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Abstract
In this paper, a two-strain model with coinfection that links immunological and epi-
demiological dynamics across scales is formulated. On the with-in host scale, the two
strains eliminate each other with the strain having the larger immunological repro-
duction number persisting. However, on the population scale coinfection is a common
occurrence. Individuals infected with strain one can become coinfected with strain two
and similarly for individuals originally infected with strain two. The immunological
reproduction numbers R j , the epidemiological reproduction numbersR j and invasion
reproduction numbers Ri

j are computed. Besides the disease-free equilibrium, there
are strain one and strain two dominance equilibria. The disease-free equilibrium is
locally asymptotically stable when the epidemiological reproduction numbersR j are
smaller than one. In addition, each strain dominance equilibrium is locally asymptot-
ically stable if the corresponding epidemiological reproduction number is larger than
one and the invasion reproduction number of the other strain is smaller than one. The
coexistence equilibrium exists when all the reproduction numbers are greater than
one. Simulations suggest that when both invasion reproduction numbers are smaller
than one, bistability occurs with one of the strains persisting or the other, depending
on initial conditions.

Keywords Immuno-epidemiology · Coinfection · Reproduction numbers ·
Coexistence

1 Introduction

Infectious diseases are caused by parasites (viruses, bacteria, etc.) and can spread from
person to person. Infectious diseases have always been a great enemy of human health.
Historically, infectious disease epidemics have brought great disasters to human sur-
vival, national economies and people’s livelihood. For example, during 1519–1530,
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the prevalence of measles and other infectious diseases reduced the number of Indi-
ans in Mexico from 30 million to 3 million. The black death (bubonic plague) had
four large-scale epidemics in Europe (AD 600, 1346–1350, 1665–1666, 1720–1722),
and each time caused a significant decline in the European population. And the out-
break of novel coronavirus at the end of 2019 in early 2020 has brought great impact
to the global economy and people’s lives. For a long time, mankind has waged an
indomitable struggle against various infectious diseases and made brilliant achieve-
ments. For example, smallpox,which has been rampant for nearly a thousand years, has
finally been eliminated. Further, leprosy, poliomyelitis, diphtheria, measles, pertussis
and other diseases have been curbed.

However, completely conquering epidemics is still a task for the future. The world
health report issued by the World Health Organization shows that infectious diseases
are still the primary killer of humans. A variety of infectious diseases, such as cholera,
dysentery, malaria, sexually transmitted diseases, tuberculosis, influenza and so on,
are still prevalent all over the world. In addition, with the rapid development of live-
stock and poultry breeding industries and the prosperity of international and domestic
trade, a variety of infectious diseases (such as avian influenza, mouth kick disease,
etc.) which transmit between animals and affect humans are widely prevalent in the
world, which has aroused the extensive attention of governments, medical experts and
mathematicians.

In recent years, the research progress in infectious disease dynamics modeling,
virus dynamics modeling and immune system dynamics modeling has been very rapid
throughout the world. A large number of mathematical models are used to analyze
the spread of various infectious diseases, virus infection, immune response and other
issues. Most of these models are suitable for studying the general laws of various
infectious diseases, viruses and immunity. Infectious disease dynamics mainly takes
the total population of a country or a region as the research object. The population of
the country or region is divided into several disjoint subclasses, such as susceptible
class, infected class, moving out class and so on. Using a flow chart, the correspond-
ing disease transmission model is established and studied. Immune system dynamics
mainly takes an individual as the research object. Considering the infection of a virus
of certain cells in this individual, this kind of cells in this individual is divided into
healthy cells and infected cells, and the corresponding immune system dynamics is
established and studied.

In reference (Levin and Pimentel 1981), Levin and Pimental introduced the possi-
bility of superinfection: when an individual infected by virus 1 enters into a contact
with an individual who has been infected by virus 2, it is likely that, say, the first indi-
vidual becomes infected also with virus 2; furthermore, it is assumed that in this case,
the individual super-infected with virus 2 will lose the original virus; in other words,
no individuals are infected withmore than one virus at the same time. Intuitively, when
virus 1 has the smaller reproduction number, superinfection can occur. A multi-scale
immuno-epidemiological model of super-infection has been studied in Martcheva and
Li (2013). However, a more realistic situation is that individuals can be infected with
more than one virus at the same time, that is, coinfection may occur. When an individ-
ual with virus 1 contacts an individual infected by virus 2, this individual will become
coinfected by virus 1 and virus 2. Such infected individuals may continue to carry
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two viruses or become only one virus due to the competition between the two viruses.
Coinfection and super-infection models both within-host and between-host have been
studied before (Alizon 2013; Martcheva 2015; Candela et al. 2009).

Immuno-epidemiology has been drawing a significant interest lately (Hellriegel
2001), and the first immuno-epidemiological model of nested type has been devel-
oped by Gilchrist and Sasaki (2002). Since then, a number of different multi-scale
immuno-epidemiological models have been developed and investigated (Shen et al.
2015; Ratchford and Wang 2019; Hu and Lou 2016; Mideo et al. 2008; Feng et al.
2012; Coombs et al. 2007; Xue and Xiao 2020; Shen et al. 2019, ?; Martcheva and
Pilyugin 2006; Martcheva 2011; Cai et al. 2017). Typical questions addressed with
immuno-epidemiological models are the impact of the within-host dynamics on the
between-host dynamics (Martcheva 2011; Cai et al. 2017) and the questions related to
the evolution of the pathogens (Alizon 2013; Mideo et al. 2008; Coombs et al. 2007).
Evolutionary questions often lead to multi-strain frameworks where the competitive
exclusion (Dang et al. 2016) and coexistence (Martcheva and Li 2013) of strains is
investigated. Super-infection (Martcheva and Li 2013), coinfection (Candela et al.
2009) and mutation (Ball et al. 2007) are all mechanisms that can lead to coexistence
of pathogen variants.

In this paper, we strive to extend our results in Martcheva and Li (2013). We for-
mulate a two-strain immuno-epidemiological model coupling the immune process in
human body, which was introduced by Webb et al. (2005), and consider the trans-
mission process of infectious diseases in the population with coinfection between
strains. Immuno-epidemiological modeling of infectious diseases is a technique that
links a with-in host mathematical model with a between-host mathematical model. In
the next section, we formulate the with-in host model with coinfection and discuss
the basic reproduction numbers, the invasion reproduction numbers and the existence
of the coexistence equilibrium within the host. In Sect. 3, we propose a two-strain
epidemiological model with coinfection. We discuss the disease-free equilibrium and
single-strain equilibrium and their stability. In Sect. 4, we establish the existence of the
interior equilibrium under the condition that the reproduction numbers are larger than
one. Simulations are conducted in Sect. 5. Finally, we discuss the dynamic relationship
between immunology and epidemiology in Sect. 6.

2 TheWith-In Host Model with Coinfection

In this section, we formulate a two-strain with-in host model with coinfection. Within
a host, the time variable is denoted by τ and signifies time-since-infection. We denote
healthy cells by x and cells infected by the i th strain of the virus by yi . The coinfected
cells are denoted by y. The number of free virions of strain i is denoted by Vi .

In this model, uninfected cells are created at a constant rate r and are infected by
interactionwith free virions of strain i according to amass action lawwith constant rate
βi . Productively infected cells yi produce γi > 1 new virions of strain i . The parameter
αi denotes new virions of strain i produced by cells coinfected with two strains. The
death rates for healthy cells, cells infected with strain i and cells coinfected by two
strains are μ, di and d, respectively. Here we assume di and d are greater than μ. The
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Fig. 1 Flow diagram of the model (2.1) and (3.1). The upper panel (blue) is the between-host model. The
population is divided into four classes: susceptible, infected by strain 1, infected by strain 2 and co-infected,
denoted by S, I1, I2 and J , respectively. The lower panel (green and orange) is the within-host model. The
cell population (green) is divided into four classes: healthy, infected by strain 1, infected by strain 2 and
co-infected, denoted by x , y1, y2 and y, respectively. V1 and V2 represent virions with strains 1 and 2,
respectively (orange). They are produced by infected cells. The viral load of infected people can affect the
between-host transmission of the disease (purple line) (Color figure online)

parameters δi and si denote the clearance rate and shedding rate for virions with strain
i , respectively. Shedding rate is given by the amount of virus that leaves an infected
individual and may serve to infect another individual. The parameter η1 denotes the
rate at which cells infected by strain 2 are simultaneously infected by the free virus
of strain 1, and η2 has a similar meaning. This with-in host model with coinfection is
given by the following system of ordinary differential equations. A schematic diagram
of the model is shown in Fig. 1 (lower panel).
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dx

dτ
= r − β1V1x − β2V2x − μx

dy1
dτ

= β1V1x − η2β2V2y1 − d1y1

dy2
dτ

= β2V2x − η1β1V1y2 − d2y2

dy

dτ
= η2β2V2y1 + η1β1V1y2 − dy

dV1
dτ

= γ1d1y1 + α1dy − (δ1 + s1) V1 − β1V1x − η1β1V1y2

dV2
dτ

= γ2d2y2 + α2dy − (δ2 + s2) V2 − β2V2x − η2β2V2y1 (2.1)

All parameters and dependent variables of this within-host model with coinfection
and their definitions are found in Table 1.

In this within-host model with coinfection, we can determine the infection-free
equilibrium E0 = (r/μ, 0, 0, 0, 0, 0). Computing the Jacobian of the model (2.1) at
the infection-free equilibrium, we have

J (E0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−μ 0 −β1x∗ 0 −β2x∗ 0
0 −d1 β1x∗ 0 0 0
0 γ1d1 −(δ1 + s1) − β1x∗ 0 0 α1d
0 0 0 −d2 β2x∗ 0
0 0 0 γ2d2 −(δ2 + s2) − β2x∗ α2d
0 0 0 0 0 −d

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where x∗ = r/μ. Considering
∣∣J − λI

∣∣ = 0, we can expand the matrix in terms of
the first column. This will give us an eigenvalue λ1 = −μ. Then, we can expand the
remaining matrix around the last row and obtain another eigenvalue λ2 = −d. The
remaining eigenvalues are the eigenvalues of the following matrices:

J1 =
( −d1 β1x∗

γ1d1 −(δ1 + s1) − β1x∗
)

,

J2 =
( −d2 β2x∗

γ2d2 −(δ2 + s2) − β2x∗
)

.

