normal
network. The set D can be selected based only on the geometry of the network, giving
a well-defined normal phylogenetic network depending only on the given network.
There are CSDmaps relating most of the networks. The resulting network can be visu-
alized as a “wired lift” in the original network, which appears as the original network
with each arc drawn in one of three ways.

Keywords Phylogeny · Network · Phylogenetic network · CSD map · Normal
network

1 Introduction

A phylogenetic tree is a directed tree whose vertices represent biological species,
whose leaves typically correspond to known extant species, and whose branchings
indicate speciation events, usually by genetic mutation. As such, internal vertices have
in-degree one and out-degree at least two (except for the root with in-degree zero). In
the last decades it has become clear that other events such as hybridization and lateral
gene transfer are also important in evolution, even though they are not easily modeled
using phylogenetic trees (Delwiche and Palmer 1996; Doolittle and Bapteste 2007;
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Inagaki et al. 2002; Jones et al. 2013). As a result there is interest in phylogenetic
networks, in which some vertices have in-degree two or higher, corresponding to
such events (Moret et al. 2004; Solís-Lemus et al. 2016). Overviews of phylogenetic
networks may be found in Steel (2016) and Huson et al. (2010).

A phylogenetic X -network is an acyclic directed graph in which the leaves are
identified with a particular collection X of species, usually extant species. We assume
that a phylogenetic X -network describes gene flow, and each vertex corresponds to a
biological species. Such phylogenetic networks can be quite complicated. The focus
will be on simplifying such networks by recursively merging the ends of particular
arcs in a natural manner. We will then apply the results to study simplification into a
normal network.

In this paper, an X -network is a directed graph in which the leaves are identified
with members of a particular set X . Our notion of an X -network is broad. Vertices
can have in-degree and/or out-degree greater than two, so we are not assuming that
the networks are binary. An exact definition is given in Sect. 2, along with other basic
notions. In Sect. 3 we describe constructions which do not necessarily yield acyclic
networks, and then find conditions that ensure that the results are acyclic. Hence in
this paper an X -network need not be acyclic, and we will refer to one that is acyclic
as an acyclic X-network. In turn, an acyclic X -network that has no vertices with both
out-degree and in-degree equal to one is a phylogenetic X -network.

One measure of the complexity of an acyclic X -network is the number of vertices.
In terms of bounds on the number of vertices we have the following comparisons
between certain families of networks. The definitions of these families are given in
Sect. 2. (The result is fromWillson (2010)with slight changes since, inWillson (2010),
X contained the root as well as the leaves.)

Theorem 1.1 Suppose N = (V , A, ρ, φ) is an acyclic X-network and n = |X |,
v = |V |. Assume n ≥ 2 and there are no vertices of out-degree one.

(a) If N is a rooted tree, then v ≤ 2n − 1.
(b) If N is normal, then v ≤ n(n + 1)/2.
(c) If N is regular, then v ≤ 2n − 1.
(d) If N is tree-child, then v is unbounded.

The fact that for normal networks the number of vertices grows at worst quadrati-
cally with n indicates that normal networks are potentially a more tractable network
type than regular or tree-child. Also indicative of their tractable nature is the fact (Steel
2016) that the number of hybrid vertices is at most n−2. Yet another indication is that
binary normal networks are determined by their caterpillars on three and four leaves
(Linz and Semple 2020).

A vertex v of the X -network N = (V , A, ρ, φ) is visible (Francis et al. 2021; Huson
et al. 2010) if there exists a leaf φ(x) such that every path in N from the root ρ to
φ(x) includes v. In a tree-child network, every vertex is visible (Cardona et al. 2009).
Since any normal network is tree-child, every vertex of a normal network is visible,
yielding another useful property of normal networks.

As in Pardi and Scornavacca (2015) we take the view that rather than try to deal with
networks that are possibly not identifiable, it is desirable to focus instead on networks
that are sufficiently tractable to be tested with data. Since every vertex of a normal

123



Merging Arcs to Produce... Page 3 of 38 26

network is visible, potentially every vertex of a normal network can be so tested, and
simplification into uniquely determined normal networks will become useful.

This paper relies on results from Willson (2012). This earlier paper focused on
networks that were not necessarily acyclic. This current paper extends the results to
ensure that the constructed networks are acyclic. If N is a given network and D is a
list of certain arcs in N satisfying a weak condition, this paper in Sect. 3 computes
the result MD(N ) of merging the arcs in D as well as certain additional arcs required
to ensure that MD(N ) is acyclic. Of interest will be the choice of D so as to obtain
ultimately a normal network.

In Sect. 5 we study the result R(N ) of removing all “redundant” arcs from N . In
Sect. 7 we describe ways to find sets D of arcs of N such that R(MD(N )) is a normal
network.

Combining these techniques we describe in Sect. 7 a method, given an X -network
N , to construct a normal acyclic X -network Norm(N ) which is a phylogenetic X -
network depending only on the geometry of N . The construction makes no arbitrary
choices such as between different parents or children.

As phylogenetic X -networks grow increasingly complicated, it will become useful
to “simplify” them. Simplification into a normal network may make them easier to
interpret since normal networks are potentially tractable.

If N and M are X -networks, a connected surjective digraph map (CSD map) f :
N → M is a surjectivemap f : V (N ) → V (M)with various properties. (SeeWillson
2012 and Sect. 2 of this paper.) The merging procedure in this paper always yields
a CSD map ψ : N → MD(N ). Results in Willson (2012) show that there is then a
“wired lift” of MD(N ) into N , from which properties of MD(N ) can be visualized in
N . The wired lift is not a subnetwork of N in the usual sense.

Section 6 of this paper generalizes the notion of “wired lift”. As a result we obtain
a wired lift of Norm(N ) into N , even though there is usually no CSD map from N to
Norm(N ). Thewired lift is visualized bydrawing the diagramof N with each arc drawn
in one of three different ways. Thus we can visualize the resulting normal network by
looking at a redrawn diagram of N . The current author thinks such visualizations can
provide a tool for better understanding complicated networks.

Section 8 contains two examples of the methods applied to published networks
based on biological data. Section 9 contains some discussion.

Francis et al. (2021) describe an elegant procedure, given an acyclic X -network
N , to find a related, uniquely determined, normal X -network, which I will denote
FHS(N ). Its calculation is based on locating the visible vertices of N . The fast program
PhyloSketch (Huson and Steel 2020) is available to compute it. The paper (Francis
et al. 2021) assumes that non-root vertices have either in-degree one or out-degree
one. Nevertheless, visibility of vertices is well-defined for the X -networks defined
in this paper and their procedure applies to any acyclic X -network in our sense. I
therefore use FHS(N ) to represent the result of this extension of their method. We
will occasionally compare FHS(N ) with Norm(N ).

123



26 Page 4 of 38 S. J. Willson

2 Basic Notions

Let N = (V , A) be a directed graph, where V is a finite set of vertices and A is the
set of arcs. An arc (u, v) is regarded as directed from u to v, so we call u a parent of
v and v a child of u. We assume N is a simple graph: there are no loops (u, u); and
there is at most one arc (a, b) for a �= b. We may sometimes denote V (N ) = V or
A(N ) = A.

If N = (V , A) is a directed graph, the corresponding undirected graph Und(N )

= (V , E) is the graph where {u, v} ∈ E iff either (u, v) ∈ A or (v, u) ∈ A. Thus,
arcs are replaced by edges and are not directed. In this paper, N will always refer to a
directed graph unless otherwise specified.

The in-degree of a vertex v in N , denoted indeg(v) or indeg(v; N ), is the number
of arcs (u, v), i.e. the number of parents of v. The out-degree of a vertex v, denoted
outdeg(v), is the number of arcs (v, u), i.e., the number of children of v.

We shall not assume that our directed graphs are binary. Thus a vertex v may have
outdeg(v) > 2 or indeg(v) > 2 or both.

A leaf is a vertex x ∈ V with out-degree 0. A root is a vertex ρ ∈ V with in-degree
0. A vertex v is hybrid or reticulate if indeg(v) ≥ 2. A child u of v is a tree-child
if indeg(u) = 1, so (v, u) is the only arc coming into u. A vertex v is trivial if
indeg(v) = outdeg(v) = 1. A trivial vertex merely subdivides an arc, and we will
often systematically suppress trivial vertices.

If u and v are vertices, a path or, for emphasis, a directed path from u to v is a
sequence of vertices u = u0, u1, u2, · · · , un = v such that for all i , 1 ≤ i ≤ n,
(ui−1, ui ) ∈ A. The length of the path is the number n of arcs. Note that the arcs
are uniquely determined by the vertices in the list since N is a simple graph. No two
successive vertices can be the same since there are no loops. We say the path contains
arc (uk, uk+1) for k = 0, · · · , n − 1. In some situations we may focus on a certain
part of the path such as u2, u3, u4; we may refer to such a portion as a segment. (For
example, in certain circumstances we might modify the path by replacing a segment
u2, u3, u4 by a segment u2, v1, v2, u4.)

The path of length 0 consisting only of u0 is the trivial path at u0. A path
u0, u1, u2, · · · , un is closed if n > 0 and u0 = un . A closed path is a cycle.

Let X be a nonempty finite set. In the applications, X is usually a set of extant
biological species. An X -directed graph N is a 4-tuple (V , A, ρ, φ) where (V , A) is
a simple directed graph; ρ is a distinguished node; and φ is a map φ : X → V .

An X -network N is an X -directed graph (V , A, ρ, φ) such that
(N1) V is a finite set (the set of nodes or vertices).
(N2) A (the set of arcs) is a finite set of ordered pairs (u, v) with u and v distinct

members of V .
(N3) ρ, called the root, is a node with in-degree 0.
(N4) The map φ : X → V is one-to-one.
(N5) Each leaf is a vertex with in-degree 1 and hence has a unique parent.
(N6) The image of φ is the set of leaves.
(N7) ρ is the only vertex with in-degree 0.
(N8) For each v ∈ V there is a path from ρ to v.
(N9) For each v ∈ V there is a path from v to some leaf.
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An acyclic X -network is an X -network that also satisfies
(N10) N has no cycles.
Following Steel (2016), we define a phylogenetic X -network to be an acyclic X -

network that contains no trivial vertices.
These assumptions are not intended to be the minimal possible; rather, they tell the

properties we will utilize the most.
If x ∈ X the unique parent of φ(x) by (N5) will be denoted p(x) or p(x; N ). The

arc of form (p(x), φ(x)) for some x ∈ X will be called the x-arc. If x is not specified,
any such arc will be called an X-arc.

Suppose N is an X -network. By (N4) and (N6) we may identify X with the set of
leaves.

If there is a directed path from u to v then we write u ≤ v. The trivial path shows
u ≤ u for all u ∈ V . (N9) says for each v ∈ V there is x ∈ X with v ≤ φ(x). (N8)
says that for any v ∈ V , ρ ≤ v. If the X -network is acyclic, then ≤ is a partial order;
otherwise it is possible that for distinct vertices u and v we have u ≤ v ≤ u.

Two X -networks or two X -directed graphs N = (V , A, ρ, φ) and N ′ =
(V ′, A′, ρ′, φ′) are X -isomorphic iff there exists a map f : V → V ′ such that

(i) f is one-to-one and surjective.
(ii) f (ρ) = ρ′.
(iii) f ◦ φ = φ′ (thus f (x) = x for x ∈ X , with the obvious interpretations).
(iv) (a, b) ∈ A iff ( f (a), f (b)) ∈ A′.
In this situation, N and N ′ are essentially the same and we write N ∼= N ′.
For each v ∈ V , we write cl(v; N ) (or cl(v) when N is understood) for cl(v; N ) =

{x ∈ X : v ≤ φ(x)}. We call it the cluster of v. Note that cl(ρ) = X by (N8). By
(N9) for every vertex v, cl(v) is nonempty.

It is immediate that if u ≤ v then cl(v) ⊆ cl(u).
Let Cl(N ) = {cl(v) : v ∈ V } be the set of clusters of N .
Let N be an X -labeled graph. An arc (a, b) is redundant or a short-cut if there

exists a path a = u0, u1, · · · , un = b, n ≥ 2, that does not contain the arc (a, b).
Thus, there is no k ≤ n − 1 such that uk = a and uk+1 = b. Such a path is called a
lengthening or a lengthening path of (a, b). Examples will be seen in several figures
later, such as Fig. 3. If x ∈ X then the arc (p(x), φ(x)) cannot be redundant since any
such lengthening path would have to satisfy un−1 = p(x) by (N5).

We shall have need of the following result:

Theorem 2.1 Suppose N is an acyclic X-network. Suppose there is a directed path in
N from a to b. Then, a directed path in N from a to b of maximal length contains no
redundant arc.

Proof Since the vertex set is finite and there are no cycles, there is an upper bound to
the length of a path. Suppose a = u0, u1, · · · , uk = b is a directed path P in N of
maximal length k. If the result is false, we may assume that for some i < k, (ui , ui+1)

is redundant. In that case there is a directed path ui = w0, w1, · · · , w j = ui+1
with j ≥ 2. We can then lengthen the path P by replacing the segment ui , ui+1 by
w0, · · · , w j , a contradiction. ��

There are several types of X -networks which will be of interest:
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An acyclic X -network N is tree-child (Cardona et al. 2009) if every vertex that is
not a leaf has a tree-child.

An acyclic X -network N = (V , A, ρ, φ) (possibly not satisfying (N5)) is regular
(Baroni et al. 2004) if

(1) the cluster map cl : V → P(X) is one-to-one, where P(X) is the power set of
X ;

(2) N has no redundant arcs; and
(3) u ≤ v iff cl(v) ⊆ cl(u).
An acyclic X -network N is normal (Willson 2010) if
(1) N is tree-child; and
(2) N contains no redundant arc.
Sometimes there are small differences in the definition of a network. In Baroni et al.

