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Abstract
The COVID-19 pandemic has adversely affected the entire world. The effective imple-
mentation of vaccination strategy is critical to prevent the resurgence of the pandemic,
especially during large-scale population migration. We establish a multiple patch cou-
pled model based on the transportation network among the 31 provinces in China,
under the combined strategies of vaccination and quarantine during large-scale pop-
ulation migration. Based on the model, we derive a critical quarantine rate to control
the pandemic transmission and a vaccination rate to achieve herd immunity. Fur-
thermore, we evaluate the influence of passenger flow on the effective reproduction
number during the Chinese-Spring-Festival travel rush. Meanwhile, the spread of the
COVID-19 pandemic is investigated for different control strategies, viz. global con-
trol and local control. The impact of vaccine-related parameters, such as the number,
the effectiveness and the immunity period of vaccine, are explored. It is believed that
the articulated models as well as the presented simulation results could be benefi-
cial to design of feasible strategies for preventing COVID-19 transmission during the
Chinese-Spring-Festival travel rush or the other future events involving large-scale
population migration.

Keywords Multiple patch coupled model · Transportation network · Vaccination ·
Basic reproduction number · Large-scale migration

1 Introduction

Coronavirus disease 2019 (COVID-19) pandemic has spread across the whole world
since December 2019 (Li et al. 2020; Hou et al. 2021), which has severely affected
public health and economics (Guan et al. 2020; Jacobsen 2020; Brown et al. 2020).
Due to various prevention and control measures, the pandemic is being alleviated
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(Sheikh et al. 2020; Li et al. 2020). Nevertheless, the risk of periodic pandemic still
requires adequate attention.

Population migration between cities plays an important role in the pandemic trans-
mission (Wesolowski et al. 2012; Auger and Moussaoui 2021), and the coupling of
population flows between different cities is worth investigating. A traffic-network-
driven infectious disease model is proposed and applied to investigate the worldwide
2009 H1N1 influenza and 2003 SARS pandemic transmission (Brockmann and Hel-
bing 2013), which is later used to indentify the spatial origin of spreading process
(Pan 2018). Analyses of the topology and evolution population flow network help
understand the influence on the early dynamics of COVID-19 transmission (Liu et al.
2021). During the Chinese-Spring-Festival (CSF) travel rush, the spatial transmission
model is used to reveal the transmission mechanism of COVID-19 between or among
cities (Mu et al. 2020). Similarly, a population movement model based on spatial net-
works is considered in the spread of pandemic in Indi (Pujari and Shekatkar 2020). In
metropolis of the USA, the impact of population flow on the pandemic transmission
is characterized by the population migration cell model (Shen et al. 2021) and the
dynamic cabin model (Chang et al. 2021).

Before the availability of effective vaccine, non-pharmaceutical interventions
(NPIs) were taken into account controlling the pandemic spread (Perkins and España
2020; Lai et al. 2020; Fang et al. 2020). In terms of local intervention, the lockdown
strategy of Wuhan during a concentrated outbreak of COVID-19 was effective (Lau
et al. 2020). Meanwhile, with respect to global interventions, quarantine, and travel
restrictions were the main control strategies during the outbreak (Fang et al. 2020;
Kissler et al. 2020; Kraemer et al. 2020; Zhang et al. 2020). After that the pandemic
was alleviated, decentralized population flow was adopted to sustain economic activ-
ities (Nishi et al. 2020), and similar policies were formulated in France to reopen
schools (Di Domenico et al. 2021).

Since January 2021,more than ten types of vaccine against the COVID-19 pathogen
SARS-CoV-2 have been fully or limitedly approved and used in clinics (Jeyanathan
et al. 2020). Vaccination to obtain immunity is the most fundamental way to prevent
the spread of infectious diseases (Lipsitch and Dean 2020). In the concurrent case of
COVID-19 pandemic and influenza, it is especially important to increase the vacci-
nation rate (Gostin and Salmon 2020; Amato et al. 2020). The public’s acceptance of
vaccine largely depends on its effectiveness and safety (Kim et al. 2021). The Centers
for Disease Control and Prevention (CDC) has evaluated the effectiveness of vaccines
in preventing infection of medical workers in the USA (Thompson et al. 2021). Due to
the scarcity of vaccines, priority groups for vaccination have been discussed (Medlock
and Galvani 2009; Bubar et al. 2021). Moreover, the combination of vaccination and
social distance control can result in better pandemic prevention (Huang et al. 2021;
Gallagher et al. 2020). Practically, policy makers hope to achieve herd immunity by
vaccination (DeRoo et al. 2020), namely, the basic reproduction numberR0 is less than
1, to completely restore normal social order and economic activities, which may take
a long time for COVID-19. Therefore, together with NPIs, the vaccination strategy is
worthy of further exploration.
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Motivated by the promotion of vaccination strategy and the large-scale population
migration during the CSF travel rush, we establish a multiple patch coupled model to
explore the impact of vaccination and NPIs on the COVID-19 transmission dynamics.
This paper is structured as flows. In Sect. 2, we formulate a coupled compartment
model based on the real travel network of China, incorporating NPIs and vaccina-
tion strategies. In Sect. 3, we investigate several critical model parameters to mimic
various scenarios, including the vaccination rate, the effectiveness and the immunity
period of vaccines and the passage flow during the CSF travel rush. Finally, we sum-
marize and give some suggestions on the prevention of COVID-19 transmission in
China.