We can see that the above two matrices are the same except that the subscripts of
the parameters are different. Therefore, we only consider J1. Now we can apply the
usual conditions that guarantee that the eigenvalues of J1 have negative real parts. We
want TrJ1 < 0 and DetJ1 > 0. TrJ1 < 0 is obvious, and DetJ1 > 0 leads to the
following condition:

d1 (δ1 + s1) + d1β1x
∗ − β1γ1d1x

∗ > 0. (2.2)
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For J1 and J2, the above inequality (2.2) can be written as

di (δi + si ) + diβi x
∗ − βiγi di x

∗ > 0 (i = 1, 2).

Therefore, the within-host reproduction number of strain i in model (2.1) is given by

Ri = (γi − 1) βi

δi + si
· r
μ

. (2.3)

We notice that if Ri < 1, then DetJi > 0. If Ri > 1, DetJi < 0, which implies
there exists a positive eigenvalue. Consequently, if both R1 < 1 and R2 < 1 hold, the
infection-free equilibrium is locally asymptotically stable. If Ri > 1 for at least one i ,
then the infection-free equilibrium is unstable. Next we discuss the strain dominance
equilibria.

Taking strain 1 as an example. Let the strain 1 dominance equilibrium E1 =
(x∗

1 , y
∗
1 , V

∗
1 , 0, 0, 0). It satisfies the following equations:

r − β1V
∗
1 x

∗
1 − μx∗

1 = 0

β1V
∗
1 x

∗
1 − d1y

∗
1 = 0

γ1d1y
∗
1 − (δ1 + s1) V

∗
1 − β1V

∗
1 x

∗
1 = 0

The solution is

x∗
1 = δ1 + s1

β1 (γ1 − 1)
, y∗

1 = β1

d1
V ∗
1 x

∗
1 , V ∗

1 = μ

β1
(R1 − 1) .

It can be seen that when R1 > 1, E1 exists.
We compute the invasion reproduction number R1

2, which gives the number of
secondary infections that one infected individual with the second strain will produce
in a population in which the first strain is at equilibrium. From finding the eigenvalues
of the Jacobian matrix at E1, we can obtain the following equation

− (
λ + d2+η1β1V

∗
1

) (
λ+δ2 + s2+β2x

∗
1 +η2β2y

∗
1

)
(λ + d) + β2x

∗
1 · α2d · η1β1V

∗
1

+ (
λ + d2 + η1β1V

∗
1

) · α2d · η2β2y
∗
1 + (λ + d) · β2x

∗
1 · γ2d2 = 0.

That is
(
λ + d2 + η1β1V

∗
1

) · α2d · η2β2y
∗
1 + (λ + d) · β2x

∗
1 · γ2d2 + β2x

∗
1 · α2d · η1β1V

∗
1

= (λ + d)
(
λ + d2 + η1β1V

∗
1

) (
λ + δ2 + s2 + β2x

∗
1

)
.

Dividing both sides of the equation by (λ + d)
(
λ + d2 + η1β1V ∗

1

)
, we have

α2d · η2β2y∗
1

λ + d
+ β2x∗

1 · γ2d2
λ + d2 + η1β1V ∗

1
+ β2x∗

1 · α2d · η1β1V ∗
1

(λ + d)
(
λ + d2 + η1β1V ∗

1

)

= λ + δ2 + s2 + β2x
∗
1 .
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Let

f (λ) = α2d · η2β2y∗
1

λ + d
+ β2x∗

1 · γ2d2
λ + d2 + η1β1V ∗

1
+ β2x∗

1 · α2d · η1β1V ∗
1

(λ + d)
(
λ + d2 + η1β1V ∗

1

) ,

g(λ) = λ + δ2 + s2 + β2x
∗
1 .

Then, we observe that if λ increases, f (λ) is decreasing and g(λ) is increasing. There-
fore, if

f (0) < g(0),

then the equation f (λ) = g(λ) does not have roots with non-negative real parts. We
can prove this by contradiction. Suppose λ = ξ + iη with ξ ≥ 0, then

| f (λ)| ≤ f (ξ) ≤ f (0)

and

|g(λ)| ≥ g(ξ) ≥ g(0).

Thus, | f (λ)| ≤ f (0) < g(0) ≤ |g(λ)| for allλwith non-negative real part. In this case,
the equilibrium E1 is locally asymptotically stable. On the other hand, if f (0) > g(0),
then the equation f (λ) = g(λ) has a real positive root. Therefore, the equilibrium E1
is unstable.

We rewrite the inequality f (0) < g(0) as follows:

α2 · η2β2y
∗
1 + β2x∗

1 · γ2d2
d2 + η1β1V ∗

1
+ β2x∗

1 · α2 · η1β1V ∗
1

d2 + η1β1V ∗
1

<
(
δ2 + s2 + β2x

∗
1

)
.

Multiplying both sides of the inequality by d2 + η1β1V ∗
1 , we have

α2η2β2y
∗
1 · d2 + α2η2β2y

∗
1 · η1β1V

∗
1 + β2x

∗
1 · γ2d2 + β2x

∗
1α2η1β1V

∗
1

< (δ2 + s2) · d2 + (δ2 + s2) · η1β1V
∗
1 + β2x

∗
1 · d2 + β2x

∗
1 · η1β1V

∗
1 .

Transposing and simplifying, we get

α2η2β2y
∗
1

(
d2 + η1β1V

∗
1

) + β2x
∗
1d2 (γ2 − 1) + β2x

∗
1η1β1V

∗
1 (α2 − 1)

< (δ2 + s2)
(
d2 + η1β1V

∗
1

)
.

Therefore, the invasion reproduction number is given by

R1
2 = α2η2β2y∗

1

(
d2 + η1β1V ∗

1

) + β2x∗
1d2 (γ2 − 1) + β2x∗

1η1β1V ∗
1 (α2 − 1)

(δ2 + s2)
(
d2 + η1β1V ∗

1

) .

(2.4)
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We can see that R1
2 < 1 is equivalent to f (0) < g(0) and R1

2 > 1 is equivalent to
f (0) > g(0). Similar results can be obtained for the strain 2 dominance equilibrium
E2 = (x∗

2 , 0, 0, y
∗
2 , V

∗
2 , 0). Its stability depends on the relation between the following

invasion reproduction number and one (Martcheva 2015):

R2
1 = α1η1β1y∗

2

(
d1 + η2β2V ∗

2

) + β1x∗
2d1 (γ1 − 1) + β1x∗

2η2β2V ∗
2 (α1 − 1)

(δ1 + s1)
(
d1 + η2β2V ∗

2

) .

(2.5)

We summarize the above results in the following proposition:

Proposition 2.1 If Ri > 1, then the boundary equilibrium Ei exists. If Ri
j < 1,

equilibrium Ei is locally asymptotically stable. If Ri
j > 1, the equilibrium Ei is

unstable.

If we do not remove healthy cells infections with Vi and infected cells infections
by another strain infected simultaneously with Vi from the class of free virions, that
is to say, we ignore the last two terms in the V1 and V2 equation, then the model (2.1)
becomes

dx

dτ
= r − β1V1x − β2V2x − μx

dy1
dτ

= β1V1x − η2β2V2y1 − d1y1

dy2
dτ

= β2V2x − η1β1V1y2 − d2y2

dy

dτ
= η2β2V2y1 + η1β1V1y2 − dy

dV1
dτ

= γ1d1y1 + α1dy − (δ1 + s1) V1

dV2
dτ

= γ2d2y2 + α2dy − (δ2 + s2) V2 (2.6)

The within-host reproduction number of this system is

Ri = γiβi

δi + si
· r
μ

. (2.7)

And the strain i dominance equilibrium has components

x∗
i = δi + si

γiβi
, y∗

i = βi

di
V ∗
i x

∗
i , V ∗

i = μ

βi
(Ri − 1) , i = 1, 2.
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We can also calculate the invasion reproduction number of strain i in model (2.6).
They are

R
1
2 = α2η2β2y∗

1

(
d2 + η1β1V ∗

1

) + γ2d2 · β2x∗
1 + η1β1V ∗

1 · α2 · β2x∗
1

(δ2 + s2)
(
d2 + η1β1V ∗

1

) (2.8)

and

R
2
1 = α1η1β1y∗

2

(
d1 + η2β2V ∗

2

) + γ1d1 · β1x∗
2 + η2β2V ∗

2 · α1 · β1x∗
2

(δ1 + s1)
(
d1 + η2β2V ∗

2

) . (2.9)

Next we discuss the existence of coexistence equilibrium in model (2.6). When the
within-host reproduction numbers and the invasion reproduction numbers are greater
than one, there may be a coexistence equilibrium. The coexistence equilibrium E =
(x, y1, V1, y2, V2, y) of model (2.6) satisfies the following equations:

r − β1V1x − β2V2x − μx = 0

β1V1x − η2β2V2y1 − d1y1 = 0

β2V2x − η1β1V1y2 − d2y2 = 0

η2β2V2y1 + η1β1V1y2 − dy = 0

γ1d1y1 + α1dy − (δ1 + s1) V1 = 0

γ2d2y2 + α2dy − (δ2 + s2) V2 = 0 (2.10)

The first three equations of the system (2.10) can be solved as follows:

x = r

β1V1 + β2V2 + μ
, y1 = β1V1x

η2β2V2 + d1
, y2 = β2V2x

η1β1V1 + d2
.

From the fourth equation of the system (2.10), we have

y = 1

d

[
η2β2V2 · β1V1x

η2β2V2 + d1
+ η1β1V1 · β2V2x

η1β1V1 + d2

]
.

