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Abstract
Forecasting tipping points in spatially extended systems is a key area of interest to ecol-
ogists. A slowly declining spatially distributed population is an important example of
an ecological system that could exhibit a cascade of tipping points. Here, we develop a
spatial two-patchmodel with environmental stochasticity that is slowly forced through
population collapse, in the presence of changing environmental conditions. We begin
with a basic spatial model, then introduce a fast–slow version of the model using geo-
metric singular perturbation theory, followed by the inclusion of stochasticity. Using
the spectral density of the fluctuating subpopulation in each patch, we derive analytic
expressions for candidate indicators of population extinction and evaluate their per-
formance through a simulation study. We find that coupling and spatial heterogeneity
decrease the magnitude of the proposed indicators in coupled populations relative to
isolated populations. Moreover, the degree of coupling dictates the trends in summary
statistics. We conclude that this theory may be applied to other contexts, including the
control of invasive species.

Keywords Tipping points · Stochasticity · Allee effects · Alternative stable states ·
Resilience · Perturbations

1 Introduction

Complex systems can have thresholds, referred to as tipping points or catastrophic
bifurcations, that mark an abrupt shift to an alternate dynamic regime. Such systems
have been actively studied across a wide range of fields (Scheffer 2009), including
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Fig. 1 Simulations of population x1 in a homogeneous coupled patch system. The red line shows the mean
of 500 realizations of the homogeneous model, a single realization is shown in black, and 50 simulations of
the x1 population are shown in gray. The dashed vertical line indicates the time t∗ at which the saddle-node
bifurcation occurs. The first column shows simulations of isolated populations (d = 0), the second column
corresponds to simulations of populations coupled through low dispersal levels (d = 0.01), and the last
column shows simulations of populations coupled through high dispersal (d = 1). Numerical values for
the parameters used in the simulations are provided in Table 1 (Color figure online)

ecology (Hastings and Wysham 2010; Carpenter et al. 2011; Boerlijst et al. 2013;
Scheffer et al. 2015; Pace et al. 2015), financial systems (May et al. 2008; Battiston
et al. 2016; Tu et al. 2020), climate science (Dakos et al. 2008; Boulton and Lenton
2015; Lenton 2020) and medicine (van de Leemput et al. 2014; Meisel et al. 2015;
Maturana et al. 2020). Detecting tipping points and predicting their associated dynam-
ics presents significant challenges, because system observables may show negligible
changes until the point of no return is reached. Since a series of tipping points can
manifest through domino dynamics, as a unidirectional type of tipping cascade, there
is an urgent need to adequately address these challenges. Fortunately, a new research
frontier has emerged, harnessing noise as an informer of the sophisticated and often
counterintuitive dynamics of interconnected systems.

A major advancement in this area is the development of early-warning signals
(EWS), a suite of statistical tools that are independent of model assumptions or param-
eterization (Dakos et al. 2012). Instead, they capture generic changes in statistical
metrics that occur prior to a bifurcation. The ability to characterize bifurcations is cru-
cial in order to glean insight into upcoming qualitative changes in a system’s behavior.
For example, in ecology, populations subject to Allee effects may be described in
terms of saddle-node (or fold) bifurcations. Most EWS are rooted in the phenomenon
of “critical slowing down," which is a generic property of local bifurcations (Wissel
1984; Strogatz 2001). Akin to a second-order phase transition, critical slowing down
(CSD hereafter) results in a longer return time to equilibrium following a perturbation.
In ecology, CSD is used as a measure of resilience, the ability of a system to tolerate
disturbances and restructure itself while responding to change (Scheffer 2009). In the
presence of stochasticity, this manifests as an increase in variance, larger temporal
correlations and marked changes in several other statistical measures. Rising variance
and lag-1 autocorrelation are commonly used EWS that have been demonstrated in
empirical settings (Dakos et al. 2008; Dai et al. 2012; Wouters et al. 2015). These
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Fig. 2 Theoretical predictions for summary statistics of x1 in a homogeneous coupled system. The first
column of panels shows summary statistic predictions for isolated patches, the second column of panels
displays predictions for x1 populations coupled through low dispersal levels, and the third column of
panels corresponds to populations coupled through high dispersal. Parameter values used for the numerical
predictions are given in Table 1. Predictions were calculated for fluctuations about the steady state (1 +√

β, 1+√
β) of system (1) (representing the mean of the stochastic fast–slow system) for β values ranging

from 0.99 down to 0.01, with a spacing of 0.01

statistics can be derived in linearized models by using stochastic differential equations
(Gardiner 2004), but theory for multi-dimensional systems on the verge of tipping
has not been clearly elucidated. Moreover, the observability of EWS in real, multi-
dimensional networks can be remarkably limited (Boerlijst et al. 2013), underscoring
the need for a coherent theory of such systems.