(2004) and Willson (2010) the authors do not assume condition (N5). In Baroni et al.
(2004) no vertex can have out-degree one. Particularly simple are normal networks in
which no vertex has out-degree one, since these are regular (Willson 2010).

Let N and N ′ be acyclic X -networks. One interesting way to compare them is
their Robinson-Foulds distance dRF (N , N ′) defined as the number of members of
Cl(N ) and Cl(N ′) which are present in one but not both (an extension of Robinson
and Foulds (1981) for trees). It is symmetric and satisfies the triangle inequality. For
certain classes of X -networks dRF is a metric. As an example, for fixed X , it is a
metric on the collection of regular X -networks (Baroni et al. 2004).

If N is a normal X -network, let S(N ) denote the result of contracting every arc
(u, v) such that outdeg(u) = 1. For example, suppose in N , for some x ∈ X , p(x)
is hybrid and has out-degree one. Then in S(N ) the arc (p(x), φ(x)) in N will have
been contracted, and S(N ) will not satisfy (N5). Thus in S(N ) a leaf can be hybrid.
Moreover, any trivial vertices will have been suppressed.

The following result shows that two normal networks N1 and N2 such that
dRF (N1, N2) = 0 are essentially the same.

Lemma 2.2 (1) If N is a normal X-network, then S(N ) is a regular X-network and
Cl(S(N )) = Cl(N ).

(2) Suppose N1 and N2 are normal X-networks and dRF (N1, N2) = 0. Then
S(N1) ∼= S(N2).

Proof (1) For any X -network N , if (u, v) is an arc and outdeg(u) = 1, it is immediate
that cl(u) = cl(v). Hence Cl(S(N )) = Cl(N ). Moreover, if N is normal then S(N )

remains normal and hence is a regular network (Willson 2010).
(2) If dRF (N1, N2) = 0, then Cl(N1) = Cl(N2). Hence Cl(S(N1)) = Cl(N1) =

Cl(N2) = Cl(S(N2)), so dRF (S(N1), S(N2)) = 0. The result follows from the fact
(Baroni et al. 2004) that dRF is a metric on regular X -networks. ��

The dRF distance has the interesting property that since it is defined for all acyclic
X -networks, it can be used to compare how well various networks of various types
“approximate” a given network. For example, if N is a complicated acyclic X -network
and T and T ′ are X -networks that are rooted trees, then T might be a better approxi-
mation to N than T ′ if dRF (N , T ) < dRF (N , T ′).
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In this paper we will be “simplifying” an acyclic X -network N into a normal X -
network N ′. From this point of view we would prefer that dRF (N , N ′) is as small as
possible.

Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X -directed graphs. A connected
surjective digraph (CSD) map (Willson 2012) ψ : N → N ′ is a map ψ : V → V ′
such that

(C1) ψ is surjective.
(C2) For each arc (u, v) ∈ A, either ψ(u) = ψ(v) or else (ψ(u), ψ(v)) ∈ A′. In

the latter case we may write ψ(u, v) = (ψ(u), ψ(v)). (Thus ψ is a digraph map).
(C3) For each x ∈ X , ψ(φ(x)) = φ′(x). More simply, ψ(x) = x .
(C4) ψ(ρ) = ρ′.
(C5) For each (u′, v′) ∈ A′ there exists u, v in V such that ψ(u) = u′, ψ(v) = v′,

and (u, v) ∈ A.
(C6) For each v′ ∈ V ′, ψ−1(v′) consists of the vertices of a connected subgraph

of N . Thus in the undirected graph Und(N ) of N , if W = ψ−1(v′), the induced
subgraph with vertex set W and edge set {{u, v} : ψ(u) = ψ(v) = v′, (u, v) ∈ A or
(v, u) ∈ A} is connected.

Note that if u ≤ v in N and ψ : N → N ′ is a CSD map, then ψ(u) ≤ ψ(v) in N ′.
Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X -networks. A CSD-map

ψ : N → N ′ is leaf-preserving if for each x ∈ X
(C7) u = φ(x) is the only vertex in V such that ψ(u) = φ′(x); thus ψ−1(φ′(x)) =

{φ(x)}; and
(C8) the x-arc (p(x), φ(x)) ∈ A is taken to the x-arc (ψ(p(x)), φ′(x)); thus

ψ(p(x; N )) = p(x; N ′).
If ψ1 : N → N ′ and ψ2 : N ′ → N ′′ are CSD maps, then it is proved in Willson

(2012) that the composition ψ = ψ2 ◦ψ1 : N → N ′′ is also a CSDmap. If both maps
are leaf-preserving, then it is easy to see that the composition is also leaf-preserving.
We will use this fact repeatedly.

Note that in Willson (2012) the term “X -network” refers to what in this paper is
an X -directed graph satisfying (N1), (N2), (N3), (N4), (N6), (N7), (N8), and (N9).
Thus the networks in Willson (2012) were not required to be acyclic. Of interest in
this current paper is the behavior when the final networks are required to be acyclic,
as are phylogenetic networks in biology. The CSD maps φ : N → N ′ become more
useful to biologists when both N and N ′ are required to be acyclic.

3 Contraction of Arcs

Here is a summary of this fundamental section: The basic tool used in this paper is
that of successively contracting arcs in an X -network. Suppose N is an X -network
and D is a subset of its arcs. In this section under weak conditions we describe how
to construct an X -network QD(N ) by merging just the arcs of D. In general QD(N )

may contain cycles. When D is “strongly closed” we show that QD(N ) is acyclic.
Moreover, any D has a unique “strong closure” K (D)which contains D and is strongly
closed. Hence, we are able to define MD(N ) = QK (D)(N ) as a uniquely determined
acyclic X -network that results from contracting the arcs of D and also the other arcs
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needed for acyclicity. The sections after this one will rely on the iterated use of this
construction. The fundamental problem studied in this paper is, roughly, how to choose
D so that we can find a normal network from MD(N ).

Let N = (V , A, ρ, φ) be an X -network. Suppose ∼ is an equivalence relation on
V . Let [v] denote the equivalence class of v ∈ V . Let P(V ,∼) denote the set of
equivalence classes of V under ∼.

As in Willson (2012) the quotient digraph N ′ = (V ′, A′, ρ′, φ′) is defined by
(1) V ′ = P(V ,∼).
(2) ρ′ = [ρ].
(3) For each x ∈ X , φ′(x) = [φ(x)].
(4) Let [u] and [v] be in V ′. There is an arc ([u], [v]) ∈ A′ if and only if [u] �= [v]

and there exist u0 ∈ [u] and v0 ∈ [v] such that (u0, v0) ∈ A.
We will denote this quotient digraph by P(N ,∼) or N/ ∼. Note that by (4),

P(N ,∼) contains no loops and is a simple graph.
The equivalence relation ∼ is connected if each equivalence class [v] is connected

in N . An equivalence class [v] is convex if, whenever u0, u1, · · · , uk is a path in N
with both u0 ∈ [v] and uk ∈ [v], then for all i , 0 ≤ i ≤ k, ui ∈ [v]. We say that ∼ is
convex if each equivalence class [v] is convex.

The relation∼ is root-preserving if the equivalence class [ρ] is convex. The relation
∼ is leaf-preserving provided

(1) if x, y ∈ X and x �= y, then [φ(x)] �= [φ(y)]; and
(2) for any x ∈ X , [φ(x)] = {φ(x)}. Thus φ(x) is the only vertex u such that

u ∼ φ(x).
Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X -networks. A CSD-map

ψ : N → N ′ is leaf-preserving if for each x ∈ X
(1) u = φ(x) is the only vertex in V such that ψ(u) = φ′(x); thus ψ−1(φ′(x)) =

{φ(x)}; and
(2) the x-arc (p(x), φ(x)) ∈ A is taken to the x-arc (ψ(p(x)), φ′(x)); thus

ψ(p(x; N )) = p(x; N ′).
The following result is similar to Theorem 3.1 of Willson (2012). We outline the

proof here again because some of the definitions have slightly changed, for example,
to allow for (N5) and leaf-preserving CSD maps.

Theorem 3.1 Let N = (V , A, ρ, φ) be an X-network. Let ∼ be a connected
leaf-preserving and root-preserving equivalence relation on V , and let N ′ =
(V ′, A′, ρ, φ′) be the quotient digraph N/ ∼. Then

(1) N ′ is an X-network.
(2) The natural map ψ : V → V ′ given by ψ(v) = [v] induces a leaf-preserving

CSD map ψ : N → N ′.

Proof First we prove (1). (N1) and (N2) are immediate. (N4) is immediate since ∼
is leaf-preserving. If (u, v) ∈ A, then it is immediate that either [u] = [v] or else
([u], [v]) ∈ A′. It follows that if there is a path from a to b in N , then there is a path
from ψ(a) to ψ(b) in N ′. Thus (N8) is true.

Each [φ(x)] for x ∈ X is a leaf of N ′ since otherwise there would be an arc
([φ(x)], [u]) for some [u] and hence an arc from some v ∈ [φ(x)] to u0 ∈ [u]. But
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since ∼ is leaf-preserving, v = φ(x) and so (φ(x), u0) ∈ A, contradicting that φ(x)
is a leaf of N .

Let [v] ∈ V ′. By (N9) and (N6) for N there is a path in N from v to φ(x) for some
x ∈ X . Then, there is a path from [v] to [φ(x)] in N ′, proving (N9) for N ′.

Suppose [v] is a leaf of N ′. If v is not a leaf of N , then there is a path in N from v to
φ(x) for some x ∈ X by (N9) and (N6). Let the path be v = u0, u1, · · · , uk = φ(x)
with k ≥ 1. Since [v] is a leaf, it follows [v] = [u1] since otherwise ([v], [u1]) ∈ A′.
If k = 1 then [v] = [φ(x)] so v = φ(x) because ∼ is leaf-preserving. If k > 1,
[u1] = [u2] since otherwise ([u1], [u2]) ∈ A′ while [u1] = [v] is a leaf. It follows
by an easy inductive argument that [v] = [φ(x)]. Thus, every leaf of N ′ has the form
φ′(x) for some x ∈ X , proving (N6).

Suppose in N ′ there is an arc ([u], [ρ]). Then, there exists u0 ∈ [u] and v0 ∈ [ρ]
such that there is an arc (u0, v0). By (N8) there is a path in N from ρ to u0 and from
there to v0 via the arc (u0, v0). This path from ρ to v0 satisfies that [ρ] = [v0], so, since
∼ is root-preserving, it follows that each vertex in the path lies in [ρ]. In particular
u0 ∈ [ρ] so [u] = [u0] = [ρ], contradicting the arc ([u], [ρ]). This proves (N3).

For (N7), suppose [u] has in-degree 0. By (N8) there is a path from ρ to u, say
ρ = u0, u1, · · · , uk = u. If k ≥ 1 then (uk−1, u) ∈ A. Since [u] has in-degree 0, it
follows that uk−1 ∈ [u] and so [uk−1] = [u]. If k−1 ≥ 1 then (uk−2, uk−1) ∈ A; since
[u] has in-degree 0, it follows uk−2 ∈ [u], so [uk−2] = [u]. Repeating this argument
we see by induction that [u0] = [u]. But [u0] = [ρ], whence [u] = [ρ], proving (N7).

For (N5), we know from (N6) above that each leaf of N ′ is of form [φ(x)]. By
(N5) for N , φ(x) has a unique parent in N , denoted p(x), so (p(x), φ(x)) ∈ A. By
the definition of A′ either [p(x)] = [φ(x)] or ([p(x)], [φ(x)]) ∈ A′. Since ∼ is leaf-
preserving, the former is not possible, so ([p(x)], [φ(x)]) ∈ A′. Suppose [u] �= [p(x)]
and ([u], [φ(x)]) ∈ A′. Since [φ(x)] = {φ(x)} because ∼ is leaf-preserving, we may
assume (u, φ(x)) ∈ A. This implies u = p(x) by (N5) in N , proving (N5) for N ′.

This completes the proof of (1).
We now prove (2). (C1) is immediate since every vertex of N ′ has the form [v].

(C2) is immediate since if (u, v) ∈ A and [u] �= [v], then by definition ([u], [v]) ∈ A′.
(C3), (C4), and (C5) are immediate from the definition of A′. For (C6) note that for
any [v] ∈ v′,ψ−1([v]) = [v], the latter as a set. Since∼ is connected, [v] is connected
as well.

(C7) restates that [φ(x)] = {φ(x)}, which is true since ∼ is leaf-preserving. (C8)
restates the fact, proved above, that ([p(x)], [φ(x)]) is the unique arc entering [φ(x)].
This proves ψ is leaf-preserving, completing the proof of (2). ��

We do not claim that N/ ∼ is acyclic, even if N is acyclic.
We will refer to the map ψ as the projection from N to N/ ∼.
Let N = (V , A, ρ, φ) be an X -network. Let D be a subset of A. Define a relation

∼D on V by saying vertices a and b satisfy a ∼D b iff there is a sequence (not
necessarily a path) a = u0, u1, · · · , uk = b such that for 0 ≤ i ≤ k − 1, either
(ui , ui+1) ∈ D or (ui+1, ui ) ∈ D.