2 Mathematical Model

2.1 Basic Model Based on Transportation Network

We first construct a basic model in a multiple patch setting based on transporta-
tion network among 31 provinces (including 27 provinces, municipalities and 4
directed cities) in China. In each patch, namely within a single province, we use
an SEIR model, which is coupled with the other patches (provinces) by transporta-
tion network. Here, we simplify the flow in and out of each patch at fixed time
everyday, which results in a pulse input and output of the system. The flow dia-
gram of the SEIR model within each path, the movement between every two patches
and the corresponding SEI model during the transportation cabin, is depicted in
Fig. 1.

Fig. 1 A flow diagram of the SEIR model within each patch and the SEI model during transportation,
where bn = In Sn/Nn + p1EnSn/Nn , bm = Im Sm/Nm + p1EmSm/Nm , and bp = Inm Snm/Nnm +
p1Enm Snm/Nnm
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2.1.1 Model Formulation

The local transmission model within each patch takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSn
dt

= −β In Sn/Nn − p1βEnSn/Nn,

dEn

dt
= β In Sn/Nn + p1βEnSn/Nn − δEn,

dIn
dt

= δEn − γ In,

dRn

dt
= γ In(1 − dn),

(1)

where n = 1, 2, . . . , 31. The variables and the parameters in model (1) as well as in
the following models are all listed in Table 1.

An M × M passenger flow matrix W = {Wmn} is introduced to describe the daily
passenger transportation among provinces, Wmn denotes the number of people from
the m-th province to the n-th province. The following system quantifies the number
of passengers in different states (Sn, En, In or Rn), traveling from the n-th province
to the m-th province per day,

Table 1 Definitions of variables and parameters in the compartmental model (1) and (9)

Variables or parametersDefinition

Sn The absolute number of susceptible individuals in the N -th city/province
(n = 1, . . . , 31)

En The absolute number of exposed individuals in the N -th city/provincen
(n = 1 . . . , 31)

In The absolute number of infectious individuals in the N -th city/province
(n = 1, . . . , 31)

Rn The absolute number of recovered or dead individuals in the N -th city/province
(n = 1, . . . , 31)

Nn The total population of the N -th country/region (n = 1, . . . , 31)

δ The conversion rate from exposed to infectious

p1 The relative infection rate of a susceptible individual by an exposed individual

p2 The new infection cases quarantine rate

β The probability of susceptible being infected by infectious

βp The infection rate of a travelling susceptible individual by an infected individual
during transportation

γ Mortality and recovery rate

Nnv The amount of vaccine allocated to N -th province per day

ve Effectiveness of vaccines

ξ The reciprocal of effective period of the vaccine

Wnm Total number of people traveling from the m-th province to the n-th province
(n,m = 1, . . . , 31)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Snm = SnWnm/Nn,

Enm = EnWnm/Nn,

Inm = InWnm/Nn,

Rnm = RnWnm/Nn .

(2)

The population flow out of patch n by transportation (namely, people leaving by planes
and trains) which contributes to the populationwithin patch n ismodeled by the system
as ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t
1
k ) = Sn(t

1−
k ) −

∑

m �=n

Snm(t1k ),

En(t
1
k ) = En(t

1−
k ) −

∑

m �=n

Enm(t1k ),

In(t
1
k ) = In(t

1−
k ) −

∑

m �=n

Inm(t1k ),

Rn(t
1
k ) = Rn(t

1−
k ) −

∑

m �=n

Rnm(t1k ),

t1k = t1 + kT , k ∈ N,

(3)

where the subscript nm means from the n-th patch to the m-th patch, t1 is the taking
time of the transportation, and T set as 1 day in the model is the period of population
movement.