To understand howCSDmanifests in a multi-patch system, patch-specific temporal
predictors are required. These predictors can also be used to assess whether a single
patch can have a clear signal of an impending tipping cascade, or whether every
patch needs to be individually monitored. To our knowledge, a predictive theory for
temporal statistics of tipping elements that accounts for both stochasticity and coupling
is currently lacking. Itmust be noted, however, thatO’Reganmade significant headway
toward building this theory, although for a metapopulation with logistic growth rates
(O’Regan 2018). Thus, the system investigated in that study corresponded to a non-
catastrophic, transcritical bifurcation, implying a lack of hysteresis in the dynamics.

Ecological networks are inherently spatial and multi-dimensional, but the influence
of space and coupling on tipping points is as yet unclear. Several summary statistics
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Fig. 3 Simulation study predictions for the summary statistics of the x1 population in a homogeneous
coupled system with multiplicative noise. Thick blue lines indicate the median value of each statistic for
population x1 over 500 simulations; thick black lines correspond to the median value of each statistic for
the x2 population over 500 realizations. Dotted lines show the 95% prediction interval for each statistic. The
median value of Kendall’s correlation coefficient τ is reported for each indicator statistic over 500 simula-
tions. The first column of panels is summary statistic predictions for isolated patches, the second column is
predictions for populations coupled through low dispersal levels, and the last column shows predictions for
populations coupled through high dispersal. Parameter values used for the numerical predictions are given
in Table 1 (Color figure online)

have been proposed as multivariate spatial indicators, such as spatial variance, spa-
tial skewness and spatial kurtosis (Guttal and Jayaprakash 2009; Kéfi et al. 2014).
However, spatial statistics are obtained using temporal snapshots of the system under
consideration (Carpenter and Brock 2010). For example, the technique of remote sens-
ingmay provide higher sensitivity at a lower computational cost than the processing of
time series with high frequency. Also, spatial statistics yield information by averaging
within patches, which might be less accurate in the presence of patch heterogeneity. In
addition, from a theoretical standpoint, spatial statistics are usually difficult to obtain
analytically. Thus, temporal indicators that are specific to each patch are necessary to
anticipate tipping in connected ecological systems.

To address the aforementioned gap in the literature, we model a metapopulation
with Allee effects as a multi-dimensional system in continuous time, where each sub-
population gradually approaches extinction as a result of patch quality evolving over
ecological timescales. Gradually degradedmetapopulations on the brink of population
collapse are an important example of a spatial system that can exhibit a tipping point.
Mathematically, a metapopulation that grows locally via Allee effects is characterized
by a (codimension-one) saddle-node bifurcation at the tipping point. We address the
question of how temporal statistics for subpopulation fluctuations can yield insight
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Fig. 4 Simulations of both populations, in a heterogeneous coupled patch system with multiplicative noise
and a static patch with a good environment (i.e., a “strong source” patch). The red line shows the mean of the
500 xi realizations of the heterogeneous model, a single realization is shown in black, and 50 simulations
of each subpopulation xi are shown in gray. The dashed vertical line indicates the time at which the saddle-
node bifurcation occurs. The first column of panels displays simulations of populations coupled through
low dispersal levels, and the second column corresponds to simulations of populations coupled through
high dispersal. Numerical values for the parameters used in the simulations are provided in Table 1 (Color
figure online)

into whether or not a metapopulation is losing stability. We extend the framework to
explore the effects of spatial heterogeneities on predicting extinction. We also check
whether both patches exhibit EWS of tipping or whether partial information (i.e., one
patch) is sufficient to inform system management. Finally, we suggest that this theory
of Allee effects and stochasticity can be applied to control invasive species, including
insect pests (Liebhold et al. 2016).

2 Model Description

Models of Allee effects with passive dispersal have been discussed in the literature
(Amarasekare 1998; Kang and Lanchier 2011). For an overview, consult Chapter 3 of
a classic reference on Allee effects (Courchamp et al. 2008).