Let D be a subset of A. A path u0, · · · , uk is called a D-path provided that for
each i , 0 ≤ i ≤ k − 1, (ui , ui+1) ∈ D. Call D root-preserving if whenever ρ =
u0, · · · , uk = a is a D-path, then every path from ρ to a is a D-path.
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Theorem 3.2 Let N = (V , A, ρ, φ) be an X-network. Let D be a subset of A. Then
(1) ∼D is a connected equivalence relation.
(2) ∼D is leaf-preserving if D contains no X-arc.
(3) ∼D is root-preserving if D is root-preserving.

Proof (1) For any vertex v the trivial path at v shows v ∼D v. Suppose a ∼D b because
of the path a = u0, u1, · · · , uk = b such that for 0 ≤ i ≤ k−1, either (ui , ui+1) ∈ D
or (ui+1, ui ) ∈ D. Then b ∼D a because of the path b = uk, uk−1, · · · , u0 = a.
Transitivity is immediate. Since D is a subset of A, it is clear that each equivalence
class is connected. This proves (1).

Write [v]D for the equivalence class of v under ∼D .
(2) If D contains no X -arc, then for each x ∈ X , [φ(x)]D = {φ(x)}. If x, y ∈ X

then φ(x) �= φ(y) by (N4). This proves (2).
(3) Assume that D is root-preserving. We must show that the equivalence class

[ρ]D is convex. Let u0, u1, · · · , uk be a path in N such that u0 ∼D ρ and uk ∼D ρ.
We must show that each ui ∼D ρ. Choose a path ρ = v0, v1, · · · , vm = u0 from ρ

to u0; such exists by (N8). Then v0, · · · vm, u1, · · · , uk is a path from ρ to uk . Since
ρ ∼D uk , each vertex ui satisfies ui ∼ ρ, proving (3). ��

Let [v]D (or [v] if D is understood) denote the equivalence class of v under∼D . We
call∼D the equivalence relation determined by D. It is clearly the smallest equivalence
relation ∼ (i.e., with the fewest pairs (u, v) satisfying u ∼ v), such that, for each arc
(a, b) ∈ D, a ∼ b.

Theorem 3.3 Let N = (V , A, ρ, φ) be an X-network. Let D be a subset of A. Assume
D contains no X-arc and D is root-preserving. Then the quotient digraph N/ ∼D is
an X-network. Moreover, the projection ψ : N → N/ ∼D is a leaf-preserving CSD
map.

Proof By Theorem 3.2, ∼D is a connected leaf-preserving and root-preserving equiv-
alence relation. The conclusions follow from Theorem 3.1. ��

Henceforth if D contains no X -arc and is root-preserving, we will write QD(N )

for N/ ∼D . We may call it the quotient X-network of N under D and refer to its
formation as contracting or merging the arcs of D. In general, QD(N ) may contain
cycles even if N is acyclic.

It is not hard to program a computer to find QD(N ).
Figure 1a showsan acyclic X -network N . LetD = {(7, 8), (8, 9), (10, 11), (11, 12)}.

Write ∼ for ∼D , so 7 ∼ 8 ∼ 9 and 10 ∼ 11 ∼ 12. Note that D contains no X -arc.
Note the root ρ = 13 and [ρ] = {ρ} is convex. Then QD(N ) is defined and shown in
(b). Note [7] = {7, 8, 9} and [10] = {10, 11, 12}.

Let N = (V , A, ρ, φ) be an X -network. A subset K ⊆ A of arcs is closed if it
satisfies the following: Suppose a ∼K b. Then for every path a = v0, v1, · · · , v j = b
with length j ≥ 1, for each i satisfying 0 ≤ i ≤ j − 1, (vi , vi+1) ∈ K . In particular
if (a, b) is an arc and a ∼K b, then (a, b) ∈ K .

In Fig. 1, D is not closed since 7 ∼D 9 yet (7, 9) /∈ D.

Theorem 3.4 Let N = (V , A, ρ, φ) be an X-network. Let D ⊆ A be a subset of arcs.
If D is closed then each equivalence class of ∼D is convex.
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Fig. 1 a An acyclic X -network
N . Let D = {(7, 8), (8, 9),
(10, 11), (11, 12)}. b QD(N ).
Note that D is not closed
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Proof Suppose D is closed. Let v ∈ V . We wish to prove that [v] is convex. Write ∼
for ∼D . Let u0, u1, · · · , uk be a path in N where u0 ∼ v and uk ∼ v. By transitivity,
u0 ∼ uk . By closure, each arc (ui , ui+1) ∈ D, proving convexity.

Figure 1 shows that the converse of Theorem 3.4 is false. QD(N ) is acyclic and
∼D is convex even though D is not closed.

Figure 1 also illustrates the fact that often when an arc (u, v) is merged, the number
of vertices drops by one, reducing the resolution. In Fig. 1, D contained 4 arcs, and
the number of vertices dropped from 13 in (a) to 9 in (b). On the other hand, if
D′ = D ∪ {(7, 9)}, then QD′(N ) = QD(N ) and the merging of (7,9) does not further
reduce the number of vertices.

Let N = (V , A, ρ, φ) be an X -network. A subset K ⊆ A of arcs is strongly closed
if it satisfies the following: Suppose there are vertices a, u0, u1, · · · , u2m = b in V
with m ≥ 1 such that a ∼K u0, (u0, u1) ∈ A, u1 ∼K u2, (u2, u3) ∈ A, u3 ∼K u4,
· · · , (u2m−2, u2m−1) ∈ A, u2m−1 ∼K u2m = b, and in addition a ∼K b. Then for k
such that 0 ≤ k ≤ m − 1 each of the arcs (u2k, u2k+1) lies in K .

Theorem 3.5 Let N = (V , A, ρ, φ) be an X-network. Let D ⊆ A be a subset of arcs.
If D is strongly closed, then D is closed. Hence D is root-preserving.

Proof Suppose D is strongly closed. Suppose there is a sequence (not necessarily a
path) a = u0, u1, · · · , uk = b such that for 0 ≤ i ≤ k − 1, either (ui , ui+1) ∈ D or
(ui+1, ui ) ∈ D. Let a = v0, v1, · · · , v j = b be a path from a to b. Then a ∼D b.
Trivially, we have a ∼D v0, (v0, v1) ∈ A, v1 ∼D v1, (v1, v2) ∈ A, v2 ∼D v2, · · · ,
(vk−1, vk) ∈ A, vk ∼D b. Since D is strongly closed, for 0 ≤ j ≤ k − 1, the arc
(v j , v j+1) ∈ D. Hence D is closed.

By Theorem 3.4 it follows that each equivalence class of∼D is convex. In particular
[ρ] is convex, so D is root-preserving. ��

Figure 2 shows a set D that is closed but not strongly closed. Indeed, 11 ∼D 11,
(11, 6) ∈ A, 6 ∼D 8, (8, 9) ∈ A, 9 ∼D 11 yet (11, 6) /∈ D and (8, 9) /∈ D. Note
that QD(N ) contains a cycle since there are both arcs ([8], [9]) and ([9], [8]), where
[8] = {6, 7, 8} and [9] = {9, 10, 11}.

The next result shows that, if D is strongly closed, then QD(N ) is acyclic.
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Fig. 2 A network N . Suppose D = {(6, 7), (8, 7), (9, 10), (11, 10)}. Then D is closed but not strongly
closed. QD(N ) has both arcs ([8], [9]) and ([9], [8])

Theorem 3.6 Suppose N = (V , A, ρ, φ) is an X-network. Assume D ⊆ A contains
no X-arc. If D is strongly closed, then QD(N ) is acyclic.

Proof Write ∼ for ∼D . Assume D is strongly closed. By Theorem 3.5, D is root-
preserving. By Theorem 3.3, QD(N ) is an X -network. Suppose QD(N ) contains a
cycle hence a path [a] = [u0], [u1], · · · , [uk] = [a]with k ≥ 2. Letψ : N → QD(N )

be the projection CSD map. Since ψ is a CSD map, for each arc ([ui ], [ui+1]) with
0 ≤ i ≤ k − 1 there is an arc (vi , wi+1) ∈ A with vi ∈ [ui ] and wi+1 ∈ [ui+1]. Thus
a, v0, w1, v1, w2, · · · , vk−1, wk, b satisfies [a] = [v0], (v0, w1) ∈ A, [w1] = [v1],
(v1, w2) ∈ A, [w2] = [v2], · · · , [wk−1] = [vk−1], (vk−1, wk) ∈ A, and [wk] = [a].
Thus a ∼ v0, (v0, w1) ∈ A, w1 ∼ v1, (v1, w2) ∈ A, w2 ∼ v2, · · · , wk−1 ∼ vk−1,
(vk−1, wk) ∈ A, and wk ∼ a. Since D is strongly closed, each arc (vi , wi+1) ∈ D.
Hence a ∼ v0 ∼ w1 ∼ v1 ∼ w2 · · · ∼ vk−1 ∼ wk ∼ a. Thus, all the points on the
cycle were the same, a contradiction. ��

The following theorem shows that from a given D we can construct a uniquely
determined strongly closed set K that contains D.

Theorem 3.7 Let N = (V , A, ρ, φ) be an X-network and D ⊆ A be a subset of arcs.
There exists a unique K ⊆ V such that

(i) D ⊆ K,
(ii) K is strongly closed, and
(iii) for every strongly closed C ⊆ A such that D ⊆ C, it follows that K ⊆ C.
Thus K is the unique minimal strongly closed subset of A containing D.

Proof We define a sequence D0, D1, · · · , Dj , · · · of subsets of A. Let D0 = D and
n = 0. Let ∼n=∼Dn .
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If Dn is not strongly closed, there are vertices u0, u1, · · · , u2m in V such that
a ∼n u0, (u0, u1) ∈ A, u1 ∼n u2, (u2, u3) ∈ A, u3 ∼n u4, · · · , (u2m−2, u2m−1) ∈ A,
u2m−1 ∼n u2m = b, and in addition a ∼n b, but not every arc (u2k, u2k+1) lies in
Dn . Let Dn+1 be obtained from Dn by including also all the arcs (u2k, u2k+1) for
0 ≤ k ≤ m−1. If Dn+1 is strongly closed, we are done. Otherwise replace n by n+1
and repeat the argument.

By construction Dn � Dn+1. Since A is a finite set, the chain D0 � D1 � D2 · · ·
must terminate with some Dn , at which point Dn is strongly closed. Let K = Dn .
Then K contains D = D0 and is strongly closed. Moreover, any strongly closed set
C that contains Dj for any j < n must necessarily also contain Dj+1 by the strong
closure property. Hence, C must contain K . ��

If D is a set of arcs in the X -network N , the strong closure K = K (D) of D is the
smallest set K of arcs that contains D and is strongly closed. By Theorem 3.7 K is
uniquely determined.

The next theorem is the main result of this section.

Theorem 3.8 Let N = (V , A, ρ, φ) be an X-network. Assume D ⊆ A contains no
X-arc. Let K (D) be the strong closure of D. Let MD(N ) = QK (D)(N ). Then

(1) MD(N ) is an acyclic X-network.
(2) Each equivalence class [v] of ∼K (D) is convex.
(3) The projection ψ : N → MD(N ) is a leaf-preserving CSD map.

Proof Write ∼ for ∼K (D). K (D) exists by Theorem 3.7 and is root-preserving by
Theorem 3.5. It contains no X -arc since otherwise D would contain an X -arc. Then
(1) follows fromTheorem3.6.Note K (D) is closed byTheorem3.5.Hence (2) follows
from Theorem 3.4. Then (3) follows from Theorem 3.3. ��

Call MD(N ) = QK (D)(N ) the merged acyclic X -network for D. Note that in
general, some arcs not in D need to be merged to produce an acyclic network. We
nevertheless call D the merging set for MD(N ).

The strong closure K (D) can be computed in practice using themethod of the proof
of Theorem 3.7. For hand calculation the following is often easier: Given N and D,
since K (D) must be closed by Theorem 3.6, we adjoin to D all arcs in any directed
path between two vertices u and v such that u ∼D v. If necessary, repeat the process.
Call the resulting set of arcs C . When C cannot be enlarged in this way, we compute
QC (N ). Let ψ : N → QC (N ) be the projection CSD map. If QC (N ) has a cycle,
add to C any arcs (u, v) in N such that (ψ(u), ψ(v)) is an arc on a cycle of QC (N ).

For Fig. 2, with the indicated D, we find D is closed. We then find QD(N ), also
shown,where [8] represents [6,7,8] and [9] represents [9,10,11]. Letψ : N → QD(N )

be the CSD projection map. In QD(N ) there is a cycle [8], [9], [8]. Since (11,6) in N
satisfies (ψ(11), ψ(6)) = ([9], [8]) in QD(N ), wemust adjoin (11,6) to D. Since (8,9)
in N satisfies (ψ(8), ψ(9)) = ([8], [9]) in QD(N ), we must adjoin (8,9) to D. Hence
C = {(6, 7), (8, 7), (9, 10), (11, 10), (11, 6), (8, 9)}. We see QC (N ) is acyclic, so
K (D) = C .

For Fig. 3, suppose D = {(7, 13)}. The path 7, 8, 9, 10, 13 shows that we
must adjoin (7,8), (8,9), (9,10), (10,13), so now C = {(7, 13), (7, 8), (8, 9), (9, 10),
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Fig. 3 A network N containing
two lengthening paths of the
redundant arc (7,13)
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(10, 13)}. But now 8 and 10 are vertices satisfying 8 ∼C 10, so the path 8, 11, 12,
10 shows we must adjoin (8,11), (11,12), (12,10) to C . This enlarges C to C ′ =
{(7, 13), (7, 8), (8, 9), (9, 10), (10, 13), (8, 11), (11, 12), (12, 10)}. This enlarged C ′
is closed and QC ′(N ) is acyclic, so K (D) = C ′.