Similarly, the populationflow into patchn by transportation (namely, people coming
by planes and trains) contributes to the population within patch n, is modeled as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t
2
k ) = Sn(t

2−
k ) +

∑

m �=n

Smn(t
2
k ),

En(t
2
k ) = En(t

2−
k ) +

∑

m �=n

Emn(t
2
k ),

In(t
2
k ) = In(t

2−
k ) +

∑

m �=n

Imn(t
2
k ),

Rn(t
2
k ) = Rn(t

2−
k ) +

∑

m �=n

Rmn(t
2
k ),

t2k = t2 + kT , k ∈ N,

(4)

where t2 is the landing time of the transportation from them-th patch to the n-th patch.
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Next, during the travel process, considered as a closed cabin, we use an SEI model
with no recovered class as follows,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dSnm
dt

= −βp Inm Snm/Nnm − p1βpEnmSnm/Nnm,

dEnm

dt
= βp Inm Snm/Nnm + p1βpEnmSnm/Nnm − δEnm,

dInm
dt

= δEnm,

(5)

where βp denotes the infectious rates during the transportation.

2.1.2 Basic Reproduction Number

Following the next generation matrix method (Van den Driessche and Watmough
2002) for compartmental models, we calculate the basic reproduction number R0.
Using the same notations as proposed in Van den Driessche and Watmough (2002),
we write as

F =

⎛

⎜
⎜
⎝

βSn In/Nn + p1βEnSn/Nn

0
0
0

⎞

⎟
⎟
⎠ ,V =

⎛

⎜
⎜
⎝

δEn

−δEn + γ In
β In Sn/Nn − p1βEnSn/Nn

γ In(1 − dn)

⎞

⎟
⎟
⎠ .

Setting the right-hand side of system (1) to zero, we always obtain the disease-free
equilibrium x0 = (S0, 0, 0, 0), with S0 = Nn . Applying the Fréchet derivatives to F
and V at x0, we , respectively, get

F =
(
p1β β

0 0

)

, V =
(

δ −0
−δ γ

)

.

Then,

R0 = ρ
(
FV−1

)
= β(p1γ + δ)

γ δ
, (6)

where ρ(·) represents the spectral radius of a given matrix.
Considering the vaccination on susceptibles, we assume the proportion of suscep-

tibles getting vaccinated is α. Then Snew0 = (1 − α)S0. Letting

Rnew
0 = (1 − α)β(p1γ + δ)

γ δ
< 1 (7)

yields:

α > 1 − γ δ

β(p1γ + δ)
� αc. (8)

This means that once the vaccination proportion is more than αc, the herd immunity
can be achieved.
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2.2 Model with Quarantine andVaccination

2.2.1 Model Formulation

Introducing strategies of quarantine and vaccination, the revised flow diagram of an
SEIQRV model with transportation is shown in Fig. 2.

The model is governed by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSn
dt

= −β In Sn/Nn − p1βEnSn/Nn − Nnvve + ξVn + ξ Rn,

dEn

dt
= (β In Sn/Nn + p1βEnSn/Nn)(1 − p2) − δEn,

dIn
dt

= δEn(1 − p2) − γ In,

dQn

dt
= (β In Sn/Nn + p1βEnSn/Nn + δEn)p2 − γ Qn,

dRn

dt
= γ In(1 − dn) + γ Qn − ξ Rn,

dVn
dt

= Nnvve − ξVn,

(9)

where Qn is the quarantine compartment, Vn is the vaccinated compartment, ξ repre-
sents the period of immunity, ve represents the effectiveness of vaccine, p2 represents
the quarantine ratio, and Nnv is the number of vaccines provided everyday in the n-th
patch. We assume that the vaccinated population would immediately gain immunity
in the model.

To be clear, in system (9), the ratio of Nnvve to the total population Nn , namely,
Nnvve/Nn is very small. Considering the total population of China and the distribution

Fig. 2 A flow diagram of the SEIQRV model within each patch and the SEI model during transporta-
tion, where bn = In Sn/Nn + p1EnSn/Nn , bm = Im Sm/Nm + p1EmSn/Nm , �En = β In Sn/Nn +
p1βEnSn/Nn , and �In = δEn
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in each province, the ratio is about 10−4. Moreover, we assume that the vaccinated
population only gain certain immunity period, characterized by the parameter ξ . There-
fore, in the simulated time span, there will be no negative solutions according to the
parameter settings.