123
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Fig. 5 Simulations of the x1 and x2 populations, in a heterogeneous coupled patch systemwithmultiplicative
noise and a bad environment (i.e., a “weak source” patch). The red line shows the mean of the 500 xi
realizations of the heterogeneous model, a single realization is shown in black, and 50 simulations of each
subpopulation xi are shown in gray. A transient is observed before the system relaxes to the moving fast–
slow steady state. The dashed vertical line indicates the time at which the saddle-node bifurcation occurs.
The first column of panels shows simulations of populations coupled through low dispersal levels, and the
second column corresponds to simulations of populations coupled through high dispersal. Numerical values
for the parameters used in the simulations are provided in Table 1 (Color figure online)

2.1 Base Model

We begin our model formulation with the deterministic skeleton for the nondimen-
sionalizedmodel described by Johnson andHastings, reproduced here for convenience
(Johnson and Hastings 2018).

dx1
dt

= x1(β1 − (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β2 − (x2 − 1)2) + d(x1 − x2)
(1)

In the model above, the parameter βi represents a measure for the quality of the envi-
ronment by the population denoted by xi . The parameter d denotes passive, symmetric
diffusion in the system and is a measure of network connectivity. See Johnson’s work
for a detailed exposition of the nondimensionalization.
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Fig. 6 Theoretical predictions for the summary statistics of a heterogeneous coupled system with multi-
plicative noise and a static patch with a good environment (i.e., a “strong source" patch). The first column
shows summary statistic predictions for the x1 and x2 subpopulations coupled through low dispersal levels,
and the second column displays predictions for subpopulations coupled through high dispersal. Parameter
values used for the numerical predictions are given in Table 1. Predictions were calculated for fluctuations
about the steady state x∗

1 , x∗
2 of system (1) (representing the mean of the stochastic fast–slow system) for

β2 values ranging from 0.99 down to 0.01, with a spacing of 0.01, while β1 remained constant at 0.99
(Color figure online)

Here, xi ≥ 0 for i = 1, 2 denotes the density of subpopulation i that inhabits patch
i . In the absence of dispersal, subpopulation dynamics are determined by Allee effects
at the rate xi (βi − (xi − 1)2) in each patch. The model allows for both homogeneity
in intrinsic dynamics (β1 = β2 = β) and spatial heterogeneity in the environment
(β1 �= β2). The positive steady state of the spatially heterogeneous model (x∗

1 , x
∗
2 )

can be obtained numerically.
In the absence of coupling, each population is isolated. If βi < 0, population

extinction is certain due to the presence of a fatal Allee effect. At βi = 0, a saddle-
node bifurcation occurs. For 0 < βi < 1, each population is bistable with a positive
steady state at xi = 1+√

βi and a stable population extinction state at xi = 0, owing to
a strong Allee effect. At βi = 1, a transcritical bifurcation occurs. Finally, for βi > 1,
the extinction state becomes unstable in the regime of the weak Allee effect.

In the bistable regime, if environmental conditions are homogeneous (i.e., 0 < β1 =
β2 = β < 1) and the subpopulations disperse at a rate d > 0, the system has two
spatially homogeneous steady states: a positive steady state (x∗

1 , x
∗
2 ) = (1+ √

β, 1+
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Fig. 7 Theoretical predictions for the summary statistics of a heterogeneous coupled system with multi-
plicative noise and a static patch with a bad environment (i.e., a “weak source" patch). The first column
shows summary statistic predictions for the x1 and x2 subpopulations coupled through low dispersal levels,
and the second column displays predictions for subpopulations coupled through high dispersal. Parameter
values used for the numerical predictions are given in Table 1. Predictions were calculated for fluctuations
about the steady state x∗

1 , x∗
2 of system (1) (representing the mean of the stochastic fast–slow system) for

β2 values ranging from 0.99 down to 0.01, with a spacing of 0.01, while β1 remained constant at 0.2 (Color
figure online)

√
β) and an extinction state at (x∗

1 , x
∗
2 ) = (0, 0). The eigenvalues of the spatially

homogeneous system (1) are −2(
√

β + β) and −2(
√

β + β + d). If the quality of
the environment in each patch is degraded, we assume that β declines. Therefore,
both eigenvalues will decrease in magnitude, and extinction will occur in both patches
when the dominant eigenvalue −2(

√
β + β) is equal to zero. Hence, critical slowing

down prior to population extinction is predicted in the bistable regime of the spatially
homogeneous system.

Henceforth, we focus our analyses on the case of the strong Allee effect that gives
rise to bistability.