In the case where N is a cyclic X -network and D = ∅, we find K (∅) is nonempty
using this procedure. On the other hand, if N is an acyclic X -network then K (∅) = ∅.

Theorem 3.9 Let N = (V , A, ρ, φ) be an X-network. Assume D ⊆ A contains no
X-arc. Let ψ : N → MD(N ) be the projection. An arc (a, b) ∈ A is in K (D) iff
ψ(a) = ψ(b).

Proof MD(N ) = QK (D)(N ) is defined utilizing the equivalence relation ∼K (D). If
(a, b) ∈ K (D) it follows that a ∼K (D) b so [a] = [b], whence ψ(a) = ψ(b).
Conversely, suppose (a, b) ∈ A and ψ(a) = ψ(b). Since K (D) is strongly closed, it
is closed by Theorem 3.6. By closure it follows that (a, b) ∈ K (D). ��

4 Deriving an SCD Network from N

This section gives a general construction, given an X -network N , to produce a uniquely
determined acyclic X -network called SCD(N ) in which, for almost all arcs (u, v), the
clusters are distinct (i.e., cl(u) �= cl(v)). The only possible exceptions occur when v

is a leaf. For complicated N , SCD(N ) can be very much simpler than N . Moreover,
dRF (N ,SCD(N )) = 0.

We need to consider the behavior of clusters under contraction of arcs.
An acyclic X - network N = (V , A, ρ, φ) is successively cluster-distinct (SCD)

if, whenever (u, v) ∈ A, then cl(v) �= cl(u) unless for some x ∈ X , v = φ(x) and
u = p(x). The exception at the end is intended to make the definition consistent with
the condition (N5), which often forces p(x) to have out-degree one and therefore
cl(p(x)) = cl(φ(x)) = {x}. (In Willson (2012) a network N was called SCD without
the exception, but the networks there could fail (N5).)

In this section, we show that it is often easy to simplify a network N greatly so as
to make it SCD.
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Let N = (V , A, ρ, φ) and let∼ be a connected leaf-preserving and root-preserving
equivalence relation on V . Suppose a, b ∈ V . A generalized path or g-path in N from
a to b is a sequence of vertices a, u0, v1, u1, v2, · · · , uk−1, vk, b such that a ∼ u0,
(u0, v1) ∈ A, v1 ∼ u1, (u1, v2) ∈ A, v2 ∼ u2, (u2, v3) ∈ A, · · · , vk−1 ∼ uk−1,
(uk−1, vk) ∈ A, vk ∼ b.

In a g-path one always either utilizes an arc (ui , vi+1) ∈ A, or else one stays within
an equivalence class (but ignoring the direction of any arcs within the equivalence
class).

Lemma 4.1 Let N = (V , A, ρ, φ) be an X-network, let D ⊆ A contain no X-arc,
and let MD(N ) = (V ′, A′, ρ′, φ′). Let ψ : N → MD(N ) be the projection.

(1) Suppose there is a path in N from v to w. Then, there is a path in MD(N ) from
ψ(v) to ψ(w).

(2) cl(v; N ) ⊆ cl(ψ(v); MD(N )).
(3) If u ∼D v in N, then cl(ψ(u)) = cl(ψ(v)).
(4) Suppose there is a path in MD(N ) from [a] to [b]. Then in N there is a g-path

from a to b.

Proof Write ∼ for ∼D and note ψ(v) = [v].
(1). Let v = u0, u1, · · · , uk = w be a path in N . Since ψ is a CSD map the

sequence ψ(u) = ψ(u0), ψ(u1), · · · , ψ(uk) = ψ(w) of vertices satisfies that for
each i , either ψ(ui ) = ψ(ui+1) or else (ψ(ui ), ψ(ui+1)) is an arc of MD(N ). From
this the result is clear.

(2) cl(v; N ) = {x ∈ X : v ≤ φ(x) in MD(N )}. By (1) if x ∈ cl(v) it follows there
is a path from ψ(v) to ψ(φ(x)) = φ′(x), so x ∈ cl(φ(v)).

(3) Since u ∼ v, ψ(u) = [u] = [v] = ψ(v).
(4) Suppose [a] = [w0], [w1], · · · , [wk] = [b] is a path in MD(N ). For i =

0, · · · , k−1, since ([wi ], [wi+1]) ∈ A′, wemay choose ui ∈ [wi ], vi+1 ∈ [wi+1] such
that (ui , vi+1) ∈ A because ψ is a CSD map. Then a, u0, v1, u1, v2, · · · , uk−1, vk, b
is a g-path because [ui ] = [vi ] = [wi ] for i = 1, · · · , k − 1, and [a] = [u0] = [w0],
and [b] = [wk] = [vk]. ��
Lemma 4.2 Let N = (V , A, ρ, φ) be an X-network. Let D = {(a, b) ∈ A : cl(a) =
cl(b) and b is not a leaf}. Then, D is strongly closed and contains no X-arcs.

Proof It is immediate that D contains no X -arcs since suchwere specifically excluded.
Note that if u ∼D v then there exists a sequence u = u0, u1, · · · , uk = v such that
for each i , either (ui , ui+1) ∈ D or (ui+1, ui ) ∈ D. Since there is no X -arc in D, no
ui is a leaf. Hence cl(u) = cl(u0) = cl(u1) = · · · = cl(uk) = cl(v).

To see that D is strongly closed, suppose there are vertices a, u0, u1, · · · , u2m = b
in V such that a ∼D u0, (u0, u1) ∈ A, u1 ∼D u2, (u2, u3) ∈ A, u3 ∼D u4, · · · ,
(u2m−2, u2m−1) ∈ A, u2m−1 ∼D u2m = b, and in addition a ∼D b. We must show
that each of the arcs (u2k, u2k+1) lies in D. Then cl(a) = cl(u0) ⊇ cl(u1) = cl(u2)
⊇ cl(u3) = cl(u4) = · · · ⊇ cl(u2m−1) = cl(u2m) = cl(b). But since a ∼D b, we
know cl(a) = cl(b) so the chain in inclusions must be a chain of equalities. Thus each
(u2k, u2k+1) ∈ D. ��
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Theorem 4.3 Let N = (V , A, ρ, φ) be an X-network. Let D = {(a, b) ∈ A : cl(a) =
cl(b) and b is not a leaf}. Form MD(N ), and let ψ : N → MD(N ) be the projection
CSD map. Then

(1) MD(N ) is an acyclic X-network.
(2) For every v ∈ V , cl(v; N ) = cl(ψ(v); MD(N )).
(3) For every arc (a, b) ∈ A, either ψ(a) = ψ(b) or else the arc (ψ(a), ψ(b))

satisfies cl(ψ(a)) �= cl(ψ(b)), or else b is a leaf.
(4) MD(N ) is successively cluster-distinct (SCD).
(5) No vertex of MD(N ) (other than possibly p(x) for some x ∈ X) has out-degree

one.
(6) dRF (N , MD(N )) = 0.

Proof (1) follows from Theorem 3.8 and Lemma 4.2.
(2) By Lemma 4.1, cl(v; N ) ⊆ cl(ψ(v); MD(N )). Conversely, suppose x ∈

cl(ψ(v); MD(N )). Let MD(N ) = (V ′, A′, ρ′, φ′). There is a path in MD(N ) from
ψ(v) to φ′(x). Since ψ(φ(x)) = φ′(x), by Lemma 4.1 there is a g-path in N from v

to φ(x). Let v, u0, v1, u1, v2, · · · , uk−1, vk, φ(x) be this g-path. Note [v] = [u0],
[φ(x)] = [vk], [ui ] = [vi ] for i = 1, · · · , k − 1, and (ui , vi+1) ∈ A for
i = 0, · · · , k − 1.

Since {φ(x)} = [φ(x)] = [vk], it follows vk = φ(x). Since (uk−1, vk) ∈ A,
x ∈ cl(uk−1). Since vk−1 ∼ uk−1, by the definition of D it follows that cl(vk−1) =
cl(uk−1), so x ∈ cl(vk−1). Since (uk−2, vk−1) ∈ A, it follows x ∈ cl(uk−2). Since
vk−2 ∼ uk−2 it follows cl(vk−2) = cl(uk−2), so x ∈ cl(vk−2).We repeat the argument.
By induction we find x ∈ cl(u0) and cl(v) = cl(u0) since v ∼ u0, so x ∈ cl(v). This
proves (2).

For (3) suppose (a, b) ∈ A and b is not a leaf. Ifψ(a) �= ψ(b), then (ψ(a), ψ(b)) is
an arc of MD(N ) sinceψ is a CSDmap. Moreover, cl(ψ(a)) = cl(a) and cl(ψ(b)) =
cl(b) by (2). Since (a, b) ∈ A, cl(b) ⊆ cl(a). If cl(b) = cl(a), then (a, b) ∈ D so
ψ(a) = ψ(b), a contradiction. It follows that cl(b) �= cl(a), whence cl(ψ(b)) �=
cl(ψ(a)).

For (4) suppose (u, v) is an arc ofMD(N ) and v is not a leaf. There exists (a, b) ∈ A
such that (u, v) = (ψ(a), ψ(b)) since ψ is a CSD map, and b is not a leaf since ψ is
leaf-preserving. Since (ψ(a), ψ(b)) is an arc, cl(ψ(b)) ⊆ cl(ψ(a)), and cl(ψ(a)) �=
cl(ψ(b)) by (3), proving that MD(N ) is SCD.

For (5) write MD(N ) = (V ′, A′, ρ′, φ′). Suppose a vertex u ∈ A′ has out-degree
one with unique child c. Then cl(u) = cl(c). Since MD(N ) is SCD, it follows that for
some x ∈ X , c = φ(x) and so u = p(x) by (N5).

For (6), note Cl(N ) = Cl(MD(N )) by (2), using the fact that ψ : V → V ′ is
surjective. ��

Recall that a vertex v is trivial if indeg(v) = outdeg(v) = 1.Write theSCDacyclic
X -network MD(N ) of Theorem 4.3 as MD(N ) = (V ′, A′, ρ′, φ′). It is possible that
MD(N ) contains a trivial vertex v with unique child c. When this happens, cl(c) =
cl(v), and, by Theorem 4.3(5), for some x ∈ X , c = φ′(x) and v = p(x; MD(N )).
Such trivial vertices are a nuisance and it is easy to remove them. Since p(x) is trivial,
it has a unique parent u(x). By Theorem 4.3, u(x) satisfies outdeg(u(x)) > 1 and
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cl(u(x)) �= cl(p(x)). Hence, the trivial vertex p(x) can be merged with u(x) and
hence removed. We state this as a theorem:

Theorem 4.4 Suppose N = (V , A, ρ, φ) is an X-network and MD(N ) = (V ′, A′, ρ′,
φ′) is the acyclic SCD network of Theorem 4.3. Write p(x) for p(x; MD(N )). Let

E = {(u(x), p(x)) ∈ A′ : x ∈ X , p(x) is trivial and u(x) is its unique parent}.

Define SCD(N ) = ME (MD(N )). Then
(1) SCD(N ) is an acyclic SCD X-network.
(2) There is a leaf-preserving CSD map ψ : N → SCD(N ).
(3) SCD(N ) contains no trivial vertices.
(4) SCD(N ) is a phylogenetic X-network.
(5) SCD(N ) satisfies dRF (N , SCD(N )) = 0.

Proof It is immediate that E contains no X -arcs. It is easy to see that E is strongly
closed. Hence, SCD(N ) is an acyclic X -network, proving part of (1).

There are leaf-preserving CSD maps ψ1 : N → MD(N ) and ψ2 : MD(N ) →
SCD(N ), so their composition ψ = ψ2 ◦ ψ1 is a leaf-preserving CSD map from N to
SCD(N ), proving (2). We see p(x;SCD(N )) = [u(x)]; since u(x) did not have out-
degree one inMD(N ), [u(x)]does not haveout-degree one inSCD(N ) and [u(x)] is not
trivial. Thus, SCD(N ) has no trivial vertices, proving (3). Note cl([u(x)];SCD(N )) =
cl(u(x); MD(N )), so SCD(N ) is SCD and Cl(SCD(N )) = Cl(MD(N )) = Cl(N ),
completing the proof of (1) and proving (5). Then (4) follows from (1) and (3). ��

A very similar network was described in Willson (2012) by a different approach.

Example 1 Figure 4 gives an example of an X -network N , and Fig. 5 shows SCD(N ).
In this case SCD(N ) is a tree, clearly indicating the main features of N and much
simpler than N . Vertices in SCD(N ) are labeled by a representative vertex of N with
the same cluster.

5 Removing Redundant Arcs from an X-Network

Our goal in this paper is the construction of normal networks which by definition
contain no redundant arcs. A crucial step will be removing from an X -network N all
its redundant arcs to formR(N ). This short section studies this process. Unfortunately,
the natural map ψ : N → R(N ) is not a CSD map unless N = R(N ), causing
complications later in this paper.

If N is an X -network, let R(N ) denote the directed graph obtained from N by
removing all redundant arcs. More precisely, if N = (V , A, ρ, φ) then R(N ) =
(V , A′, ρ, φ) where A′ is obtained from A by removing all arcs redundant in N .