Substituting y1, y2, y into the last two equation of the system (2.10), we get

⎧⎪⎪⎨
⎪⎪⎩

γ1d1
β1V1x

η2β2V2+d1
+α1

[
η2β2V2 · β1V1x

η2β2V2 + d1
+ η1β1V1 · β2V2x

η1β1V1 + d2

]
=(δ1 + s1) V1,

γ2d2
β2V2x

η1β1V1+d2
+α2

[
η2β2V2 · β1V1x

η2β2V2 + d1
+ η1β1V1 · β2V2x

η1β1V1 + d2

]
=(δ2 + s2) V2.

Simplifying and substituting into x , we have
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⎧⎪⎪⎨
⎪⎪⎩

γ1d1
η2β2V2+d1

+ α1β2V2

[
η2

η2β2V2 + d1
+ η1

η1β1V1 + d2

]
= δ1 + s1

β1
· β1V1+β2V2 + μ

r
,

γ2d2
η1β1V1 + d2

+ α2β1V1

[
η2

η2β2V2 + d1
+ η1

η1β1V1 + d2

]
= δ2 + s2

β2
· β1V1+β2V2+μ

r
.

(2.11)

We need to judge whether the system (2.11) has a solution. If there is a solution, it
means that coexistence equilibrium of the model (2.6) exists. Otherwise, there is no
coexistence equilibrium.

Let the left-hand sides of Eq. (2.11) divided by the right-hand side are f1(V1, V2)
and f2(V1, V2), respectively. Then, we can rewrite the system (2.11) as follows:

f1(V1, V2) = γ1d1
η2β2V2 + d1

· r

μ + β1V1 + β2V2
· β1

δ1 + s1

+ α1β2V2r

μ + β1V1 + β2V2
· β1

δ1 + s1
·
[

η2

η2β2V2 + d1
+ η1

η1β1V1 + d2

]
≡ 1.

and

f2(V1, V2) = γ2d2
η1β1V1 + d2

· r

μ + β1V1 + β2V2
· β2

δ2 + s2

+ α2β1V1r

μ + β1V1 + β2V2
· β2

δ2 + s2
·
[

η2

η2β2V2 + d1
+ η1

η1β1V1 + d2

]
≡ 1

We want to use f2(V1, V2) = 1 to express V2 = h(V1). Since f2(V1, V2) = 1 is a
decreasing function of V2, if there is a solution, that solution is unique. There will be
a solution if f2(V1, 0) > 1 for arbitrary V1. We have

f2(V1, 0) = γ2d2
η1β1V1 + d2

· r

μ + β1V1
· β2

δ2 + s2

+ α2β1V1r

μ + β1V1
· β2

δ2 + s2
·
[
η2

d1
+ η1

η1β1V1 + d2

]
.

Then,

f2(0, 0) = γ2
r

μ
· β2

δ2 + s2
= γ2β2

δ2 + s2
· r
μ

= R2 > 1,

and

f2(V
∗
1 , 0) = γ2d2

η1β1V ∗
1 + d2

· r

μ + β1V ∗
1

· β2

δ2 + s2

+ α2β1V ∗
1 r

μ + β1V ∗
1

· β2

δ2 + s2
·
[
η2

d1
+ η1

η1β1V ∗
1 + d2

]
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= γ2d2β2x∗
1

(δ2 + s2)
(
d2 + η1β1V ∗

1

) + α2β2η2

(δ2 + s2)
· y∗

1

+ η1β1V ∗
1 · α2β2x∗

1

(δ2 + s2)
(
d2 + η1β1V ∗

1

)

= R
1
2 > 1.

Therefore, we only need to prove f2(V1, 0) > 1. From f2(V1, 0) > 1, we can get

β2

δ2 + s2

[
γ2d2 · rd1 + α2β1V1r (η2d2 + η1η2β1V1 + η1d1)

]

> d1
[
d2μ + (d2β1 + μη1β1) V1 + η1β

2
1V

2
1

]
. (2.12)

If we want to get (2.12), we need to consider the following two cases.
Case 1: If

β2

δ2 + s2
· α2β1r · η1η2β1 > d1η1β

2
1 ,

that is,

α2β2rη2
d1 (δ2 + s2)

> 1,

then we have

β2

δ2 + s2
· α2rη2

d1

[
d2 + η1

η2
d1

]
> d2 + μη1

since d1/η2 > μ is always true for real solutions. Here we use the truth that the death
rate for infected cells d1 is bigger than the natural death rate for healthy cells μ and
the probability η2 ≤ 1. Therefore,

β2

δ2 + s2
· α2β1r · η2d2 + β2

δ2 + s2
· α2β1r · η1d1 > d1 (d2β1 + μη1β1) .

This indicates that f2(V1, 0) > 1 for ∀V1. So there is a unique solution for all V1.
Case 2: If

α2rη2β2

d1 (δ2 + s2)
< 1,

we have

lim
V1→∞ f2(V1, 0) = α2rη2β2

d1 (δ2 + s2)
< 1.
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Then, there exists a Ṽ ∗
1 such that f2(V1, 0) > 1 for ∀V1 < Ṽ ∗

1 and f2(Ṽ ∗
1 , 0) = 1.

Then, there is a unique V2 for any V1 ∈ (0, Ṽ ∗
1 ) such that V2 = h(V1).

We define

F(V1) = f1(V1, h(V1)).

When V1 = 0, h(0) = V ∗
2 is the single strain 2 equilibrium. In fact,

f2(0, V2) = γ2β2

δ2 + s2
· r

μ + β2V2
= 1,

so

V2 = μ

β2

[
γ2β2

δ2 + s2
· r
μ

− 1

]
= μ

β2
[R2 − 1] = V ∗

2 .

We have

F(0) = f1(0, V
∗
2 )

= γ1d1
η2β2V ∗

2 + d1
· r

μ + β2V ∗
2

· β1

δ1 + s1

+ α1β2V ∗
2 r

μ + β2V ∗
2

· β1

δ1 + s1

[
η2

η2β2V ∗
2 + d1

+ η1

d2

]

= γ1d1β1x∗
2

(δ1 + s1)
(
η2β2V ∗

2 + d1
) + α1β2V ∗

2 · β1x∗
2η2

(δ1 + s1)
(
η2β2V ∗

2 + d1
) + α1η1β1

δ1 + s1
· y∗

2

= R
2
1 > 1.

Let V2 = 0 = h(Ṽ ∗
1 ), then

F(Ṽ ∗
1 ) = f1(Ṽ

∗
1 , 0) = γ1β1r

(δ1 + s1)
(
μ + β1V ∗

1

)

<
γ1r

μ + β1V ∗
1

· β1

δ1 + s1
= γ1r

μR1
· β1

δ1 + s1

= γ1r

γ1β1r
· δ1 + s1
δ1 + s1

· β1 = 1.

To show Ṽ ∗
1 > V ∗

1 , we assume that Ṽ ∗
1 < V ∗

1 ; then, there are two values Ṽ ∗
1 ,

≈
V ∗
1

which satisfy f2(V1, 0) = 1.

f2(V1, 0) = β2

δ2 + s2

[
γ2d2rd1 + α2β1V1r [η2 (d2 + η1β1V1) + η1d1]

d1 (d2 + η1β1V1) (μ + β1V1)

]
= 1,

that is,
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β2

δ2 + s2

[
γ2d2rd1 + α2β1V1r [η2 (d2 + η1β1V1) + η1d1]

]

= d1 (d2 + η1β1V1) (μ + β1V1)

has two positive real solutions in the interval (0, V ∗
1 ).

We can rewrite the above equation aboutV1 as a quadratic equation of one unknown:

AV 2
1 + BV1 + C = 0,

where

A = β2

δ2 + s2
α2β1rη1η2β1 − d1η1β

2
1 < 0,

C = β2

δ2 + s2
γ2d2rd1 − d1d2μ = d1d2μ [R2 − 1] > 0.

Therefore, C/A < 0, this means that there is only one positive solution for the
quadratic equation of one unknown. This conclusion contradicts the hypothesis. Thus,
we have Ṽ ∗

1 > V ∗
1 and f2(V1, 0) > 1 for ∀V1 < Ṽ ∗

1 . For any V1 ∈ (0, Ṽ ∗
1 ), there

exists a unique V2 such that f1(V1, V2) = 1, f2(V1, V2) = 1.

Proposition 2.2 Assume R j > 1, j = 1, 2 and R
2
1 > 1,R1

2 > 1. Then, (2.6) has a
co-existence equilibrium.