The passenger flow leaving the patch n takes the form as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t
1
k ) = Sn(t

1−
k ) −

∑

m �=n

Snm(t1k ),

En(t
1
k ) = En(t

1−
k ) −

∑

m �=n

Enm(t1k ),

In(t
1
k ) = In(t

1−
k ) −

∑

m �=n

Inm(t1k ),

Rn(t
1
k ) = Rn(t

1−
k ) −

∑

m �=n

Rnm(t1k ),

Vn(t
1
k ) = Vn(t

1−
k ) −

∑

m �=n

Vnm(t1k ),

t1k = t1 + KT , K ∈ N,

(10)

and the flow coming into the patch n is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t
2
k ) = Sn(t

2−
k ) +

∑

m �=n

Smn(t
2
k ),

En(t
2
k ) = En(t

2−
k ) +

∑

m �=n

Emn(t
2
k ),

In(t
2
k ) = In(t

2−
k ) +

∑

m �=n

Imn(t
2
k ),

Rn(t
2
k ) = Rn(t

2−
k ) +

∑

m �=n

Rmn(t
2
k ),

Vn(t
2
k ) = Vn(t

2−
k ) +

∑

m �=n

Vmn(t
2
k ),

t2k = t2 + KT , K ∈ N.

(11)

The dynamical system during transportation still follows (5). Here, it is reasonably to
assume that the vaccinated population would not lose immunity during the travel.

2.2.2 Basic Reproduction Number

Following the approach and the notations applied in Sect. 2.1.2, we calculate the basic
reproduction number of the revised model (9). The disease-free equilibrium point of
(9) is x0 = (0, 0, 0, 0, 0, V0), where S0+V0 = Nn and V0 = Nnvve/ξ . Thus, we have
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F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 − p2)(βSn In/Nn + p1βEnSn/Nn)

0
p2(βSn In/Nn + p1βEnSn/Nn)

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δEn
−δEn(1 − p2) + γ In
−δEn(1 − p2) + γ Qn

β In Sn/Nn + p1βEnSn/Nn
+Nnvve + ξVn − ξ Rn

−γ In(1 − dn) − γ Qn + ξ Rn
−Nnvve + ξVn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These further give:

F =
⎛

⎝
(1 − p2)p1βS0/Nn (1 − p2)βS0/Nn 0

0 0 0
p1 p2βS0/Nn p2βS0/Nn 0

⎞

⎠ , V =
⎛

⎝
δ 0 0

−δ γ 0
−δ p2 0 γ

⎞

⎠ .

Therefore, the basic reproduction number is given by

R0 = ρ
(
FV−1

)

= S0β(δ + δ p22 − 2δ p2 + γ p1 − γ p1 p2)

Nnδγ
.

(12)

Remark 1 ompared withR0 derived in (6), S0/Nn is not a constant here. This implies
that R0 given in (12) is time-varying, and that it can be considered as an effective
reproduction number.

3 Numerical Results

Based on the population flow data of China, we simulate the COVID-19 transmission
with travel infection. The initial data are given by the reported cases on January 19,
2021, and the time span in simulations is taken as 300 days, including the CSF travel
rush (from January 26 to March 9, 2021).

Because of the inaccessibility of population migration data in the transportation
part, we generate a simulated population migration data based on Baidu migration
(http://qianxi.baidu.com/), which contains the population migration rates between or
among provinces.According to the number ofmigrant population given by theChinese
news reported (https://baike.baidu.com/item/2021%E5%B9%B4%E6%98%A5%E8
%BF%90/55222817?fr=aladdin), we estimate the number of population immigration
and emigration in each province every day, and calculate the migration data during
the CSF travel rush. After the CSF travel rush, we reduce the passenger flow to 10%
to mimic the normal daily population migration.