Theorem 5.1 Suppose N = (V , A, ρ, φ) is an acyclic X-network. Then R(N ) is an
acyclic X-network.
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Fig. 4 A network N that greatly simplifies to SCD(N ) (shown in Fig. 5) if D = {(a, b) ∈ A : cl(a) = cl(b)
and b is not a leaf} and trivial vertices are removed

Fig. 5 The network SCD(N ) for
the network in Fig. 4
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Fig. 6 There is no CSD map from R(M) to R(N ) nor from N to R(N )

The proof is straight-forward and is omitted.
If f : M → N is a CSD map, then f may not induce a CSD map from R(M)

to R(N ). Figure 6 shows an X -network M . Let D = {(7, 6)} and N = QD(M) =
MD(M), also shown. M has no redundant arcs, while N has two redundant arcs,
indicated by dashes. The projection mapψ : M → N is a CSDmap. But R(M) = M ,
R(N ) is N without the dashed arcs, and ψ : R(M) → R(N ) is not a CSD map since
(6,10) is an arc in R(M) but ψ(6, 10) = ([6, 7], 10) and there is no such arc in R(N ).
Indeed, it is easy to see that there is no CSD map f : R(M) → R(N ).

In the same figure, one sees easily that there is no CSD map from N to R(N ).

Theorem 5.2 Suppose N is an acyclic X-network. For each v ∈ V cl(v;R(N )) =
cl(v; N ). Moreover, Cl(R(N )) = Cl(N ) and dRF (N ,R(N )) = 0.

Proof Suppose x ∈ cl(v; N ). There is a path from v to φ(x) in N . By Theorem 2.1 a
path from v to φ(x) in N of maximal length contains no redundant arc, hence lies in
R(N ). It follows that x ∈ cl(v;R(N )). Conversely, suppose x ∈ cl(v;R(N )). There
is a path in R(N ) from v to φ(x), so the same path is a path in N from v to x , proving
x ∈ cl(v; N ). Hence cl(v;R(N )) = cl(v; N ). The rest follows easily. ��

6 GeneralizedWired Lifts

Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X -networks. Suppose ψ : N →
N ′ is a CSD map. In Willson (2012) a wired lift of N ′ into N is described. It provides
a method for visualizing N ′ within N . In this section we modify and generalize the
notion so that ψ does not quite need to be a CSD map but is only a connected map.
This will let us obtain wired lifts from a process that includes both CSD maps and
removing redundant arcs.

Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X -networks, and let f : V →
V ′. We say f is a connected map f : N → N ′ if

(K1) f : V → V ′ is surjective,
(K2) f (ρ) = ρ′,
(K3) for all x ∈ X f (φ(x)) = φ′(x),
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(K4) for each (u′, v′) ∈ A′ there exists (u, v) ∈ A such that f (u) = u′ and
f (v) = v′,
(K5) for each v′ ∈ V ′ the set f −1(v′) is connected.
It is immediate that a CSD map is connected, but a connected map need not be

CSD. Suppose f1 : N1 → N2 and f2 : R(N2) → N3 are CSD maps. Since
V (N2) = V (R(N2)) the composition f = f2 ◦ f1 of f1 : V (N1) → V (N2) and
f2 : V (R(N2)) → V (N3) is defined. We shall see in Theorem 6.4 that f is a con-
nected map while in general it is not a CSD map.

Let f : N → N ′ be a connected map, and let 2V denote the set of subsets of V . A
(generalized) wired lift of f (or of N ′ into N ) is a pair ( f −1, E1) where f −1 is the
map f −1 : V ′ → 2V given by f −1(v′) and where E1 ⊆ A satisfies the following two
conditions:

(W1) For each arc (u, v) ∈ E1, f (u) �= f (v) and ( f (u), f (v)) ∈ A′. Denote
f (u, v) = ( f (u), f (v)).
(W2) For every arc (u′, v′) ∈ A′, there exists (u, v) ∈ E1 such that f (u, v) =

(u′, v′). We will say the arc (u, v) represents (u′, v′) or is a pre-arc of (u′, v′).
Call the members of E1 the representative arcs since each represents an arc of A′.
Note that the collection of all f −1(v′) for v′ ∈ V ′ is a partition of V . Thus for

all v′ ∈ V ′, f −1(v′) �= ∅; if u′ �= v′ are in V ′, then f −1(u′) ∩ f −1(v′) = ∅; and
∪ f −1(v′) = V where the union is over all v′ ∈ V ′.

Suppose f : N → N ′ is a CSD map. A backwards map g is a map g : A′ → A
which satisfies that, for all (u′, v′) ∈ A′, if (u, v) = g(u′, v′) then ( f (u), f (v)) =
(u′, v′). Thus f (g(u′, v′)) = (u′, v′) for all (u′, v′) ∈ A′. Since f is a CSD map,
for each (u′, v′) ∈ A such a (u, v) exists, and g(u′, v′) provides a unique choice of a
pre-arc of (u′, v′).

There are several situations that give rise to wired lifts. We describe three of them
in the next theorem. A fourth will be given in Theorem 6.4.

Theorem 6.1 Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X-networks, and let
f : V → V ′. Suppose f : N → N ′ is a CSD map.
(1) Let E1 = {(u, v) ∈ A : f (u) �= f (v)}. Then ( f −1, E1) is a wired lift of N ′.
(2) Suppose g : A′ → A is a backwards map. Let E1 = {g(u′, v′) : (u′, v′) ∈ A′}.

Then ( f −1, E1) is a wired lift of N ′.
(3) Let R(N ′) = (V ′, A′′, ρ′, φ′) be the result of removing all redundant arcs from

N ′. Let E1 = {(u, v) ∈ A : f (u) �= f (v) and ( f (u), f (v)) ∈ A′′}. Then ( f −1, E1)

is a wired lift of R(N ′).

Proof (1) and (2) are immediate from the definitions since a CSD map is connected.
For (3), note that V (N ′) = V (R(N ′)), so the map f can be regarded as a map
f : N → R(N ′). This map will not be a CSD map if N ′ has any redundant arcs, but
it is a connected map. Then (3) follows. ��

Given a connected map f : N → N ′, a wired lift ( f −1, E1) can be visualized
using a diagram of N . An example is shown below in Fig. 7. The diagram is exactly
the diagram of N except that each arc may be wide solid, thin solid, or thin dashed.
Suppose N = (V , A, ρ, φ). For every arc (u, v) ∈ A such that f (u) �= f (v) draw
(u, v) a wide solid arrow if (u, v) ∈ E1 and a thin dashed arrow if (u, v) /∈ E1. For
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Fig. 7 An example of a wired
lift. Thin solid arcs indicate
identification of the vertices and
can be followed in either
direction. Wide solid arcs must
be followed in their direction.
Dashed arcs cannot be used in
g-paths
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each arc (u, v) ∈ A such that f (u) = f (v) draw the arc as a thin solid arrow. (If color
is available, one might instead color red the arcs (u, v) ∈ A satisfying f (u) = f (v)

for vividness.) Thin solid arcs make the sets f −1(v′) apparent in N and each vertex of
N ′ corresponds to a connected component of the thin solid arcs. Each arc (u′, v′) ∈ A′
has a corresponding wide solid arc (u, v) ∈ A, justifying the word “lift”. The “wires”
are the thin solid arcs. Paths in N ′ can be recognized in the wired lift as g-paths using
allowed steps, which we will now describe.

Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X -networks, with f : V → V ′
a connected map, and suppose ( f −1, E1) is a wired lift of f . If u and v are in V ,
we say there is an allowed step from u to v if either (u, v) ∈ E1, or ((u, v) ∈ A and
f (u) = f (v)), or ((v, u) ∈ A and f (u) = f (v)). Note that the step either follows
a wide solid arc in E1 forwards or else follows a thin solid arc, possibly forwards,
possibly backwards. Dashed arcs cannot be used.

Theorem 6.2 Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X-networks, with
f : V → V ′ a connected map, and suppose ( f −1, E1) is a wired lift of f . Let ∼ be
the equivalence relation on V defined by u ∼ v if and only if f (u) = f (v). Suppose
a, b ∈ V . The following are equivalent:

(1) In N there is a sequence of vertices a, u0, v1, u1, v2, · · · , uk−1, vk, b such that
a ∼ u0, (u0, v1) ∈ E1, v1 ∼ u1, (u1, v2) ∈ E1, v2 ∼ u2, (u2, v2) ∈ E1, · · · ,
vk−1 ∼ uk−1, (uk−1, vk) ∈ E1, vk ∼ b.

(2) There is a sequence of vertices a = u0, u1, u2, · · · , uk−1, uk = b in N such
that, for i such that 0 ≤ i ≤ k − 1, there is an allowed step from ui to ui+1.

Proof Suppose there is a sequence of type (1). If u ∼ v then since f (u) = f (v)

and f −1( f (u)) is connected, there is a sequence u = w0, w1, · · · , wm = v such
that each wi lies in f −1( f (u)) and, for 0 ≤ i ≤ m − 1, either (wi , wi+1) ∈ A
or (wi+1, wi ) ∈ A. Thus, there is an allowed step from wi to wi+1. Hence given a
sequence of type (1), there is a sequence of type (2).

Conversely, given a sequence of type (2), if the allowed step from ui to ui+1
satisfies f (ui ) �= f (ui+1) then (ui , ui+1) ∈ E1. If f (u j ) = f (u j+1) = · · · = f (un)
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but f (u j−1) �= f (u j ) and f (un) �= f (un+1) then we may replace u j , · · · , un by
simply u j ∼ un . Thus, there is a sequence of type (1). ��

We will call a sequence of either type a generalized path or g-path from a to b in
( f −1, E1). For specification they may be called type (1) or type (2).

Theorem 6.3 Let N = (V , A, ρ, φ) and N ′ = (V ′, A′, ρ′, φ′) be X-networks. Let
f : N → N ′ be a connected map, and let ( f −1, E1) be a wired lift of f .
(1) Suppose a = u0, u1, u2, · · · , uk−1, uk = b is a g-path in N (of type (2)).

Then f (a) = f (u0), f (u1), f (u2), · · · , f (uk−1), f (uk) = f (b) yields a path in N ′,
possibly by suppressing multiple successive copies of the same vertex.

(2) Suppose a′ = w′
0, w

′
1, · · · , w′

k = b′ is a path in N ′, f (a) = a′, and f (b) = b′.
Then, there is a g-path in N from a to b.

Proof If there is an allowed step from ui to ui+1, either (ui , ui+1) ∈ E1, in which
case ( f (ui ), f (ui+1)) is an arc of N ′ by (W1), or else f (ui ) = f (ui+1), proving (1).

Conversely suppose a′ = w′
0, w

′
1, · · · , w′

k = b′ is a path in N ′, f (a) = a′,
and f (b) = b′. For 0 ≤ i ≤ k − 1, since (w′

i , w
′
i+1) ∈ A′, by (W2) there exists

(yi , zi+1) ∈ E1 such that f (yi ) = w′
i and f (zi+1) = w′

i+1. Note f (a) = f (y0),
f (b) = f (zk), and f (zi ) = f (yi ). Hence a, y0, z1, y1, z2, · · · , yk−1, zk, b is a g-
path (of type (1)), proving (2). ��

In Willson (2012) there was a backwards map and, instead of all arcs in ψ−1(v′),
only the arcs in some spanning tree in ψ−1(v′) containing each vertex in ψ−1(v′)
which lies on an arc in E1 were included. But this feature is not essential.

Example 2 Figure 7 shows a wired lift that arises from a connected map f : N → N ′.
All the arcs and vertices are from N ; thus if we ignore thickness and dashing and
include all arcs with their indicated directions, whether thin, wide, or dashed, the
diagramexhibits N . A vertex of N ′ withmore than one preimagemaybe identifiedwith
a connected component of thin solid arcs. It is also convenient to identify each vertex
v′ ∈ V ′ by the members of f −1(v′) inside square brackets. One sees immediately that
the vertex f (10) of N ′ satisfies f −1( f (10)) = {8, 10, 11, 16} (from the component
of thin arcs).We shall designate it [8, 10, 11, 16] or less formally [10], the equivalence
class of 10. Similarly f (15) has inverse image f −1( f (15)) = {15, 20} and is written
[15, 20]. Other vertices include [9, 18] and [17, 21]. Still other vertices have singleton
inverse images such as [13]with f −1( f (13)) = {13}, but the bracketsmay be omitted.

Thedashed arcs are not permittedong-paths, andwide solid arcsmust be followed in
their direction. Thin solid arcs can be followed in either direction. Thus, 16, 10, 8, 9, 15,
1 is a g-path showing that N ′ has a path from f (16) to f (1). The corresponding path in
N ′ is formally written [8, 10, 11, 16], [9, 18], [15], [1] or informally as [16],[9],15,1.
There is clearly no path in N from 16 to 1. Similarly the g-path 21,17,4 shows that in
N ′ there is a path from [21] to [4]. Thus 4 ∈ cl( f (21); N ′).

Suppose N1, N2, and N3 are X -networks. Suppose f1 : N1 → N2 and f2 :
R(N2) → N3 are CSD maps, where f2 denotes a simplification of R(N2). Let f :
V (N1) → V (N3) be the composition f (v1) = f2( f1(v1)). In general f : N1 → N3
is not a CSD map since there is no CSD map from N2 to R(N2). The following
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result shows that f is nevertheless a connected map and there is a wired lift of f .
Consequently, we are able to visualize simplifications of R(N2).

Theorem 6.4 Suppose for i = 1, 2, 3, we have Ni = (Vi , Ai , ρi , φi ) is an X-network.
Write R(N2) = (V2, A′

2, ρ2, φ2) where A′
2 is the set of arcs in A2 which are not

redundant in N2. Suppose f1 : N1 → N2 and f2 : R(N2) → N3 are CSD maps.
Let f : V1 → V3 be the composition of the vertex maps, f (v1) = f2( f1(v1)). Thus,
f −1(v3) = {v1 ∈ V1 : f (v1) = v3} for v3 ∈ V3. Define E1 = {(u1, v1) ∈ A1:
(i) f1(u1) �= f1(v1) and ( f1(u1), f1(v1)) ∈ A′

2 and
(ii) f (u1) �= f (v1) and ( f (u1), f (v1)) ∈ A3}. Then
(1) f : N1 → N3 is a connected map.
(2) ( f −1, E1) is a wired lift of f .