3 The Immuno-epidemiological Model with Coinfection

In this section, we introduce a two-strain epidemiological model with coinfection.
S(t) denotes the number of susceptible human individuals, where t is the chronological
time.We stratify the infectious individuals by age-since-infection τ . Let ik(τ, t) be the
density of individuals infected by strain k. Individuals in the class ik(τ, t) experience
the same within-host dynamics given by model (2.1) with the initial condition of
the other strain and the coinfected class set to zero. We use j(τ, t) to denote the
density of individuals coinfected by the two stains. These individual experiencewithin-
host dynamics given by (2.1). The two-strain immuno-epidemiological model with
coinfection is given by the following system. The flowchart is shown in Fig. 1.

dS

dt
= 
 − S

N

∫ ∞

0
β1 (τ ) (i1 + q1 j) dτ − S

N

∫ ∞

0
β2 (τ ) (i2 + q2 j) dτ − m0S

∂i1
∂τ

+ ∂i1
∂t

= −m1 (V1(τ )) i1(τ, t) − ρ12

∫ ∞

0
β2 (τ ) (i2 + q2 j) dτ · i1

N
+ θ2P2 j

i1(0, t) = S

N

∫ ∞

0
β1(τ ) (i1 + q1 j) dτ

∂i2
∂τ

+ ∂i2
∂t

= −m2 (V2(τ )) i2(τ, t) − ρ21

∫ ∞

0
β1 (τ ) (i1 + q1 j) dτ · i2

N
+ θ1P1 j
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i2(0, t) = S

N

∫ ∞

0
β2(τ ) (i2 + q2 j) dτ

∂ j

∂τ
+ ∂ j

∂t
= −m j (V1, V2) j − θ1P1 j − θ2P2 j

j(0, t) = ρ12

N

∫ ∞

0
β2(τ ) (i2 + q2 j) dτ ·

∫ ∞

0
i1(τ, t)dτ

+ρ21

N

∫ ∞

0
β1(τ ) (i1 + q1 j) dτ ·

∫ ∞

0
i2(τ, t)dτ (3.1)

Descriptions of the variables andparameters of the abovemodel are found inTable 2.
In model (3.1), 
 is the recruitment rate, and m0 = mk(0) is the natural death

rate of susceptible hosts at zero viral load. The infected hosts die at a variable rate
dependent on their viral load mk (Vk(τ )), where Vk(τ ) is the viral load of the strain k.
Hence, we will assume that the mortality of the infected hosts is

mk (Vk(τ )) = m0 + mkVk(τ ),

where k = 1, 2 denotes strain k and mkVk(τ ) is the additional host mortality due to
the virus. The mortality rate of hosts coinfected by the two strains is m j (V1, V2) =
m0+m̃1V1+m̃2V2. The transmission coefficient of the diseaseβk(τ ) is also dependent
on the within-host viral load. We suppose that βk(τ ) is proportional to the viral load
at a given age-since-infection τ , that is,

βk(τ ) = βk (Vk(τ )) = ckVk(τ ).

The parameters qk denote the probability of successful transmission. The total popu-
lation size is given by the sum of all classes:

N (t) = S(t) +
∫ ∞

0
i1(τ, t)dτ +

∫ ∞

0
i2(τ, t)dτ +

∫ ∞

0
j(τ, t)dτ.

The parameters Pk take on values zero and one and control the direction of the
co-infection. They are the modeling tools for scaling up the outcome of within-host
competition to the between-host interactions. The values of Pk rely on the size of the
invasion reproduction numbers R2

1 and R1
2. They can be expressed as follows:

P1 =
{
0 if R1

2 < 1,

1 if R1
2 > 1, R2

1 < 1.
P2 =

{
0 if R2

1 < 1,

1 if R2
1 > 1, R1

2 < 1.

If R2
1 > 1 and R1

2 > 1, P1 = P2 = 0. The parameters P1 and P2 are not probabilities,
but a binary tool to capture two symmetric models in one. Flowchart of the model is
given in Fig. 1.
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The epidemiological reproduction number of strain k in system (3.1) is given by
the following expression:

Rk =
∫ ∞

0
βk(τ )e− ∫ τ

0 mk (Vk (σ ))dσdτ. (3.2)

The system (3.1) has one disease-free equilibrium and two strain dominance equi-
libria. The disease-free equilibrium always exists and is given by

E0 = (S∗
0 , 0, 0, 0),

where

S∗
0 = 


m0
.

We assume that the stain 1 dominance equilibrium is E1 = (S∗
1 , i

∗
1 , 0, 0). Then E1

satisfies the following equations:

0 = 
 − S∗
1

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ − m0S

∗
1

di∗1 (τ )

dτ
= −m1(V1(τ ))i∗1

i∗1 (0) = S∗
1

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ (3.3)

From the second and third equations in Eq. (3.3), we obtain

i∗1 (τ ) = i∗1 (0)e− ∫ τ
0 m1(V1(σ ))dσ .

Replacing i∗1 (τ ) in the equation for i∗1 (0), we have

i∗1 (0) = S∗
1

N∗
1

∫ ∞

0
β1(τ )i∗1 (0)e− ∫ τ

0 m1(V1(σ ))dσdτ

= i∗1 (0)
S∗
1

N∗
1

∫ ∞

0
β1(τ )e− ∫ τ

0 m1(V1(σ ))dσdτ.

Eliminating i∗1 (0), we then have

S∗
1

N∗
1

= 1∫ ∞
0 β1(τ )e− ∫ τ

0 m1(V1(σ ))dσdτ
.

Because

S∗
1

N∗
1

+
∫ ∞
0 i∗1 (τ )dτ

N∗
1

= 1,
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we have

∫ ∞
0 i∗1 (τ )dτ

N∗
1

=
∫ ∞
0 i∗1 (0)e− ∫ τ

0 m1(V1(σ ))dσdτ

N∗
1

= 1 − S∗
1

N∗
1

= 1 − 1

R1
.

From the first and third equations in (3.3), we obtain


 − i∗1 (0) − m0S
∗
1 = 0.

Dividing both sides of the equation by N∗
1 and substituting

S∗
1

N∗
1
and

i∗1 (0)
N∗
1
, we can get




N∗
1

= 1∫ ∞
0 e− ∫ τ

0 m1(V1(σ ))dσdτ

(
1 − 1

R1

)
+ m0

1

R1
.

The solution is

N∗
1 = 
ρ1R1

m0ρ1 + R1 − 1
,

where ρ1 = ∫ ∞
0 e− ∫ τ

0 m1(V1(σ ))dσdτ . Therefore, the components of the strain 1 domi-
nance equilibrium are

S∗
1 = 
ρ1

m0ρ1 + R1 − 1
, i∗1 (τ ) = 
(R1 − 1)

m0ρ1 + R1 − 1
e− ∫ τ

0 m1(V1(σ ))dσ

where

i∗1 (0) = 
(R1 − 1)

m0ρ1 + R1 − 1
.

Similarly, the strain 2 dominance equilibrium is

S∗
2 = 
ρ2

m0ρ2 + R2 − 1
, i∗2 (τ ) = 
(R2 − 1)

m0ρ2 + R2 − 1
e− ∫ τ

0 m2(V2(σ ))dσ

where

i∗2 (0) = 
(R2 − 1)

m0ρ2 + R2 − 1
, ρ2 =

∫ ∞

0
e− ∫ τ

0 m2(V2(σ ))dσdτ,

and

N∗
2 = 
ρ2R2

m0ρ2 + R2 − 1
.

We consider the equilibrium (S∗, 0, 0, j∗). But through our analysis of the model,
we can see that this is impossible.
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Next,we study the linearized equations of the disease-free equilibrium.To introduce
the linearization at the disease-free equilibrium E0, let S(t) = S∗

0 + x(t), i1(τ, t) =
z1(τ, t), i2(τ, t) = z2(τ, t), j(τ, t) = w(τ, t). The linearized system is

dx

dt
= − S∗

0

N∗
0

∫ ∞

0
β1(τ ) (z1(τ, t) + q1w(τ, t)) dτ

− S∗
0

N∗
0

∫ ∞

0
β2(τ ) (z2(τ, t) + q2w(τ, t)) dτ − m0x

∂z1
∂τ

+ ∂z1
∂t

= −m(V1(τ ))z1(τ, t)

z1(0, t) = S∗
0

N∗
0

∫ ∞

0
β1(τ ) (z1(τ, t) + q1w(τ, t)) dτ

∂z2
∂τ

+ ∂z2
∂t

= −m(V2(τ ))z2(τ, t)

z2(0, t) = − S∗
0

N∗
0

∫ ∞

0
β2(τ ) (z2(τ, t) + q2w(τ, t)) dτ

∂w

∂τ
+ ∂w

∂t
= −m j (V1, V2)w(τ, t)

w(0, t) = 0 (3.4)

We look for solutions of the form x(t) = x̄eλt , z1(τ, t) = z̄1(τ )eλt , z2(τ, t) =
z̄2(τ )eλt , w(τ, t) = w̄(τ )eλt . Then, from the last two equations of the system (3.4),
we have w̄(τ ) = 0. In addition, we obtain

dz̄k(τ )

dt
= −λz̄k(τ ) − mk(Vk(τ ))z̄k(τ )

z̄k(0) = S∗
0

N∗
0

∫ ∞

0
βk(τ )z̄k(τ )dτ

where S∗
0/N

∗
0 = 1. The solution of the differential equation is

z̄k(τ ) = z̄k(0)e
−λτ−∫ τ

0 mk (Vk (σ ))dσ .

Replacing z̄k(τ ) in the equation for z̄k(0), we obtain the following characteristic equa-
tion for strain k:Hk(λ) = 1, where

Hk(λ) =
∫ ∞

0
βk(τ )e−λτ−∫ τ

0 mk (Vk (σ ))dσdτ (3.5)

Therefore, we have the following result.

Proposition 3.1 If max {R1,R2} < 1, then the disease-free equilibrium is locally
asymptotically stable. If max {R1,R2} > 1, it is unstable.
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Proof Assume

max {R1,R2} < 1.

Consider λ with �λ ≥ 0 and for such λ and each k, we have

|Hk(λ)| ≤ Hk(�λ) ≤ Hk(0) = Rk < 1.

Hence, �λ < 0, in other words, the solutions of the equations Hk(λ) = 1 have
negative real part. Thus, the disease-free equilibrium is locally asymptotically stable.

Now we assume

max {R1,R2} = Rk > 1.

If λ = 0, and k is fixed, then we have Hk(0) = Rk > 1. In addition,

lim
λ→∞Hk(λ) = 0.