3.1 Herd Immunity

Considering the basic model (1), the condition to achieve herd immunity is given by
(7). The parameters are listed in Table 1 and part of the default parameters values are
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Table 2 Parameters settings in
default scenario

Parameters Default value Reference

p1 0.2 Ivorra et al. (2020)

p2 0.4 Ivorra et al. (2020)

δ 1/5.5 Ivorra et al. (2020)

β 0.173 Calculated by (13)

βp 2 · β Assumption

γ 1/14 Ivorra et al. (2020)

ve 0.7 Ivorra et al. (2020)

ξ 1/50 Ivorra et al. (2020)

R0 2.6 Ivorra et al. (2020)

a b

Fig. 3 Effect of the vaccinated proportion α on the pandemic transmission. The light (blue) shaded area
represents the time interval during the Spring Festival travel rush and the dark (red) shaded area represent
the Chinese Lunar Year. a α < αc . b α > αc

listed in Table 2. In the standard scenario, we set R0 = 2.6 (Ivorra et al. 2020), and
calculate

β = R0γ δ

p1γ + δ
= 0.17219. (13)

Under the parameter settings, the proportion α of the vaccinated susceptibles should
be larger than αc = 61.38% to achieve herd immunity given by (8). The simulation
results are shown in Fig. 3.
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3.2 Sensitivity Analysis ofR0 with Different Parameters

We present a sensitivity analysis of the value of R0 with variation of the parameters.
All the parameters are changed in the ranges listed in Table 3. Each parameter is
sampled 100 times within the given range. The simulation results are shown in Fig. 4.

3.3 Sensitivity Analysis of Infection Cases with Infection Rateˇ

The infection rate β will decline as the government implements control measures. We
assume that β has a decay rate (Dr ) and the new infection rate βnew = β · Dr . The
other parameters are only related to virus characteristics, which would not change
much over time. We present a sensitivity analysis on β and the simulation results are
shown in Fig. 5.

3.4 Quarantine Strategy

The quarantine strategy is taken to control the COVID-19 transmission in China,
which plays great importance during the outbreak of the pandemic. From (12), letting
R0 < 1, yields

Table 3 Parameters in different
ranges

Parameters Range Sampling frequency

p1 [0.1, 0.5] 100 times

p2 [0.2, 0.6]
δ [0.1, 0.3]
γ [0.05, 0.1]
β [0.1, 0.3]
ξ [0.001, 1/30]
ve [0.5, 0.9]

Fig. 4 Sensitivity ofR0 with variation of the considered parameters
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Fig. 5 Sensitivity of infection cases with β

ba

Fig. 6 The impact of p2 on COVID-19 transmission. pc2 = 38.74%. a p2 < pc2. b p2 > pc2

p ≥ 1 −
√

S0β(4Nnδ2 + §0βγ p21) − S0βγ 2 p1

2S0βδγ
� pc2.

(14)

Under the setting of the parameter values specified in Table 2, we have pc2 ≥ 38.74%.
Figure 6 shows the impact of different values of p2 on the epidemic transmission. To
be clear, the curve seems to be close to zero because of the magnitude, but it keeps
going up when p2 = 0.3.

3.5 Relationship BetweenR0(t) and Passenger Flow

From (12), we find that the effective reproduction number R0(t) changes with pas-
senger flow. Due to the daily population migration, the equilibrium point x0 =
(S0, 0, 0, 0, 0, 0, V0) is different, where S0 + V0 = Nn(t) and Nn(t) is daily-varying.
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a b

Fig. 7 Changes ofR0 in Shanghai City and Anhui Province over time. a The red line represents the change
of R0 in Shanghai over time, and the blue line represents the change of R0 over time in Anhui Province.
b The red line represents the cumulative inflow of Shanghai, and the green line represents the cumulative
inflow of Anhui Province

Here, we take Shanghai City (large-scale emigration) and Anhui Province (large-
scale immigration) as examples to calculate the effective reproduction numberR0(t).
Figure 7 shows the relationship of the effective reproduction number with passenger
flow.

At the beginning of the CSF travel rush, R0(t) of the provinces (e.g., Shanghai,
Beijing, etc.) with large-scale emigration decreases with the increase of outgoing
passenger flow. As for the provinces (e.g., Anhui, Henan, etc.) with large-scale immi-
gration, R0(t) increases correspondingly. At the rush of the CSF travel back to the
city, the trend is opposite to those going out of the city. After the CSF rush, there is
no obvious change inR0(t).

3.6 TransitionMatrixW Control: Global and Local

Now, we investigate the impact of passenger flow control on the spread of COVID-19.
Let

W new
nm = Tr · Wnm,

where Wnm is the passenger flow from the n-th patch to the m-th patch, and Tr rep-
resents the intensity of passenger flow control. The smaller the Tr , the greater the
reduction in passenger flow.