Proof To see (1), note that f is well defined since N2 and R(N2) have the same vertex
set V2. (K1), (K2), and (K3) are immediate. To see (K4) assume (u3, v3) ∈ A3. Since
f2 is CSD, there exists (u2, v2) ∈ A′

2 such that f2(u2) = u3 and f2(v2) = v3. But
A′
2 ⊆ A2 and f1 is CSD. Hence there exists (u1, v1) ∈ A1 such that f1(u1) = u2

and f1(v1) = v2. Thus f (u1) = u3 and f (v1) = v3, proving (K4). The argument
for (K5) is the same as that of Theorem 3.3 in Willson (2012), used to prove that the
composition of CSD maps is CSD. This completes the proof of (1).

For (2), to prove (W1) suppose (u1, v1) ∈ E1. By (i) ( f1(u1), f1(v1)) ∈ A′
2, so

since f2 is a CSD map either f (u1) = f (v1) or ( f (u1), f (v1)) ∈ A3. The latter
applies by (ii), proving (W1).

For (W2), given any arc (u3, v3) ∈ A3 there exists (u2, v2) ∈ A′
2 such that

( f2(u2), f2(v2)) = (u3, v3) since f2 is a CSD map. Then since f1 is a CSD map,
there exists (u1, v1) ∈ A1 such that ( f1(u1), f1(v1)) = (u2, v2). Hence for every
(u3, v3) ∈ A3 there exists (u1, v1) ∈ E1 such that ( f (u1), f (v1)) = (u3, v3). This
proves (W2) and hence (2). ��

In the situation of Theorem 6.4, to draw the wired lift of f on the diagram of N1,
it follows that, for every arc (u, v) ∈ A1, we draw the arc in one of three ways:

(1) a thin solid arc (u, v) if f (u) = f (v),
(2) a thin dashed arc (u, v) if f (u) �= f (v) and ( f1(u), f1(v)) is a redundant arc

in N2,
(3) a wide solid arc (u, v) if f (u) �= f (v) and ( f1(u), f1(v)) is an arc in N2 that

is not redundant.

7 Deriving a Normal Network from an X-Network

This section concerns methods, given an X -network N , to produce an acyclic X -
network MD(N )with desirable properties. Often, an important step may be to remove
redundant arcs, thus obtaining R(MD(N )).

In particular, we shall want to find D such that R(MD(N )) is normal. Call a network
N pre-normal if R(N ) is normal. Thus, we seek D such that MD(N ) is pre-normal.

Let N be an X -network. A vertex v of N is a pre-normal obstacle or (more simply)
an obstacle if (1) v is not a leaf, and (2) every child of the vertex v in R(N ) is hybrid.
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Fig. 8 An X -network N with
redundant arcs (6,8) and (6,10).
Vertex 8 is an obstacle but 9 is
not
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Thus vmaybe regarded as an “obstacle” toR(N )being tree-child. SinceR(N ) contains
no redundant arcs, this is an “obstacle" to R(N ) being normal, or equivalently to N
being pre-normal.

We must ignore redundant arcs when deciding our strategies concerning which
arcs to merge. To make these decisions we need to have a notion of in-degree and
out-degree that does not count redundant arcs.

Supposev is a vertexof an X -network N . Thenon-redundant in-degreeofv, denoted
nrindeg(v), is the number of non-redundant arcs (p, v); hence it is the number of
parents of v by non-redundant arcs. If v �= ρ then by Theorem 2.1 nrindeg(v) ≥
1. Clearly nrindeg(v) ≤ indeg(v). The non-redundant out-degree of v, denoted
nroutdeg(v), is the number of non-redundant arcs (v, c), hence the number of children
of v by non-redundant arcs. If v is not a leaf, then byTheorem2.1 it has a non-redundant
child, whence nroutdeg(v) ≥ 1.

A vertex v of N is nonr-hybrid if nrindeg(v; N ) ≥ 2. A vertex c is a nonr-child of
v if (v, c) is a non-redundant arc; we also say v is a nonr-parent of c. A nonr-child c
of v is a nonr-tree-child of v if nrindeg(c) = 1. A path u0, u1, · · · , uk is a nonr-path
if no arc (ui , ui+1) is redundant, for 0 ≤ i ≤ k − 1.

It is immediate that v is a pre-normal obstacle iff (1) v is not a leaf, and (2) every
nonr-child of v is nonr-hybrid.

Figure 8 shows an acyclic X -network with redundant arcs. Note that 8 is an obstacle
since both its children 12 and 13 are nonr-hybrids. But 9 is not an obstacle since the
only nonr-parent of 10 is 9 and nrindeg(10) = 1.

An X -network N is obstacle-free if it contains no pre-normal obstacle.

Theorem 7.1 Suppose N is an acyclic X-network that is obstacle-free. Then R(N ) is
a normal X-network and N is pre-normal.

Proof By hypothesis, for every vertex v that is not a leaf, there is a non-redundant arc
(v, c) with nrindeg(c) = 1. It follows that in R(N ), c is a tree-child of v. Since R(N )

has no redundant arcs, it follows that R(N ) is normal and N is pre-normal. ��
Theorem 7.1 further justifies the use of the term “pre-normal obstacle”. It is easy to

see that a tree-child X -network is always pre-normal, but a pre-normal network need
not be tree-child.

Theorem 7.1 suggests our strategy for normalization: Given an arbitrary X -network
N , when we seek a normal network M , we know by Lemma 2.2 that S(M) will be
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regular; by (1) in the definition of regular network, S(M) is SCD. We are therefore
seeking a network that is very close to being an SCD network, and it is plausible
to start with the very general SCD network SCD(N ). We then recursively remove
obstacles until there are no obstacles remaining. Next we remove redundant arcs to
obtain a normal network. If we seek to obtain a uniquely determined normalization
we are careful not to make arbitrary choices about which arcs to merge.

Now we show that there are different types of pre-normal obstacles. Let N be an
acyclic X -network. Suppose c is an obstacle. An allowable 1-fold parent chain of c is
a path p1, c such that (p1, c) is not redundant and p1 has a nonr-tree-child d �= c (so
nrindeg(d) = 1, whence necessarily every other parent of d is via a redundant arc).
An obstacle c is of type 1 if c has an allowable 1-fold parent chain. If c has type 1 and
p1, c is an allowable 1-fold parent chain, let Dc(p1, c) = {(p1, c)}.

Suppose c is an obstacle and k > 1 is an integer. An allowable k-fold parent chain
for c is a nonr-path pk, pk−1, · · · , p1, p0 = c such that pk has a nonr-tree-child d
distinct from pk−1. An obstacle c is of type k if

(a) c is not of type 1, · · · , k − 1; and
(b) c has an allowable k-fold parent chain.
In this situation, for this k-fold parent chain write
Dc(pk, pk−1, · · · , c) = {(pk, pk−1), (pk−1, pk−2), · · · , (p1, c)}.

Theorem 7.2 Let N be an acyclic X-network. Then every pre-normal obstacle c has
a unique type.

Proof It is clear that the type, if it exists, is unique.
Consider a path from ρ to c which has maximal length k. Write this path as u0 =

ρ, u1, · · · , uk = c. By Theorem 2.1 this is a nonr-path. If ρ has a nonr-child d other
than u1, then this path is an allowable k-fold parent chain of c, so c has type at most
k. If, instead, u1 is the only nonr-child of ρ, then every other child q of ρ satisfies
that (ρ, q) is redundant. There is a lengthening nonr-path ρ = v0, v1, · · · , vm = q
by Theorem 2.1, whence v1 is a nonr-child of ρ; since u1 is the only such nonr-child,
it follows v1 = u1. Indeed, every nonr-path from ρ to any vertex other than ρ or
u1 must begin with ρ, u1. If u1 has a nonr-child d other u2, then u1, u2, · · · , c is an
allowable (k − 1)-fold parent chain and c has type ≤ k − 1. Otherwise u2 is the only
nonr-child of u1. Thus any nonr-path from ρ to a vertex other than ρ, u1, u2 must
begin ρ, u1, u2. We repeat the argument. If at any stage we have r such that ur has a
nonr-child d �= ur+1, then ur , ur+1, · · · , c is an allowable (k − r)-fold parent chain.
Otherwise every nonr-path from ρ to a vertex other than ρ, u1, · · · , ur must start with
ρ, u1, · · · , ur .

If no such r < k occurs, then we find that ρ, u1, · · · , uk = c is a nonr-path
and every nonr-path from ρ to any vertex other than ρ, u1, · · · , c must begin with
ρ, u1, · · · , c. But c is not a leaf hence must have a nonr-child e. Since c is an obstacle,
nrindeg(e) ≥ 2 so e has a nonr-parent q �= c. Every nonr-path from ρ to q must start
ρ, u1, · · · , c, so there is a nonr-path from c to q, hence a nonr-path from c to q to e,
showing that (c, e) is redundant, a contradiction. Hence some such r < k must occur,
and c has an allowable (k − r)-fold parent chain. ��
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The following result shows a simple way to remove a type 1 obstacle:

Lemma 7.3 Suppose N is an acyclic X-network and c is a type 1 obstacle with allow-
able 1-fold parent chain p, c, where p has nonr-tree-child d �= c. Let D = {(p, c)}.
Form MD(N ) and let ψ : N → MD(N ) be the projection. Then ψ(c) is not an
obstacle in MD(N ).

Proof Since c is an obstacle, it is not a leaf, so D contains no X -arc. Moreover, D
is strongly closed since (p, c) is not redundant, and QD(N ) = MD(N ) is an acyclic
X -network. Note ψ(c) = [p, c] and in MD(N ) there is an arc ([p, c], d). If q is any
parent of d in N other than p, then (q, d) is redundant since d is a nonr-tree-child
of p. Hence by Theorem 2.1 it has a lengthening of maximal length, ending with a
non-redundant arc into d. Thus the lengthening must include the nonr-parent p of d
and there is a path in N with non-redundant arcs from q to p to d. Since ψ is a CSD
map, there is a path in MD(N ) from q = ψ(q) toψ(p) = ψ(c) toψ(d) = d, showing
that (q, d) is redundant in MD(N ), so nrindeg(d; MD(N )) = 1. ��

The result above often generalizes to obstacles of type k. The next result assumes
for simplicity that D is strongly closed.

Lemma 7.4 Let N be an acyclic X-network with pre-normal obstacle c of type k.
Suppose pk, ...., c is an allowable k-fold parent chain, where pk has nonr-tree-child
d �= pk−1. Let D = Dc(pk, · · · , c) = {(pk, pk−1), (pk−1, pk−2), · · · , (p1, c)}.
Assume D is strongly closed. Form MD(N ) and let ψ : N → MD(N ) be the projec-
tion. Thenψ(c) = [pk, pk−1, · · · , c] has nonr-child d and nrindeg(d; MD(N )) = 1,
so ψ(c) is not an obstacle in MD(N ).

Proof Note that D contains no X -arcs since c is not a leaf. By Lemma 7.3, when
we identify pk and pk−1, d becomes a nonr-tree-child of [pk, pk−1]. When we next
identify [pk, pk−1] with pk−2, d becomes a nonr-tree-child of [pk, pk−1, pk−2]. This
continues until we conclude that ψ(c) has the nonr-tree-child d. ��

The following lemma shows that, often, once an obstacle is removed, it does not
reappear when subsequent arcs are merged.

Lemma 7.5 Suppose (p, c) is a non-redundant arc in the acyclic X-network N and N ′
is obtained by identifying p and c. Let ψ : N → N ′ be the projection. Suppose (a, b)
is a non-redundant arc in N and b is a nonr-tree-child of a (so nrindeg(b; N ) = 1).
Assume b �= p, b �= c. Then (ψ(a), ψ(b)) is a non-redundant arc of N ′ and ψ(b) has
nonr-indegree 1.

Proof (ψ(a), ψ(b)) must be an arc unless ψ(a) = ψ(b). But in N ′ the only identi-
fication is ψ(p) = ψ(c) = [p, c]. If ψ(a) = ψ(b) = [p, c], this would contradict
that b �= p, b �= c, so (ψ(a), ψ(b)) is an arc in N ′. If (d, ψ(b)) is a non-
redundant arc in N ′, then d = ψ(a) since a is the only nonr-parent of b in N . Hence
nrindeg(ψ(b); N ′) = 1. ��

It will be useful to remove trivial vertices which may have been created in the
construction process. Suppose N = (V , A, ρ, φ) is an X -network. Let E = {(u, v) ∈
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A : v is a trivial vertex}. Define T(N ) = ME (N ). Note that v will have unique parent
u and also a unique child since v is trivial. The next result shows that T(N ) has
desirable properties.

Theorem 7.6 Let N = (V , A, ρ, φ) be an acyclic X-network. Then T(N ) is an acyclic
X-network. Moreover

(1) T(N ) contains no trivial vertices and hence is a phylogenetic X-network.
(2) There is a leaf-preserving CSD map ψ : N → T(N ).
(3) Cl(T (N )) = Cl(N ).
(4) If N is normal, then T(N ) is normal.

Proof Note that E contains no X -arc because a leaf does not have out-degree one.
Since E is clearly strongly closed, T(N ) is an acyclic X -network. (1) and (2) follow as
in Theorem 4.4. (3) is obvious since if (u, v) ∈ A and u is trivial, then cl(u) = cl(v).