2.2 Fast–SlowModel

To study the system’s approach toward a catastrophic collapse, we use a fast–slow
model tomodel the approach to the tipping point. In the spatially homogeneous system,
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Fig. 8 Simulation studypredictions for the summary statistics of the x1 and x2 population in a heterogeneous
coupled system with multiplicative environmental noise and a static patch with a good environment (i.e.,
a “strong source" patch). Thick blue lines indicate the median value of each statistic for the x1 population
over 500 realizations, and thick black lines indicate the median value of each statistic for the x2 population
over 500 simulations. Dotted lines correspond to the 95% prediction interval for each statistic. The median
value of Kendall’s correlation coefficient τ is reported for each indicator statistic over 500 simulations. The
first column shows predictions for populations coupled through low dispersal levels, and the second column
shows predictions for populations coupled through high dispersal. Parameter values used for the numerical
predictions are given in Table 1 (Color figure online)

this necessitates that β declines slowly relative to the dynamics within each patch.
Thus, we modify model (1) to account for a slowly varying quality of environment,

dx1
dt

= x1(β − (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β − (x2 − 1)2) + d(x1 − x2)

dβ

dt
= −β0

(2)

where β0 > 0 quantifies the rate of change of the parameter β in each patch. By
Fenichel’s Theorem (Fenichel 1979; Berglund andGentz 2006; Kuehn 2015), asβ0 →
0, the trajectories of system (2) approach those of themodel where β remains constant.
Since β evolves much more slowly than the population dynamics, we assume that
0 < β0 	 1, and that deteriorating conditions yield a linear decline in β,

β(t) = β − β0t, (3)

with t∗ = β/β0 denoting the time at which β(t) becomes zero.

123
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Fig. 9 Simulation study predictions for the summary statistics of the x1 and x2 population in a heterogeneous
coupled system with multiplicative environmental noise and a static patch with a bad environment (i.e., a
“weak source" patch). Thick blue lines indicate the median value of each statistic for the x1 population
over 500 realization, and thick black lines indicate the median value of each statistic for the x2 population
over 500 simulations. Dotted lines indicate the 95% prediction interval for each statistic. The median value
of Kendall’s correlation coefficient τ is reported for each indicator statistic over 500 simulations. The first
column shows predictions for populations coupled through low dispersal levels, and the second column
displays predictions for populations coupled through high dispersal. Parameter values used for the numerical
predictions are given in Table 1. Initial transient behavior of x1 and x2 (Fig. 5) is captured by the sharp
change in statistics over the moving window (Color figure online)

In the presence of spatial heterogeneity, the quality of one patchmay differ from that
of its counterpart. Thus, the underlying growth rates for both patches may be distinct.
So, we assume that environmental conditions stay constant in the first patch but that
the second patch is slowly degraded, effectively decreasing its population growth rate.
This set of assumptions yields the following model:

dx1
dt

= x1(β1 − (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β2 − (x2 − 1)2) + d(x1 − x2)

dβ2

dt
= −β0

(4)

with

β2(t) = β2 − β0t, (5)
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Fig. 10 Theoretical predictions for summary statistics of x2 in a tipping cascade with multiplicative noise.
The first column of panels shows summary statistic predictions for populations coupled through low dis-
persal, the second column displays predictions for x1 populations coupled through moderate dispersal, and
the third column of panels corresponds to populations coupled through high dispersal. Parameter values
used for the numerical predictions are given in Table 1. Predictions were calculated for fluctuations about
the steady state (1+√

β1, 1+√
β2) of the spatially heterogeneous system for β1 values ranging from 0.99

down to 0.01, with a spacing of 0.01 (Color figure online)

where t∗ = β2/β0 indicates the time that β2(t) becomes zero. By Fenichel’s theorem
(Fenichel 1979; Berglund and Gentz 2006; Kuehn 2015), for sufficiently small β0, the
dynamics of the fast–slow system approach those of the system where β2 is fixed at a
constant value. Models (2) and (4) can be combined as

dx1
dt

= x1(β1(t) − (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β2(t) − (x2 − 1)2) + d(x1 − x2)
(6)

where β1(t) = β2(t) = β(t) in the case of spatial homogeneity (see (2) and (3)).
In the spatially heterogeneous scenario, we assume that β1(t) = β1 and that β2(t) is
defined by (5).
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2.3 Stochastic Model

We now derive a system of Itô stochastic differential equations (SDEs) that describes
spatially homogeneous metapopulations by assuming that exogenous noise can influ-
ence patch dynamics.