Therefore, the equation Hk(λ) = 1 has a real positive root. That is, the disease-free
equilibrium is unstable. �

To study the local stability of the strain k dominance equilibrium Ek for a fixed k,
we recall that the equilibrium Ek exists if and only if the basic reproduction number
corresponding to this strainRk is greater than 1. So we assume thatRk > 1 for a fixed
k. What is more, the local stability of the strain k dominance equilibrium depends on
the invasion reproduction numbersR2

1 andR1
2 for each of the strains. We can give the

expression of the invasion reproduction numbers of the first and the second strains:

R2
1 = S∗

2

N∗
2

∫ ∞

0
β1(τ )e−ρ12B2τ−∫ τ

0 m1(V1(σ ))dσdτ

+q1

(
ρ21

N∗
2

∫ ∞

0
i∗2 (τ )dτ + ρ12B2

S∗
2

N∗
2

· B̃2

) ∫ ∞

0
β1(τ )e− ∫ τ

0 m j (V1,V2)dσ e−θ1P1τdτ

R1
2 = S∗

1

N∗
1

∫ ∞

0
β2(τ )e−ρ21B1τ−∫ τ

0 m2(V2(σ ))dσdτ

+q2

(
ρ12

N∗
1

∫ ∞

0
i∗1 (τ )dτ + ρ21B1

S∗
1

N∗
1

· B̃1

)∫ ∞

0
β2(τ )e− ∫ τ

0 m j (V1,V2)dσ e−θ2P2τdτ

(3.6)

where

B̃1 =
∫ ∞

0
e− ∫ τ

0 (m2(V2(σ ))+ρ21B1)dσdτ, B1 = 1

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ,

B̃2 =
∫ ∞

0
e− ∫ τ

0 (m1(V1(σ ))+ρ12B2)dσdτ, B2 = 1

N∗
2

∫ ∞

0
β2(τ )i∗2 (τ )dτ.
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The invasion number of the strain two at the equilibrium of strain one R1
2 gives the

number of secondary infections one individual infected with strain twowill produce in
a population in which strain one is at equilibrium during her/his lifetime as infectious.

The results on the local stability of the strain k dominance equilibrium Ek are
summarized as follows

Proposition 3.2 Assume for a fixed k, Rk > 1. If Rk
i < 1, for i, k = 1, 2, and i �= k,

then the strain k dominance equilibrium Ek is locally asymptotically stable. IfRk
i > 1,

the strain k dominance equilibrium Ek is unstable.

Proof In order to simplify the proof process, we will assume without loss of general-
ity that k = 1, that is, R1 > 1. We study the linearized equations around the strain
one dominance equilibrium E1. We introduce the following notation for the pertur-
bations S(t) = S∗

1 + x(t), i1(τ, t) = i∗1 (τ ) + z1(τ, t), i2(τ, t) = z2(τ, t), j(τ, t) =
w(τ, t), N = N∗

1 + n. The linearized system around the strain one dominance equi-
librium E1 becomes

dx

dt
= − x

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ − S∗

1

N∗
1

∫ ∞

0
β1(τ )z1(τ, t)dτ

+ S∗
1

N∗
1

· n

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ − S∗

1

N∗
1
q1

∫ ∞

0
β1(τ )w(τ, t)dτ

− S∗
1

N∗
1

∫ ∞

0
β2(τ ) (z2(τ, t) + q2w(τ, t)) − m0x

∂z1
∂τ

+ ∂z1
∂t

= −m1(V1(τ ))z1(τ, t) − ρ12

N∗
1

∫ ∞

0
β2(τ ) (z2(τ, t) + q2w(τ, t)) dτ · i∗1 (τ )

+θ2P2w(τ, t)

z1(0, t) = x

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ + S∗

1

N∗
1

∫ ∞

0
β1(τ )z1(τ, t)dτ

− S∗
1

N∗
1

· n

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ + S∗

1

N∗
1
q1

∫ ∞

0
β1(τ )w(τ, t)dτ

∂z2
∂τ

+ ∂z2
∂t

= −m2(V2(τ ))z2(τ, t) − ρ21

N∗
1

∫ ∗

0
β1(τ )i∗1 (τ )dτ · z2(τ, t) + θ1P1w(τ, t)

z2(0, t) = S∗
1

N∗
1

∫ ∞

0
β2(τ ) (z2(τ, t) + q2w(τ, t)) dτ

∂w

∂τ
+ ∂w

∂t
= −m j (V1, V2)w(τ, t) − θ1P1w(τ, t) − θ2P2w(τ, t)

w(0, t) = ρ12

N∗
1

∫ ∞

0
β2(τ ) (z2(τ, t) + q2w(τ, t)) dτ ·

∫ ∞

0
i∗1 (τ )dτ

+ρ21

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ ·

∫ ∞

0
z2(τ, t)dτ (3.7)

We look for exponential solutions of the form x(t) = xeλt , zk(τ, t) =
zk(τ )eλt , w(τ, t) = w(τ)eλt . We are considering the case when the immune sys-
tem is converging to strain 1 equilibrium, that is, P1 = 0 and P2 �= 0. Substituting
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z2(τ, t) = z2(τ )eλt , w(τ, t) = w(τ)eλt into the differential equations of z2 and w,
we can obtain the following linear ordinary differential system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz2(τ )

dτ
= −λz2(τ ) − m2(V2(τ ))z2(τ ) − ρ21 · 1

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ · z2(τ )

z2(0) = S∗
1

N∗
1

∫ ∞

0
β2(τ ) (z2(τ ) + q2w(τ)) dτ

dw(τ)

dτ
= −λw(τ) − m j (V1, V2)w(τ) − θ2P2w(τ)

w(0) = ρ12

N∗
1

∫ ∞

0
β2(τ ) (z2(τ ) + q2w(τ)) dτ ·

∫ ∞

0
i∗1 (τ )dτ

+ ρ21

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ ·

∫ ∞

0
z2(τ )dτ

(3.8)

Let

Z = 1

N∗
1

∫ ∞

0
β2(τ ) (z2(τ ) + q2w(τ)) dτ.

By solving Eq. (3.8), we can get

z2(τ ) = S∗
1 Z · e− ∫ τ

0 (λ+m2(V2(σ ))+ρ21B1)dσ

w(τ) =
[
ρ12Z ·

∫ ∞

0
i∗1 (τ )dτ + ρ21B1S

∗
1 Z

∫ ∞

0
e−λτ e− ∫ τ

0 (m2(V2(σ ))+ρ21B1)dσdτ

]

· e−λτ−θ2P2τ−∫ τ
0 m j (V1,V2)dσ

Note

∫ ∞

0
e−λτ e− ∫ τ

0 (m2(V2(σ ))+ρ21B1)dσdτ = B̃1(λ).

Substituting z2(τ ), w(τ) into Z and simplifying, we get

Z = S∗
1

N∗
1
Z ·

∫ ∞

0
β2(τ )e−λτ e− ∫ τ

0 (m2(V2(σ ))+ρ21B1)dσdτ

+ q2

(
ρ12

N∗
1
Z

∫ ∞

0
i∗1 (τ )dτ + ρ21B1

S∗
1

N∗
1
Z B̃1(λ)

)

∫ ∞

0
β2(τ )e−λτ−θ2P2τ e− ∫ τ

0 m j (V1,V2)dσdτ
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We can get rid of Z on both sides of this equation and obtain the following charac-
teristic equation

1 = S∗
1

N∗
1

·
∫ ∞

0
β2(τ )e−λτ e− ∫ τ

0 (m2(V2(σ ))+ρ21B1)dσdτ

+ q2

(
ρ12

N∗
1

∫ ∞

0
i∗1 (τ )dτ + ρ21B1

S∗
1

N∗
1
B̃1(λ)

)

∫ ∞

0
β2(τ )e−λτ−θ2P2τ e− ∫ τ

0 m j (V1,V2)dσdτ (3.9)

We denote the right-hand side of the equation with L1(λ), that is,

L1(λ) = S∗
1

N∗
1

·
∫ ∞

0
β2(τ )e−λτ e− ∫ τ

0 (m2(V2(σ ))+ρ21B1)dσdτ

+ q2

(
ρ12

N∗
1

∫ ∞

0
i∗1 (τ )dτ + ρ21B1

S∗
1

N∗
1
B̃1(λ)

)

∫ ∞

0
β2(τ )e−λτ−θ2P2τ e− ∫ τ

0 m j (V1,V2)dσdτ

We can find that L1(λ) is a decreasing function of λ for λ is real. Moreover,

lim
λ→∞L1(λ) = 0,

and L1(0) = R1
2. If R1

2 > 1, then Eq. (3.9) has at least one positive real root. Hence,
the strain one dominance equilibrium E1 is unstable. If R1

2 < 1, for λ with �λ ≥ 0,
then we have

|L1(λ)| ≤ L1(�λ) ≤ L1(0) < 1.

Therefore, all the eigenvalues of the equation L1(λ) = 1 have negative real part. In
addition, the stability of E1 also depends on the eigenvalues of the following system

λx = − x

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ − S∗

1

N∗
1

∫ ∞

0
β1(τ )z1(τ )dτ

+ S∗
1

N∗
1

· n

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ − m0x

dz1(τ )

dτ
= −λz1(τ ) − m1(V1(τ ))z1(τ )

z1(0) = x

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ + S∗

1

N∗
1

∫ ∞

0
β1(τ )z1(τ )dτ

− S∗
1

N∗
1

· n

N∗
1

∫ ∞

0
β1(τ )i∗1 (τ )dτ (3.10)
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Solving the differential equation, we obtain

z1(τ ) = z1(0)e
−λτ−∫ τ

0 m1(V1(σ ))dσ .

To facilitate the calculation, we apply the notation

ρ1(λ) =
∫ ∞

0
e−λτ−∫ τ

0 m1(V1(σ ))dσdτ

R1(λ) =
∫ ∞

0
β1(τ )e−λτ−∫ τ

0 m1(V1(σ ))dσdτ.

From the first and third equations in Eq. (3.10), we obtain

λx = −z1(0) − m0x .

The solution is

x = − z1(0)

λ + m0
. (3.11)

Moreover, linearizing the equation for the total population size

N = S +
∫ ∞

0
i1(τ, t)dτ +

∫ ∞

0
i2(τ, t)dτ +

∫ ∞

0
j(τ, t)dτ,

we have

n = x +
∫ ∞

0
z1(τ )dτ,

that is,

n = − z1(0)

λ + m0
+ z1(0)ρ1(λ). (3.12)

Substituting (3.11) and (3.12) in the equation for z1(0) and canceling z1(0) from
both sides of the resulting equation, we can obtain the characteristic equation for λ:
F1(λ) = 1, where

F1(λ) = 1

λ + m0
· i

∗
1 (0)

N∗
1

[
1 − N∗

1

S∗
1

]
− i∗1 (0)

N∗
1

ρ1(λ) + S∗
1

N∗
1
R1(λ).