For (4) we first show that since N is tree-child, N ′ = T(N ) must also be tree-child.
It suffices to prove this in the case where N ′ is obtained from N by removing one trivial
vertex t with parent q and child c. In N ′ every non-leaf vertex except q obviously still
has a tree-child, the same one as in N . We must show that q has a tree-child in N ′.
But t has a tree-child in N which must be c so c has no other nonr-parent than t in N .
Hence q in N ′ has child c which has no other nonr-parent and is therefore a tree-child.
This proves T(N ) is tree-child.

For (4) we must also prove that T(N ) has no redundant arc. Again we may assume
that N ′ is obtained from N by the removal of a single trivial vertex t with parent q and
child c. The only possible redundant arc in N ′ is the new arc (q, c). If it is redundant,
there is a path in N ′ from q to c other than the arc, hence a path in N from q to c not
through t . Such a path of maximal length by the proof of Theorem 2.1 contains no
redundant arc, so c has a nonr-parent besides t . This contradicts that N was normal,
since t in N has no tree-child. ��

We now show how, given an X -network N , to compute a uniquely determined
normal X -network. We first compute a uniquely determined pre-normal acyclic X -
network Prenorm(N ), which we call the pre-normalization of N . The computation
uses the procedure PRENORM described below. Briefly, if N is not already a pre-
normal acyclic X -network, we compute N1 = SCD(N ). If N1 contains no obstacles
then Prenorm(N ) = N1. Otherwise, for each obstacle cwe compute its type k and find
all the allowable k-fold parent chains for c. Let D(c) be the union of Dc(pk, · · · , c) =
{(pk, pk−1), · · · , (p1, c) for all such allowable chains pk, · · · , c for c. Let D be the
union of the D(c) for all the obstacles c. We then compute N2 = MD(N1). If this has
no obstacles then Prenorm(N ) = N2. If not, we repeat the process.

Here is a more detailed description of the computation of Prenorm(N ):

Procedure PRENORM.
Input: An X -network N .
Output: A pre-normal acyclic X -network and an integer i .
1. Let N0 = N and set i = 0.
2. If N0 is acyclic and contains no pre-normal obstacle, go to step 9. Otherwise, go to
step 3.
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3. Compute N1 = SCD(N0) and set i = 1.
4. If Ni contains at least one pre-normal obstacle, go to step 5; otherwise go to step 9.
5. For each obstacle c in Ni ,
(5a) Compute its type k.
(5b) Initialize a subset of arcs D(c) = ∅.
(5c) For each allowable k-fold parent chain pk, · · · , c for c, adjoin the members of
Dc(pk, · · · , c) = {(pk, pk−1), · · · , (p1, c)} to D(c).
6. Define D = ∪D(c) where the union includes D(c) for each obstacle c in Ni .
7. Compute Ni+1 = MD(Ni ). Let i := i + 1 so the current network is now Ni .
8. If Ni contains at least one pre-normal obstacle, go to step 5; otherwise go to step 9.
9. Output Ni and the integer i .

The network output by the procedure will be denoted Prenorm(N ). The integer out-
put will be called the height of Prenorm(N ) and denoted r . Thus Nr = Prenorm(N ).
Note that r = 0 if N is acyclic and pre-normal; otherwise, r is 1 more than the number
of times the procedure passes through steps 5 , 6, 7. The height r is a crude indicator of
the complexity of the calculation. The examples in this paper satisfy r ≤ 2, including
those examples with real data. The author has worked examples with r = 3.

The next theorem shows that the procedure works.

Theorem 7.7 Let N = (V , A, ρ, φ) be an X-network.
Apply procedure PRENORM to N. Then
(1) The procedure terminates and outputs an acyclic X-network Prenorm(N )which

is pre-normal.
(2) Prenorm(N ) depends only on the geometry of N .
(3) The projection ψ : N → Prenorm(N ) is a leaf-preserving CSD map.
(4) Let E1 = {(u, v) ∈ A : ψ(u) �= ψ(v)}. Then (ψ−1, E1) is a wired lift of

Prenorm(N ) into N that contains no dashed arcs.

Proof If the procedure returns N and r = 0, then (1) is immediate. Otherwise, by
Theorem 4.4, N1 = SCD(N ) is an acyclic X -network which contains no trivial
vertices. If it contains no obstacles, it is pre-normal by Theorem 7.1, r = 1, and (1)
follows. Otherwise, it contains at least one obstacle c. For each obstacle c of type k and
each allowable k-fold parent chain pk, · · · , c for c the set {(pk, pk−1), · · · , (p1, c)}
contains no X -arc since the obstacle c cannot be a leaf. Hence D(c) contains no
X -arc, so D contains no X -arc. By Theorem 3.8, N2 = MD(N1) is an acyclic X -
network, which we expect will be pre-normal by Lemmas 7.3 and 7.4. If N2 contains
no obstacles, it is pre-normal by Theorem 7.1, and Prenorm(N ) = N2, so (1) is true.
Otherwise it contains an obstacle and the procedure returns to step 5.

Each time step 5 is utilized on Ni , the corresponding set D is nonempty, so more
arcs are contracted and Ni+1 contains fewer vertices and fewer arcs. Since N is finite,
the procedure must terminate. This proves (1).

The procedure never involves a choice, such as favoring some obstacles or some
allowable parent chains over others. Hence (2) is true.

We wish to see (3). If r = 0 then Prenorm(N ) = N and ψ is the identity map.
Otherwise, let ψ1 : N → SCD(N ) = N1 be the projection from Theorem 4.4. If
r = 1 then Prenorm(N ) = N1 and ψ1 : N → Prenorm(N ) proves (3). Suppose
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r > 1. For 1 < i ≤ r let ψi : Ni−1 → MD(Ni−1) = Ni be the projection. Then
ψ : N → Nr = Prenorm(N ) is the composition ψ = ψr ◦ψr−1 ◦ · · · ◦ψ1 and proves
(3), since it is a composition of leaf-preserving CSD maps.

For (4), since ψ is a CSD map, (ψ−1, E1) is a wired lift by Theorem 6.1(1). It has
no dashed arcs since redundant arcs are allowed in Prenorm(N ). ��

Since Prenorm(N ) is a pre-normal acyclic X -network, we remove the redundant
arcs to form R(Prenorm(N )), which will be normal. It may, however, contain trivial
vertices, so we define Norm(N ) = T(R(Prenorm(N ))), which will be normal and
contain no trivial vertices.We call Norm(N ) the normalization of N . The next theorem
records its basic properties.

Theorem 7.8 Suppose N is an X-network. Let ψ1 : N → Prenorm(N ) be the projec-
tion CSD map. Then

(1) Norm(N ) = T(R(Prenorm(N ))) is a normal acyclic X-network containing no
trivial vertices, hence a phylogenetic X-network.

(2) The definition of Norm(N ) depends only on the geometry of N .
(3) The projection ψ2 : R(Prenorm(N )) → Norm(N ) is a leaf-preserving CSD

map.
(4) The composition f = ψ2 ◦ ψ1 as maps of vertices from N to Norm(N ) is a

connected map.
(5) There is a wired lift of Norm(N ) into N which may contain dashed arcs.
(6) Cl(Norm(N )) = Cl(Prenorm(N )).

Proof For (1) note R(Prenorm(N )) is an acyclic X -network by Theorem 5.1 which
is normal by Theorem 7.1. Hence (1) follows from Theorem 7.6. Moreover, (2) is
obvious since Prenorm(N ) depends only on the geometry of N . Then (3) follows
from Theorem 7.6. Next (4) and (5) follow from Theorem 6.4. Finally (6) follows
from Theorems 5.2 and 7.6. ��
Remark There is an interesting variant of the procedure PRENORM. Define the pro-
cedure VARIANT PRENORM to be exactly like PRENORM except that step (5c) is
replaced by

(5c′) Select exactly one allowable k-fold parent chain pk, · · · , c for c, and let
D(c) = Dc(pk, · · · , c) = {(pk, pk−1), · · · , (p1, c)}.

Wewill abbreviate the name of the procedure toVARIANT. Thuswhile PRENORM
uses all allowable k-fold parent chains for each obstacle c of type k, VARIANTwould
use just one allowable parent chain for each such obstacle. The following theorem
shows that the output of VARIANT has interesting properties. The proof is like those
of Theorems 7.7 and 7.8 and is omitted.

Theorem 7.9 Let N = (V , A, ρ, φ) be an X-network.
Apply procedure VARIANT PRENORM to N. Then
(1) The procedure terminates and outputs an acyclic X-network Nr which is pre-

normal.
(2) The projection ψ1 : N → Nr is a leaf-preserving CSD map.
(3) There is a wired lift of Nr into N that contains no dashed arcs.
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Let Mr = T(R(Nr )) Then
(4) Mr is a normal acyclic X-network containing no trivial vertices, hence a phy-

logenetic X-network.
(5) The projection ψ2 : R(Nr ) → Mr is a leaf-preserving CSD map.
(6) The composition ψ2 ◦ ψ1 : N → Mr as maps of vertices is a connected map.
(7) There is a wired lift of Mr into N.

The output Nr of VARIANT is called a variant prenormalization of N and is
denoted PrenormV ,C (N ) or for simplicity PrenormV (N ). Here C records the partic-
ular choice of allowable k-fold parent chain for c made in step (5c′) each time there
was more than one allowable k-fold parent chain for c to choose among. Similarly
Mr = T(R(PrenormV (N ))) is called a variant normalization of N and is denoted
NormV ,C (N ) or NormV (N ). Note that NormV (N ) and PrenormV (N ) will not nec-
essarily depend only on the geometry of N ; instead, the result will depend on all the
choices C of the parent chains when there is more than one possible. In certain cir-
cumstances, however, it might be preferable. For example, the researcher might have
additional information suggesting that the relevant gene flow is much more likely
along one parent chain than another, in which case the least probable parent chain
should be selected for merging.

It frequently happens that PrenormV (N ) has more vertices and hence higher reso-
lution than Prenorm(N ). The following lemma indicates one source of this inequality.
To obtain a short proof, we assume very strong hypotheses.

Lemma 7.10 Suppose N = (V , A, ρ, φ) is an X-network. Assume when i = 1 that in
step 6 of PRENORM the merging set of arcs in N1 = (V1, A1, ρ1, φ1) is D, while in
step 6 of VARIANT the merging set is E. Then

(1) E ⊆ D.
(2) If for some obstacle c of type k there is more than one allowable k-fold parent

chain, then E � D.
(3) If u and v are vertices of V1 and u ∼E v, then u ∼D v.
(4) K (E) ⊆ K (D).
(5) If u and v are vertices of V1 and u ∼K (E) v, then u ∼K (D) v.
(6) If K (E) � K (D), then ME (N1) has strictly more vertices than MD(N1).
(7) If K (E) � K (D) and r = 2 for both PRENORM and VARIANT, then

PrenormV (N ) has strictly more vertices than Prenorm(N ).

Proof (1) is true since for a given obstacle c of type k, E contains exactly one allowable
k-fold parent chain for c, while D contains all allowable k-fold parent chains for
c. Then (2) is obvious and (3) follows from (1). For (4), go through the proof of
Theorem 3.7 and note that every time an arc is added to make K (E), it necessarily
must be added also to K (D). Then (5) follows from (4). For (6), the vertices ofMD(N1)

are the equivalence classes of V (N1) under ∼K (D), while the vertices of ME (N1) are
the equivalence classes of V (N1) under ∼K (E). Since K (E) � K (D), (6) follows.
Now (7) is clear. ��

A calculation of NormV (N ) is illustrated below in Example 7.
Other variants making other choices of parent chains are possible as well.
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Fig. 9 An SCD X -network N
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Fig. 10 MD(N ) for N in Fig. 9,
where D = {(7, 11), (6, 8)}.
Note that Prenorm(N ) =
MD(N ) and the normalization is
obtained by removing the
redundant arcs ([7,11],13) and
([6,8],12) and then the resulting
trivial vertex 13
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Fig. 11 Norm(N ) =
T(R(MD(N ))) for N
in Fig. 9, where D =
{(7, 11), (6, 8)}. Note the
removal of the trivial vertex 13
from Fig. 10
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Norm(N)

Example 3 This example continues Example 1 in Sect. 4. Consider the network N in
Fig. 4. The first step is to compute SCD(N ), shown in Fig. 5. Since SCD(N ) is a
tree, it has no obstacle, the height r = 1 and Prenorm(N ) = SCD(N ). Since there
are no redundant arcs, we find Norm(N ) = T(SCD(N )) = SCD(N ). Moreover,
dRF (N ,Norm(N )) = 0. It is easy to see in this example that FHS(N ) is the star tree
consisting of the root 7 together with an arc from 7 to each of the six leaves. Moreover
SCD(N ) (and therefore N has four more distinct clusters than the tree FHS(N ). Hence
dRF (N ,FHS(N )) = 4. In this example, Norm(N ) outperforms FHS(N ).
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Fig. 12 Figure 9 redrawn to
exhibit the wired lift of
Norm(N ) into N . Thin solid
arcs are merged in Norm(N ).
Dashed arcs give rise to
redundant arcs of MD(N ) and
are not included in E1. Wide
solid arcs are in E1

1 4

5

6

7 8
9

10 11 12

N

2 3

13 14

Example 4 Consider N in Fig. 9. Let N0 = N , so N1 = SCD(N ) = N since N is
already SCD. N1 has two obstacles: 8 and 11. Obstacle 8 is type 1 with one allowable
parent chain 6,8 and D(8) = {(6, 8)}. Obstacle 11 has type 1 with allowable chain
7,11 and D(11) = {(7, 11)}. (Note that 8,11 is not an allowable chain since 12 is
hybrid.) Hence D = D(8) ∪ D(11) = {(6, 8), (7, 11)}.