There are two approaches for passenger flow control. One is to reduce the passenger
flow for all provinces (global control in the mainland China), and the other is to
control the flow only for high-risk local areas (local control, such as Hebei, Beijing,
Heilongjiang, etc). Figure 8 shows that the reduction of local passenger flow and the
reduction of passenger flow in all provinces have no significant difference on the overall
pandemic transmission. Figure 9 shows that, in the areas where the infected population
is erupting (such asHebei Province), the greater intensity control of passenger flow, the
more serious pandemic becomes. But, for low-risk areas (such as Jiangsu Province),
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a b

Fig. 8 Impact of Tr onCOVID-19 transmission. aGlobal passenger flowcontrol inChina.bLocal passenger
flow control only in high-risk areas, such as in Hubei, Beijing, Heilongjiang. As we can see, a and b have
no significant difference

a b

c d

Fig. 9 Impact of Tr on COVID-19 transmission in high-risk areas and low-risk areas. a and b Represent
global and local flow control in Hubei Province (high-risk area), respectively. c and d represent global and
local flow control in Jiangsu Province (low-risk area), respectively

the greater the intensity of passenger flow control, the less likely it is to cause large-
scale infections. The main reason for the above phenomenon is that the passenger flow
control in the high-risk areas of the pandemic causes the more infected individuals to
stay in high-risk areas, which renders the situation worse.

3.7 Vaccination Strategy

The Chinese government is now promoting vaccination. Here we assume the overall
number of vaccines supplied in China is 1,000,000 per day. The number of vaccines
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Fig. 10 The impact of vaccination number on COVID-19 transmission

distributed to each province is proportion to the population of the target region, which
ensures the equal probability of each person being vaccinated. Let N new

nv = λNnv .
Then, and we discuss the impact of λ on the COVID-19 transmission. The result is
shown in Fig. 10, which indicates that more vaccinated population can control the
pandemic transmission.

Next, we explore the impact of the effectiveness ve of the vaccine on COVID-19
transmission. The simulation results are presented in Fig. 11. We discover that during
the early stages of pandemic, ve does not have a significant impact on the pandemic
transmission. However, in the process of remission, the stronger the effectiveness, the
faster the remission of pandemic.

Finally, assuming that the immunity period is limited, we study its impact on
COVID-19 transmission. The results are shown in Fig. 12, which implies that a longer
immunity period is positive to the prevention of pandemic transmission.

4 Concluding Remarks

In this paper, a multiple patch coupled model based on the transportation network
is established to explore transmission mechanism of COVID-19, under the combined
effect of vaccination andNPIs in large-scale populationmigration. For the basicmodel,
at least 61.38% of people need to be vaccinated to achieve the herd immunity. In the
case of simultaneous implementation of vaccination and quarantine, it is necessary
to ensure that the quarantine rate satisfies p2 > 38.74% for preventing the disease
spread further. By the sensitivity of R0 with variation of parameters, we find that the
quarantine rate p2 has the most significant impact onR0. Therefore, before reaching
herd immunity, a high-strength quarantine for newly infected cases is critical to prevent
the spread of pandemic.

We investigate the impact of large-scale population migration during the CSF rush
on the COVID-19 transmission. As for Chinese provinces with large-scale emigration,
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Fig. 11 The impact of vaccine effectiveness on COVID-19 transmission

Fig. 12 The impact of immunity period on COVID-19 transmission

R0 decreases, whereas for the provinces with large-scale immigration,R0 increases.
Furthermore, a comparison is made between the global and the local intervention of
passage flow. Considering the overall pandemic situation in China, the evolutions of
the local intervention and the overall intervention are basically the same. Therefore,
the government only needs to control the population migration in high-risk areas.
Meanwhile, numerical simulations show that the infectious diseases don’t spread on
a large scale under high-intensity population migration. The joint implementation of
vaccines and quarantine ensures the controllability of the pandemic.

Effective vaccination has positive impact on prevention of pandemic transmission.
We simulate the effect of vaccines number, the effectiveness, and rhe immune protec-
tion period on the pandemic transmission. When the number of vaccination increases,
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the positive effect is more outstanding. The higher the effectiveness of the vaccine,
the more significant the positive effect. Furthermore, the longer immune protection
period can also have a better suppression effect on the pandemic spread.

Finally, our study only uses the simulated population migration data generated
based on Baidu’s migration rate data. In the future, if we are provided real population
migration data, we can establish a model that performs a more realistic evaluation
of vaccine injection and quarantine under large-scale population migration. Overall,
we anticipate that, all the results presented in the paper could provide suggestions for
policy makers on the prevention of COVID-19 transmission.
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