From β1(τ ) = c1V1(τ ) and m1(V1(τ )) = m0 +m1V1(τ ) and integration by parts, we
have
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R1(λ) =
∫ ∞

0
β1(τ )e−λτ−∫ τ

0 m1(V1(σ ))dσdτ

= c1

∫ ∞

0
V1(τ )e−(λ+m0)τ e−m1

∫ τ
0 V1(σ )dσdτ

= c1
m1

[1 − (λ + m0) ρ1(λ)] .

Then we can obtain

ρ1(λ) = 1

λ + m0

[
1 − m1

c1
R1(λ)

]
.

For λ = 0, we have

R1 = c1
m1

[1 − m0ρ1] .

Besides, from the previous calculation, we know that

S∗
1

N∗
1

= 1

R1
,

i∗1 (0)
N∗
1

= R1 − 1

R1ρ1
.

Substituting above result in Equation F1(λ) = 1, we get

λ + m0 + (R1 − 1) /ρ1

λ + m0 + (m1/c1) (R1 − 1) /ρ1
= 1

R1
R1(λ).

Because R1 > 1 implies m1/c1 < 1, we have

∣∣∣∣
λ + m0 + (R1 − 1) /ρ1

λ + m0 + (m1/c1) (R1 − 1) /ρ1

∣∣∣∣ > 1.

On the other hand, for λ with �λ ≥ 0,

∣∣∣∣
1

R1
R1(λ)

∣∣∣∣ ≤ 1

R1
R1(�λ) <

1

R1
R1(0) = 1.

Therefore, the characteristic equation F1(λ) = 1 only has solutions with negative
real parts. That is, the strain one dominance equilibrium E1 is locally asymptotically
stable. This completes the proof. �

From the above discussion, we saw that if for exactly one strain the corresponding
basic reproduction number and invasion reproduction number are greater than one, the
disease becomes endemic and the single-strain equilibrium will be locally asymptot-
ically stable. If all reproduction numbers are less than one, all strains are eliminated
and the disease dies out. Moreover, this conclusion can also extended to the case of
multiple strains.
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4 Existence of Coexistence Equilibrium

In this section, we discuss the existence of an coexistence equilibrium for which both
strains are present with coinfection.We consider the coexistence equilibriumwhen the
two basic reproduction numbers Rk and the two invasion reproduction numbers Rk

j
corresponding to each strain are all greater than one. In this case, P1 = P2 = 0. We
assume E∗ = (S∗, i∗1 (τ ), i∗2 (τ ), j∗(τ )) is the coexistence equilibrium of the system
(3.1). The coexistence equilibrium satisfies the following equations

0 = 
 − S∗

N∗

∫ ∞

0
β1(τ )

(
i∗1 (τ ) + q1 j

∗(τ )
)
dτ

− S∗

N∗

∫ ∞

0
β2(τ )

(
i∗2 (τ ) + q2 j

∗(τ )
)
dτ − m0S

∗

di∗1 (τ )

dτ
= −m1(V1(τ ))i∗1 (τ ) − ρ12

∫ ∞

0
β2(τ )

(
i∗2 (τ ) + q2 j

∗(τ )
)
dτ · i

∗
1 (τ )

N∗

i∗1 (0) = S∗

N∗

∫ ∞

0
β1(τ )

(
i∗1 (τ ) + q1 j

∗(τ )
)
dτ

di∗2 (τ )

dτ
= −m2(V2(τ ))i∗2 (τ ) − ρ21

∫ ∞

0
β1(τ )

(
i∗1 (τ ) + q1 j

∗(τ )
)
dτ · i

∗
2 (τ )

N∗

i∗2 (0) = S∗

N∗

∫ ∞

0
β2(τ )

(
i∗2 (τ ) + q2 j

∗(τ )
)
dτ

d j∗(τ )

dτ
= −m j (V1, V2) j

∗(τ )

j∗(0) = ρ12

N∗

∫ ∞

0
β2(τ )

(
i∗2 (τ ) + q2 j

∗(τ )
)
dτ ·

∫ ∞

0
i∗1 (τ )dτ

+ρ21

N∗

∫ ∞

0
β1(τ )

(
i∗1 (τ ) + q1 j

∗(τ )
)
dτ ·

∫ ∞

0
i∗2 (τ )dτ (4.1)

where m j (V1, V2) = m0 + m̃1V1 + m̃2V2.
Define

Q1 = 1

N∗

∫ ∞

0
β1(τ )

(
i∗1 (τ ) + q1 j

∗(τ )
)
dτ,

Q2 = 1

N∗

∫ ∞

0
β2(τ )

(
i∗2 (τ ) + q2 j

∗(τ )
)
dτ,

then the system (4.1) becomes

0 = 
 − S∗Q1 − S∗Q2 − m0S
∗

di∗1 (τ )

dτ
= −m1(V1(τ ))i∗1 (τ ) − ρ12Q2i

∗
1 (τ )

i∗1 (0) = S∗Q1

di∗2 (τ )

dτ
= −m2(V2(τ ))i∗2 (τ ) − ρ21Q1i

∗
2 (τ )
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i∗2 (0) = S∗Q2

d j∗(τ )

dτ
= −m j (V1, V2) j

∗(τ )

j∗(0) = ρ12Q2 ·
∫ ∞

0
i∗1 (τ )dτ + ρ21Q1 ·

∫ ∞

0
i∗2 (τ )dτ (4.2)

We solve Eq. (4.2) and obtain

S∗ = 


Q1 + Q2 + m0

i∗1 (τ ) = S∗Q1e
− ∫ τ

0 (m1(V1(σ ))+ρ12Q2)dσ = S∗Q1e
−ρ12Q2τ e− ∫ τ

0 m1(V1(σ ))dσ

i∗2 (τ ) = S∗Q2e
− ∫ τ

0 (m2(V2(σ ))+ρ21Q1)dσ = S∗Q2e
−ρ21Q1τ e− ∫ τ

0 m2(V2(σ ))dσ

j∗(τ ) =
(

ρ12Q2 ·
∫ ∞

0
i∗1 (τ )dτ + ρ21Q1 ·

∫ ∞

0
i∗2 (τ )dτ

)
e− ∫ τ

0 m j (V1,V2)dσ

First, substituting i∗1 (τ ), i∗2 (τ ) in the expression of j∗(τ ), we have

j∗(τ ) =
(
ρ12Q2 · S∗Q1

∫ ∞

0
e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ

+ ρ21Q1 · S∗Q2

∫ ∞

0
e−ρ21Q1τ−∫ τ

0 m2(V2(σ ))dσdτ
)
e− ∫ τ

0 m j (V1,V2)dσ

Next, we substitute i∗1 (τ ), j∗(τ ) in the expression of Q1 and obtain

Q1 = 1

N∗

[
S∗Q1

∫ ∞

0
β1(τ )e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ

+ q1Q1Q2S
∗(ρ12

∫ ∞

0
e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ

+ ρ21

∫ ∞

0
e−ρ21Q1τ−∫ τ

0 m2(V2(σ ))dσdτ
)

·
∫ ∞

0
β1(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
.

Let

f1(Q2) =
∫ ∞

0
β1(τ )e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ,

g1(Q1, Q2) = q1Q2

(
ρ12

∫ ∞

0
e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ + ρ21

∫ ∞

0
e−ρ21Q1τ−∫ τ

0 m2(V2(σ ))dσdτ

)
,

then

Q1 = S∗

N∗ Q1

[
f1(Q2) + g1(Q1, Q2)

∫ ∞

0
β1(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
.
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Canceling Q1, we can get

1 = S∗

N∗

[
f1(Q2) + g1(Q1, Q2)

∫ ∞

0
β1(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
.

Similarly, we can also obtain

1 = S∗

N∗

[
f2(Q1) + g2(Q1, Q2)

∫ ∞

0
β2(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
.

To determine the expression of N∗, we note m̃1 = q1m1, m̃2 = q2m2, then

dN

dt
= 
 − m0S − m0

∫ ∞

0
i1(τ, t)dτ − m1

c1

∫ ∞

0
c1V1(τ )i1(τ, t)dτ

− m0

∫ ∞

0
i2(τ, t)dτ − m2

c2

∫ ∞

0
c2V2(τ )i2(τ, t)dτ − m0

∫ ∞

0
j(τ, t)dτ

− q1m1

c1q1

∫ ∞

0
q1c1V1(τ ) j(τ, t)dτ − q2m2

c2q2

∫ ∞

0
q2c2V2(τ ) j(τ, t)dτ.

Simplifying the above equation, we get

dN

dt
= 
 − m0

(
S +

∫ ∞

0
i1(τ, t)dτ +

∫ ∞

0
i2(τ, t)dτ +

∫ ∞

0
j(τ, t)dτ

)

− m1

c1

∫ ∞

0
c1V1(τ ) (i1(τ, t) + q1 j(τ, t)) dτ

− m2

c2

∫ ∞

0
c2V2(τ ) (i2(τ, t) + q2 j(τ, t)) dτ.

It follows that

0 = 
 − m0N
∗ − m1

c1
Q1N

∗ − m2

c2
Q2N

∗.

The solution is

N∗ = 


m0 + α1Q1 + α2Q2
, where α1 = m1

c1
, α2 = m2

c2
.

Therefore, the coexistence equilibrium satisfies the following equations

1 = S∗

N∗

[
f1(Q2) + g1(Q1, Q2)

∫ ∞

0
β1(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
,

1 = S∗

N∗

[
f2(Q1) + g2(Q1, Q2)

∫ ∞

0
β2(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
,

(4.3)
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where

f2(Q1) =
∫ ∞

0
β2(τ )e−ρ21Q1τ−∫ τ

0 m2(V2(σ ))dσ ,

g2(Q1, Q2) = q2Q1

(
ρ21

∫ ∞

0
e−ρ21Q1τ−∫ τ

0 m2(V2(σ ))dσdτ + ρ12

∫ ∞

0
e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ

)
.