D is strongly closed, and we find N2 = MD(N ) = QD(N ), shown in Fig. 10
with redundant arcs ([7,11],13) and ([6,8],12). There are no obstacles, so the height
r = 2 and Prenorm(N ) = N2. We remove the redundant arcs to find R(MD(N )),
which contains the trivial vertex 13. Then we compute T(R(MD(N ))) to remove the
trivial vertex by merging the arc (10,13) as in Theorem 7.6 to yield Norm(N ) =
T(R(MD(N ))), shown in Fig. 11.

The projection map ψ : N → MD(N ) has ψ(7) = ψ(11) = [7, 11] and ψ(6) =
ψ(8) = [6, 8]. For other vertices v, ψ(v) = v. Without the redundant arc ([7,11],13),
ψ would not be a CSD map since N contains the arc (11,13).

Let ψ2 : R(MD(N )) → Norm(N ) be the projection and f = ψ2 ◦ ψ : N →
Norm(N ) be the composition of the vertexmaps. Note f is a connectedmap. Figure 12
shows Fig. 9 redrawn to exhibit the wired lift ( f −1, E1) of Norm(N ) into N . The thin
solid arcs show immediately that there were identifications 6 ∼ 8, 7 ∼ 11, and
10 ∼ 13. The dashed arcs correspond to the redundant arcs ([7,11],13) and ([6,8],12)
in Fig. 10, which are not present in Norm(N ). We see, for example, there is a unique
g-path from 8 to 2, given by 8,6,7,10,13,2. Hence in Norm(N ) there is a path from
ψ(8) = [6, 8] to ψ(2) = 2.

It is easy to compute that dRF (N ,Norm(N )) = dRF (N ,T(R(MD(N )))) =
dRF (N ,R(MD(N ))) = dRF (N , MD(N )) = 2 using Theorems 7.6 and 5.2. We
identify the two relevant clusters by noticing that N contains vertices with clusters
{1, 2, 3} and {2, 3} that are not in MD(N ), while every cluster of MD(N ) and hence
of R(MD(N )) is also a cluster of N . In this example, FHS(N ) = Norm(N ).

Example 5 Figure 13 shows the wired lift of Norm(N ) into an X -network N with a
single obstacle 16 of type 3. N is seen by changing all thin solid or dashed arcs to
wide solid. N is easily verified to be already SCD, so N1 = N . One 3-fold parent
chain in N is 11, 14, 17, 16; another is 13, 14, 17, 16. The chain 13,14,16 is not
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Fig. 13 The wired lift of
Norm(N ) for an X -network N
with a single obstacle 16 of type
3. N is seen if all arcs are instead
made wide solid. The wired lift
of Prenorm(N ) is seen if the arcs
(9,11), (16,22), and (19,22) are
all instead made wide solid
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Fig. 14 Prenorm(N ) = MD(N )

for the N of Fig. 13. The vertex
[11, 13, 14, 16, 17] is labeled 16.
The arcs (9,16) and (16,22) are
redundant. Norm(N ) is found by
removing the two redundant arcs
and then using T to remove the
resulting trivial vertex 22 by
merging (19,22)
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21
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an allowable parent chain because (14,16) is redundant. To find Prenorm(N ), use
D = {(11, 14), (14, 17), (17, 16), (13, 14)}.

MD(N ) is shown in Fig. 14. Note MD(N ) has no obstacles, hence is pre-normal.
Thus Prenorm(N ) = MD(N ) and the height r = 2. The point [11,13,14,16,17]
is labeled 16. If ψ : N → MD(N ) is the projection, then ψ−1(ψ(16)) =
{11, 13, 14, 16,17}. MD(N ) contains redundant arcs (9, 16) and (16, 22), arising from
the arcs (9,11) and (16,22) in N . When these arcs are removed from MD(N ) and the
resulting trivial vertex 22 is removed, we obtain Norm(N ) = T(R(MD(N ))).

As maps of vertex sets ψ1 : N → MD(N ) and ψ2 : R(MD(N )) → Norm(N ) can
be composed to yield the resulting connected map f = ψ2 ◦ ψ1 : N → Norm(N );
it is not a CSD map because the vertex map from MD(N ) to R(MD(N )) is not CSD.
The wired lift ( f −1, E1) of Norm(N ) is shown in Fig. 13. The arcs (9,11) and (16,22)
are dashed because they are pre-arcs to the redundant arcs of MD(N ), which are not
arcs of Norm(N ), hence are not in E1 of the wired lift, using Theorem 6.3. Arcs
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(u, v) such that f (u) = f (v) are thin solid. Hence arcs in the induced subgraph of
f −1( f (16)) = {11, 13, 14, 16,17} are thin solid. The arc (19, 22) is thin solid because
it was merged to remove the trivial vertex 22. Note the g-path 16,17,19,22,4 from 16
to 4; but 16,22,4 is not a g-path.

The wired lift of Prenorm(N ) would be seen in Fig. 13 if the arcs (9,11), (16,22),
and (19,22) are made wide solid. The first two would be wide since in Prenorm(N )

both (9,16) and (16,22) are arcs. Arc (19,22) would be wide since 22 is not a trivial
vertex in Prenorm(N ) and is not removed.

8 Examples with Real Data

This section contains two examples from real biological data.

Example 6 Glémin et al. (2019) study pervasive hybridizations of wheat relatives.
Their Fig. 5 shows their proposed scenario for the history of diploid Aegilops/Triticum
species. Let N be their graph. A wired lift of Norm(N ) is shown in our Fig. 15. The
network N is seen if each arc in Fig. 15 is made wide solid. In SCD(N ) we find only
a single pre-normal obstacle 21 of type 1. The height of the computation is r = 2.
When we compute Prenorm(N ), there is a single redundant arc. Norm(N ) contains
23 vertices and 29 arcs; it is thus simpler than N , which contains 31 vertices (of which
eight are hybrid), and 38 arcs. We find dRF (N ,Norm(N )) = 1. It is interesting that
our dashed arc (21,22) is also dashed in Glémin et al. (2019) to indicate a less likely
event. It turns out that in this case FHS(N ) ∼= Norm(N ).

Example 7 Marcussen et al. (2015) exhibit a network N for the angiosperm genus
Viola in their Fig. 4. Our methods find N1 = SCD(N ) has 2 obstacles. One obstacle is
type 1 with two allowable 1-fold parent chains. The other is type 2 with one allowable
2-fold parent chain. Thus for computing Prenorm(N ), D contains 4 arcs. MD(N1)

has no obstacles, so Prenorm(N ) = MD(N1) and the height is two. A wired lift of
Norm(N ) = T(R(Prenorm(N ))) is shown in Fig. 16. We see that Norm(N ) has 29
vertices (equivalence classes under thin solid arcs). It turns out to have 31 arcs, while
thewired lift has 34wide solid arcs. Ifψ : N → Norm(N ) is the connectedmap,more
than one wide solid arc (u, v) can map to the same arc (ψ(u), ψ(v)) of Norm(N ).
Thus (14,10) and (17,18) map to the same arc in Norm(N ), as do (28,37) and (28,36),
and also (11,12) and (11, 21).

FHS(N ) is drawn in Francis et al. (2021) in their Fig. 3. We compute that
dRF (N ,FHS(N )) = 4 while dRF (N ,Norm(N )) = 5. Thus FHS(N ) is a better
approximation to N than Norm(N ) but lacks a wired lift.

If we use instead VARIANT PRENORM, there are two possible normal net-
works NormV (N ) that can result, depending on the choice of the 1-fold parent chain
for the type 1 obstacle [13,14,15,17] in SCD(N ). One allowed parent chain is 12,
[13,14,15,17]; the other is [21,22], [13,14,15,17]. Thus for computing PrenormV (N ),
the set D has 3 rather than 4 arcs, leading to one more vertex in PrenormV (N ) com-
pared to Prenorm(N ). For both networks NormV (N ), dRF (N ,NormV (N )) = 4, so
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1 Triticum

7 Ae. mutica

2 Comopyrum

8 Ae. speltoides

3 Ae. caudata

4 Ae. umbellulata

5 Ae.tauschii

6 Sitopsis
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1410
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12 13
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25

2630

20 22
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23

18

19

27

28

31

Fig. 15 The wired lift of Norm(N ) for the diploid Aegilops/Triticum species in Glémin et al. (2019). Wide
arcs are in E1. Thin solid arcs represent identifications; thus 20 ∼ 22 ∼ 31, 15 ∼ 16, 12 ∼ 13, 18 ∼ 21,
24 ∼ 29, and 28 ∼ 30 ∼ 26. The dashed arc (21,22) corresponds to a redundant arc in Prenorm(N ) and
may not be used for g-paths. If all arcs are instead wide solid, we obtain N

they both approximate N as well as does FHS(N ) but depend on the choice of 1-fold
parent chain.

Both such NormV (N ) have wired lifts into N by Theorem 7.9. The wired lift of
each NormV (N ) is very similar to that for Norm(N ) with one additional wide solid
arc replacing a thin solid arc. For one NormV (N ) the wired lift is given by making
the arc (12,13) in Fig. 16 be wide solid; for the other NormV (N ), the only change is
that the arc (22,13) in Fig. 16 is wide solid.

Both variant normalizations satisfy dRF (NormV (N ),FHS(N )) = 2, so neither
agrees with FHS(N ).

Further comments concerning this example are given in Sect. 9.

9 Discussion

Comparison of Norm(N ) and FHS(N ) Let N = (V , A, ρ, φ) be an X -network.
It is interesting to contrast Norm(N ) with FHS(N ), defined in Francis et al. (2021).
Both are uniquely determined normal phylogenetic X -networks depending only on the
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Fig. 16 The wired lift of Norm(N ) for the Viola data N in Marcussen et al. (2015). The entire vertical line
labeled 42 represents one vertex with out-degree 7

geometry of N . Both allow vertices of N to have in-degree greater than 2 or out-degree
greater than 2, and both apply quite generally.

FHS(N ) is fast to compute using Huson and Steel (2020) and very elegant. It works
by locating the “visible” vertices of N . A vertex v is visible if there exists x ∈ X such
that every path from ρ to φ(x) contains v. This set of visible vertices forms the initial
vertex set of FHS(N ). Hence each initial vertex of FHS(N ) can be highlighted in the
diagram for N , as is done in Francis et al. (2021). At the end, trivial initial vertices of
FHS(N ) are suppressed. In a tangled network like our Fig. 4, the only visible vertices
are the root and the leaves, since there is a great multiplicity of possible paths from
the root to a given leaf. In such a situation, FHS(N ) does not perform well. For less
tangled networks such as Example 7 the computation works well. Perhaps it would be
useful in general to compute FHS(SCD(N )).
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The arcs of FHS(N ) are harder to interpret than the vertices. In FHS(N ) there is
an arc (u, v), where u and v are distinct visible vertices of N , precisely when u ≤ v

in N and there is no third visible vertex w such that u ≤ w and w ≤ v. Thus, for
example, two different arcs (u, v1) and (u, v2) emerging from the same u could be
present because of directed paths in N from u to v1 and from u to v2 such that the
paths have significant overlap, invisible in FHS(N ).

Consider again Fig. 16 where N is for the Viola genus of Marcussen et al. (2015).
The diagram of N is exactly Fig. 16 inwhich all arcs are drawnwide solid. The vertices
of FHS(N ), before suppression of the trivial vertices, are the 43 visible vertices out
of the 61 vertices of N . None of the vertices 13, 14, 15, 17 of N (those relevant to
the obstacle [13,14,15,17] crucial to our discussion of the VARIANT calculation) are
visible and hence they do not appear in FHS(N ). FHS(N ) has arc (22,18) because
(a) 22 and 18 are visible, (b) 22, 13, 14, 10, 8, 18 is a path in N , and (c) there is no
other path from 22 to 18 containing a third visible vertex. Similarly FHS(N ) has arc
(12,20) because of the path 12, 13, 14, 15, 17, 20, and it has arc (12,18) because of the
path 12, 13, 14, 10, 8, 18 in N . Thus these three distinct arcs in FHS(N ) arise from
overlapping paths in N involving 13 and 14.

In contrast, the arcs of Norm(N ) are easy to interpret. The wide solid arcs highlight
the arcs N that appear in Norm(N ); the thin dashed arcs indicate redundant arcs in
Prenorm(N ) and must be avoided in g-paths; the thin solid arcs tell what arcs must be
merged to obtain the normal network Norm(N ). The use of g-paths lets us understand
Norm(N ) from just the wired lift.

Software The author has written software using Xcode which implements the cal-
culation of Norm(N ) somewhat interactively. It was essential for the examples based
on real data. It computes SCD(N ), MD(N ), R(N ), and T(N ) and locates all obstacles.
It finds all allowable 1-fold and 2-fold parent chains, but obstacles of type k ≥ 3 must
be handled interactively. The software is far from ready for general use, but it shows
that the calculations can be automated.

Future work One can ask whether there are other classes of networks besides
normal networks for which a similar construction could be used to simplify a network
N into one of this other class. Suppose, given an X -network N , we sought a tree-
child X -network C . Since a tree child network may contain redundant arcs, we should
like a construction that depends only on the geometry of N and yields a CSD map
ψ : N → C . At first glance we might think that we could use the CSD map ψ : N →
Prenorm(N ); but while Norm(N ) is tree-child, Prenorm(N ) need not be tree-child.
The author is currently looking at such problems for tree-child and some other classes
of networks.
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