Setting

F1(Q1, Q2) = S∗

N∗

[
f1(Q2) + g1(Q1, Q2)

∫ ∞

0
β1(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
,

F2(Q1, Q2) = S∗

N∗

[
f2(Q1) + g2(Q1, Q2)

∫ ∞

0
β2(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

]
.

Then, we need to show that the equation F1(Q1, Q2) = 1 and F2(Q1, Q2) = 1 have
real solutions. From the above equations, we can observe that F1(Q1, Q2) decreases
with respect to Q1 and F2(Q1, Q2) decreases with respect to Q2. From the expression
of S∗ and N∗, we have

S∗

N∗ = m0 + α1Q1 + α2Q2

m0 + Q1 + Q2
.

Let C1 = ∫ ∞
0 β1(τ )e− ∫ τ

0 m j (V1,V2)dσdτ , C2 = ∫ ∞
0 β2(τ )e− ∫ τ

0 m j (V1,V2)dσdτ . Hence,

F1(0, 0) =
∫ ∞

0
β1(τ )e− ∫ τ

0 m1(V1(σ ))dσdτ = R1 > 1,

F1(0, Q2) = m0 + α2Q2

m0 + Q2
[ f1(Q2) + g1(0, Q2)C1] .

Since Q∗
2 = (R2 − 1)/ρ2 = B2, then

F1(0, Q
∗
2) = S∗

2

N∗
2

[ ∫ ∞

0
β1(τ )e−ρ12B2τ−∫ τ

0 m1(V1(σ ))dσdτ

+ q1

∫ ∞
0 β2(τ )i∗2 (τ )dτ

N∗
2

(
ρ12

∫ ∞

0
e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ

+ ρ21

∫ ∞

0
e− ∫ τ

0 m2(V2(σ ))dσdτ

)
C1

]

= S∗
2

N∗
2

∫ ∞

0
β1(τ )e−ρ12B2τ−∫ τ

0 m1(V1(σ ))dσdτ

+
[
q1

S∗
2

N∗
2

· R2 − 1

ρ2R2
R2 · ρ12

∫ ∞

0
e−ρ12Q2τ−∫ τ

0 m1(V1(σ ))dσdτ
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+ q1
1

R2
· i

∗
2 (0)

N∗
2

R2 · ρ21

∫ ∞

0
e− ∫ τ

0 m2(V2(σ ))dσdτ

]
C1

= S∗
2

N∗
2

∫ ∞

0
β1(τ )e−ρ12B2τ−∫ τ

0 m1(V1(σ ))dσdτ

+
(
q1

ρ21

N∗
2

∫ ∞

0
i∗2 (τ )dτ + q1ρ12B2

S∗
2

N∗
2

· B̃2

)
C1 = R2

1 > 1

We know that F1(Q1, Q2) is a decreasing function of Q1. If Q1 = 0, we have
F1(0, Q2) > 1 when Q2 = 0 and Q2 = Q∗

2. Suppose F1(0, Q2) < 1 for
Q2 ∈ (Q̃∗

21, Q̃
∗
22). In this interval, F1(Q1, Q2) < 1 for ∀Q1, that is, the equa-

tion F1(Q1, Q2) = 1 have no solution. Let Q1 = h(Q2), then we have h(Q̃∗
21) =

0, h(Q̃∗
22) = 0. Define

Q1 =
{
h(Q2) when Q2 /∈ (Q̃∗

21, Q̃
∗
22),

0 when Q2 ∈ (Q̃∗
21, Q̃

∗
22).

This function is continuous.
To show that F1(Q1, Q2) < 1 for any Q2 and for Q1 large enough, letting Q1 →

∞, we obtain

F1(∞, Q2) = α1 [ f1(Q2) + g1(∞, Q2)C1]

= α1

[
f1(Q2) + q1Q2ρ12

∫ ∞

0
e−ρ12Q2τ e− ∫ τ

0 m1(V1(σ ))dσdτ · C1

]

= α1

[
f1(Q2) + q1C1

(
− e− ∫ τ

0 m1(V1(σ ))dσ e−ρ12Q2τ
∣∣∣∞
0

−
∫ ∞

0
(m0 + m1V1(τ )) e− ∫ τ

0 m1(V1(σ ))dσ e−ρ12Q2τdτ
)]

= α1

[
f1(Q2) + q1C1

(
1 − m0

∫ ∞

0
e− ∫ τ

0 m1(V1(σ ))dσ e−ρ12Q2τdτ

)

− q1C1
m1

c1

∫ ∞

0
β1(τ )e− ∫ τ

0 m1(V1(σ ))dσ e−ρ12Q2τdτ

]

= α1 (1 − q1C1α1) f1(Q2)

+ α1q1C1

(
1 − m0

∫ ∞

0
e− ∫ τ

0 m1(V1(σ ))dσ e−ρ12Q2τdτ

)

≤ α1R1 (1 − q1C1α1) + α1q1C1

= α1 · 1 − m0ρ1

α1
(1 − q1C1α1) + α1q1C1

= 1 − m0ρ1 + m0ρ1 · q1C1α1.
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We can find that 1 − m0ρ1 + m0ρ1 · q1C1α1 < 1 if q1C1α1 < 1. In fact,

α1q1C1 = q1
m1

c1

∫ ∞

0
β1(τ )e− ∫ τ

0 m j (V1,V2)dσdτ

= q1
m1

c1

∫ ∞

0
c1V1(τ )e− ∫ τ

0 (m0+m̃1V1+m̃2V2)dσdτ

≤ q1

(
−

∫ ∞

0
e−m0τde− ∫ τ

0 m1(V1)dσ
)

= q1

(
1 − m0

∫ ∞

0
e− ∫ τ

0 m1(V1)dσ · e−m0τdτ

)

< q1 < 1.

That is, we have F1(∞, Q2) < 1. We can obtain that F1(Q1, Q2) = 1 has a positive
solution.

DefineG2(Q2) = F2(h(Q2), Q2).We can have F1(0, Q2) > 1. In this case, h(Q2)

is always defined and not equal to 0. Thus,

G2(0) = F2(h(0), 0) = F2(Q
∗
1, 0) = R1

2 > 1.

G2(Q2) = F2(h(Q2), Q2) = S∗

N∗ [ f2(h(Q2)) + g2(h(Q2), Q2)C2] .

When the limit of Q2 tends to infinity, the limit of Q1 also tends to infinity. In this
case, we can easily conclude that

lim
Q2→∞G2(Q2) < 1.

That is, we can conclude that the equation G2(Q2) = 1 has a positive solution. It is
easy to get Q2 corresponding to the value of Q1.

To summarize, this establishes the existence of positive solution of the system (4.3).
This conclusion can be stated as follows

Proposition 4.1 Assume R1 > 1,R2 > 1, and R2
1 > 1,R1

2 > 1. Then, the system
(3.1) has at least one coexistence equilibrium.

5 Simulation

In this section, we provide numerical simulations to confirm and extend our analytical
results. Most of the parameter values are chosen from our previous study (Martcheva
and Li 2013) (see Tables 1 and 2). Between-host disease transmission is our major
concern. It is influenced by the viral load of the infected individuals, which is deter-
mined by the parameters of the within-host model. Therefore, we are interested in
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Fig. 2 Prevalences of virions in within-host model (2.1) and its simplified form (2.6). All the parameters
are obtained from Table 1. The initial condition is (x0, y01 , y02 , y0, V 0

1 , V 0
2 ) = (100,000, 6, 6, 6, 200, 100).

(a) shows that the dynamics for V1 are almost the same for model (2.1) and (2.6). (b) shows the same result
for V2

the impact of within-host parameters on the immuno-epidemiological reproduction
numbers as well as the dynamics of the between host model. We studied analyti-
cally two within-host models, namely the original model (2.1) and its simplified form
(2.6). Figure 2 shows that there is almost no difference of the virion populations
for two models. Hence, we will only consider the simplified model (2.6) in the fol-
lowing simulations. In all simulations, we use the same within-host initial condition
(x0, y01 , y

0
2 , y

0, V 0
1 , V 0

2 )=(100000, 6, 6, 6, 200, 100).
First, we choose the clearance rate for virions with strain one δ1 as an example. We

start from looking at the influence of δ1 on within-host model. Figure 3 shows that
strain 1 dominant equilibrium is locally asymptotically stable for δ1 = 2, 3, 4, 5 and
strain 2 dominant equilibrium is locally asymptotically stable for δ1 = 6. This agrees
with the analysis results since δ1 = 2, 3, 4, 5 correspond to the invasion reproduction
numbers R1

2 < 1, R2
1 > 1, but δ1 = 6 leads to R1

2 > 1, R2
1 < 1. From Fig. 3a, d, we

can see that as δ1 increases from 2 to 5, the peak of infected cells with strain 1 y1 and
the peak of virus with strain 1 V1 are delayed. Figure 3d also shows that the peak of
V1 decreases as δ1 increases from 2 to 5.

Then, we look at the impact of δ1 on between-host level. From Fig. 4a, we can see
that in general as δ1 increases, the between host basic reproduction numberR1 and the
invasion reproduction numberR2

1 decrease, whileR2 andR1
2 increase. SinceR1,R2,

R1
2 and R2

1 are important indicators of disease transmission, this implies increasing
δ1 will depress the transmission of strain 1, but is helpful for the transmission of strain
2.

Figure 4b–e shows that as δ1 increases from 2 to 5, that increase causes only tiny
difference in all prevalences. These four cases result in strain 1 persisting. Another case
δ1 = 6 leads to strain 2 persisting. This is in accord with our analytical results. To be
more specific, δ1 = 2, 3 correspond to R1 > 1 and R2 < 1, δ1 = 4, 5 correspond to
R1 > 1,R2 > 1,R2

1 > 1,R1
2 < 1 (see Fig. 4a). In both scenarios, strain 1 dominant

equilibrium is locally asymptotically stable. However, δ1 = 6 corresponds toR1 > 1,
R2 > 1,R2

1 < 1,R1
2 > 1 (see Fig. 4a), which means strain 2 dominant equilibrium is
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Fig. 3 Prevalences of infected cells and virions in within-host model (2.6) for different values of clearance
rate for virionswith strain 1 δ1.All the other parameters are obtained fromTable 1. The initial condition is the
same as Fig. 2. For δ1 = 2, 3, 4, 5, thewithin-host basic reproduction numbers R1 > 1, R2 > 1, the invasion
reproduction numbers R1

2 < 1, R2
1 > 1, strain 1 dominant equilibrium is locally asymptotically stable. For

δ1 = 6, R1 > 1, R2 > 1, R1
2 > 1, R2

1 < 1, strain 2 dominant equilibrium is locally asymptotically stable
(Color figure online)
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Fig. 4 a Epidemiological basic reproduction numbersR1,R2 and invasion reproduction numbersR1
2,R2

1
for the model (3.1) with respect to δ1. b–e The prevalences of individuals infected with strain 1, strain 2,
co-infected individuals and all infected individuals for different values of δ1. All the other parameters are
obtained fromTables 1 and 2. Thewithin-host initial condition is the same as Fig. 2. The between-host initial
condition is (S0, i01 (τ ), i02 (τ ), j0(τ )) = (1,000,000, 5, 5, 5). (a) shows that in general as δ1 increases,R1,

R2
1 decrease, and R2, R1

2 increase. (b)–(e) show that as δ1 increases from 2 to 5, only tiny difference in
all prevalences. These five cases result in strain 1 dominant equilibria. Another case δ1 = 6 leads to strain
2 dominant equilibrium. As δ1 increases, the prevalence of individuals infected with strain 1 decreases,
the prevalence of individuals infected with strain 2 increases and the prevalence of all infected individuals
decreases (Color figure online)
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locally asymptotically stable. FromFig. 4e, we can see that strain replacement happens
as δ1 increases. It shows that the strain 2 dominant state has a lower prevalence of total
infected individuals than strain 1 dominant states. However, the influence of δ1 is
small. Similar results are observed for δ2, β1 and β2 (see Figs. 6e, 7b, d).

Zooming inFig. 4b, c, e,we can see that as δ1 increases, the prevalence of individuals
infected with strain 1 decreases (see Fig. 4b), the prevalence of individuals infected
with strain 2 increases (see Fig. 4c) and the prevalence of all infected individuals
decreases (see Fig. 4e). From Fig. 4d, we can see that δ1 = 5 leads to a high peak
for the prevalence of co-infected individuals. One possible explanation is that δ1 = 5
results in a high peak for co-infected cells in within-host level (see Fig. 3c) and δ1 = 5
is close to the intersection of R2

1 and R1
2 (see Fig. 4a). Hence, the transient dynamic

is relatively slow.
Zooming inFig. 4a,we can see there exist somevalues for δ1 satisfyingboth invasion

reproduction numbers R2
1 and R1

2 are less than one (see Fig. 5a). Interestingly, even
though both δ1 = 5.3 and 5.4 lead to strain 1 dominant equilibria in the within-host
level (see Fig. 5b), in between-host level they result in strain 1 persistence and strain
2 persistence, respectively (see Fig. 5c, d). From Fig. 5b, we can see that even though
V2 goes to zero eventually in both cases, there are several high peaks in the beginning.
Besides, R2

1 and R1
2 are less than one, and the order of R2

1 and R2
1 changes at some

value between δ1 = 5.3 and 5.4. Hence, the dominant strain in within-host level and
between-host level might be different.

In general, when bothR2
1 andR1

2 are less than 1, bi-stability may happen. In other
words, which strain will dominate depends on the initial conditions. For example, in
Fig. 5e, f, we choose the same value for δ1 = 5.364, but different initial conditions for
between-host model, the system could result in strain 1 dominant or strain 2 dominant.
This bi-stability is further verified in Fig. 6.

From Fig. 6a, we can see that, in general as δ2 increases,R1,R2
1 increase, andR2,

R1
2 decrease. This indicates that increasing δ2 will depress the transmission of strain

2, but is helpful for the transmission of strain 1. Similarly, increasing β1 will depress
the transmission of strain 2, but is helpful for the transmission of strain 1 (see Fig. 7a).
However, increasing β2 will depress the transmission of strain 1, but is helpful for the
transmission of strain 2 (see Fig. 7c).

6 Discussion

In this paper, we have formulated a two-strain model with coinfection. The model
links the dynamics of an immune system of two strains and an epidemic model of
two strains. Through proper analysis, we know that in the with-in host model, there is
only one infection-free equilibrium in the case of Ri < 1, i = 1, 2. When the basic
reproduction number Ri > 1, in addition to the infection-free equilibrium, there are
single-strain equilibria—one single strain equilibrium corresponding to each strain.
When both the basic reproduction numbers and the invasion reproduction numbers
are greater than 1, there is a coexistence equilibrium in the model. We define the
invasion numbers and we establish that strain i dominance equilibrium is locally
asymptotically stable if the invasion reproduction number of strain j is smaller than
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Fig. 5 a Zoom in part of Fig. 4a. b Within-host virus load for δ1 = 5.3 and 5.4. c, d Between-host
prevalences for δ1 = 5.3 and 5.4. e, f Between-host prevalences for δ1 = 5.364 for different between-host
initial conditions. All the other parameters are obtained from Tables 1 and 2. For all panels, the within-host
initial condition is the same as Fig. 2. The between-host initial condition for (c)–(e) is the same as Fig. 4.
The between-host initial condition 2 for (f) is (S0, i01 (τ ), i02 (τ ), j0(τ )) = (1,000,000, 0.01, 50, 0.01). (a)
shows that there exist some values of δ1 satisfying both invasion reproduction numbers are less then 1. b
shows that for both δ1 = 5.3 and 5.4, strain 1 dominant in within-host level. c, d show that in between-host
level, strain 1 dominant equilibrium is stable when δ1 = 5.3 and strain 2 dominant equilibrium is stable
when δ1 = 5.4. e, f show that when δ1 = 5.364, which stain will dominant depends on the initial condition
(Color figure online)
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Fig. 6 a, b Epidemiological basic reproduction numbers and invasion reproduction numbers for the model
(3.1) with respect to δ2. c, d Prevalences for δ2 = 13.685 with different between-host initial conditions. e
Prevalences of all infected individuals for different values of δ2. All the other parameters are obtained from
Table 1 and 2. For all panels, the within-host initial condition is the same as Fig. 2. The between-host initial
condition for (c, d) is the same as Fig. 5e, f. (a) shows that in general as δ2 increases, R1, R2

1 increase

and R2, R1
2 decrease. (b) shows that there exists some value of δ2 satisfying both invasion reproduction

numbers are less than 1. (c, d) shows that when δ2 = 13.685, which strain will dominant depends on the
initial condition. (e) shows that as δ2 increases, strain replacement happens. The influence of δ2 on the
prevalence of all infected individuals is small (Color figure online)
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Fig. 7 a, c Epidemiological basic reproduction numbers and invasion reproduction numbers for the model
(3.1) with respect to β1 and β2, respectively. b, d Prevalences of all infected individuals for different values
of β1 and β2. All the other parameters are obtained from Tables 1 and 2. For all panels, the within-host
initial condition is the same as Fig. 2. The between-host initial condition for (b) and (d) is the same as
Fig. 4. (a) shows that in general as β1 increases, R1, R2

1 increase, and R2, R1
2 decrease. (c) shows that

in general as β2 increases, R1, R2
1 decrease, and R2, R1

2 increase. (b) and (d) show that as β1 increases
or β2 increases, strain replacement happens. The influence of β1 and β2 on the prevalence of all infected
individuals is small (Color figure online)

one. If the invasion reproduction number of strain j is greater than one, then the strain
i dominance equilibrium is unstable.

We further define a multi-scale immuno-epidemiological model with two strains
and coinfection. We structure each strain and the coinfected class with time-since-
infection. Individuals in each of the infectious classes exhibit the same with-in host
dynamics; however, if strain i is the only strain present, we start the strain j variables
in the within-host model from zero. We study the disease-free and endemic equilibria
of the immuno-epidemiological model. We further investigate the local asymptotic
behavior of the immuno-epidemiological coupled system. We find that the disease-
free equilibrium of the coupled system is locally asymptotically stable if and only if
Ri < 1 for i = 1, 2. When Ri > 1 and the corresponding invasion reproduction
number R j

i < 1, the strain i dominance equilibrium is locally asymptotically stable;

when the invasion reproduction number R j
i is greater than 1, the strain i dominance

equilibrium is unstable. When all the reproduction numbers and invasion reproduction

123



Modeling and Research on an Immuno-Epidemiological… Page 41 of 42 116

numbers are greater than 1, we also find that the coupled system has an interior
equilibrium, that is, a coexistence equilibrium.

In simulation,we focus on the impact ofwithin-host parameters on the between-host
basic reproduction numbers, invasion reproduction numbers as well as the dynamics
of the system. As δ1 or β2 increases, R1 and R2

1 decrease, and R21 and R1
2 increase.

This indicates that increasing δ1 or β2 will depress the transmission of strain one,
but is helpful for the transmission of strain two. This is reasonable since δ1 is the
clearance rate for the virions of strain one and β2 represents infection rate of healthy
cells infected by strain two. Similarly, we observe that increasing δ2 or β1 will depress
the transmission of strain two, but is helpful for the transmission of strain one. As these
parameters vary, strain replacement can happen, namely from stain one dominance
to strain two dominance or vice versa. In addition, when both invasion reproduction
numbers are smaller than one, bistability occurs with one of the strains persisting
or the other, depending on initial conditions. However, the influence of within-host
parameters on the prevalence of total infected individuals is very small.
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