2.3.1 Multiplicative Noise

Following the derivation in other work (O’Regan 2018), and assuming that σμ is
identical for both patches, we obtain the following system of SDEs:

dx1 = (x1(β1(t) − (x1 − 1)2) − dx1 + dx2)dt + σμx1dW1

dx2 = (x2(β2(t) − (x2 − 1)2) − dx2 + dx1)dt + σμx2dW2
(7)

Since random disturbances scale with the population density xi in each patch, system
(7) describes a model with multiplicative noise. Note that system (7) is a stochastic
analogue of the fast–slow system (6).

2.3.2 Simulations of the Homogeneous Stochastic Models

To study the behavior of the stochastic fast–slow model as the tipping point is
approached, we simulated the model using the parameters in Table 1. Figure 1 shows
realizations of the x1 subpopulation in isolated patches (d = 0), as compared to
simulations of systems where the x1 population is coupled to another patch, through
low and high dispersal, and under homogeneous environmental conditions. Coupling
patches through dispersal dampens the environmental fluctuations in each patch, as
compared to the case of no dispersal. When coupling is low, and intrinsic dynamics
are equal in each patch, coupled populations fluctuate on a similar level as that of
isolated populations. When coupling is high, the simulations indicate dampened fluc-
tuations due to the presence of coupling. Finally, it is clear from the simulations that
the stochastic fast–slow system evolves more slowly toward extinction than the time
t∗ in which β(t) reaches zero.

3 Analytic Derivations

In order to predict subpopulation extinction using time series data, we aim to
understand the nature of subpopulation fluctuations with temporal leading indicator
statistics. In this section, we will show that three indicator statistics change systemati-
cally as tipping becomes increasing likely, as a direct consequence of critical slowing
down. The steady state here is chosen as the mean of the quasi-stationary population
distribution. Consequently, we set βi (t) = βi inmodel (7) and quantify the behavior of
fluctuations in the vicinity of the positive steady state (x∗

1 , x
∗
2 ) of model (1). Although

the fast–slow model assumes that the mean evolves slowly through time, the steady
state is a faithful approximation of the mean of the fast–slow models, provided that
the intrinsic growth rate for each patch changes sufficiently slowly.
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To derive summary statistics for fluctuations about the positive steady state, we
note that we can express system(7) as follows:

dx(t) = f (x(t), t)dt + √
D(x(t), t)dW (t), (8)

where x(t) = (x1, x2), the terms of the mean vector f (x(t), t) are fi (x(t), t) =
xi (βi (t) − (xi − 1)2) − dxi + dx j and the entries of the variance–covariance matrix
D(x(t), t) are Dii (x(t), t) = σ 2

μx
2
i . The probability distribution P(x(t), t) of the solu-

tions of system (8) satisfies the forward Kolmogorov equation (Allen 2010; O’Regan
2018):

∂P(x(t), t)

∂t
= −

2∑
i=1

∂

∂xi
[ fi (x(t), t)P(x(t), t)]

+ 1

2

2∑
i=1

2∑
j=1

∂2

∂xi∂x j
[Di j (x(t), t)P(x(t), t)]

(9)

3.1 Model Linearization

To characterize the behavior of fluctuations near the positive steady state, we perform a
Taylor expansion of the terms in the mean vector and covariance matrix about (x∗

1 , x
∗
2 )

and truncate at leading order:

fi (x1, x2, t) ≈ fi (x
∗
1 , x

∗
2 , t) + ∂ f (x∗

1 , x
∗
2 , t)

∂x1
z1 + ∂ f (x∗

1 , x
∗
2 , t)

∂x2
z2 + . . .

≈ 0 +
2∑
j=1

ai j z j . . . ,
(10)

where ai j refers to the partial derivatives of fi and zi = xi − x∗
i denotes perturbations

from the steady state. Similarly,

Di j (x1, x2, t) ≈ Di j (x
∗
1 , x

∗
2 , t) + · · · (11)

The entries ai j of the Jacobian matrix are given by aii = βi −d−1+4x∗
i −3(x∗

i )2 and
ai j = d, for i �= j, and the termsof the variance–covariancematrix are Dii = σ 2

μ(x∗
i )2.

The joint probability distribution of fluctuations z(t) = (z1, z2) from the steady state
satisfies

∂Π(z(t), t)

∂t
= −

2∑
i=1

∂

∂zi
Π(z(t), t))

⎛
⎝

2∑
j=1

ai j zi

⎞
⎠

+ 1

2

2∑
i=1

2∑
j=1

∂2

∂zi∂z j
[Di jΠ(z(t), t)]

(12)
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Solutions of the following system of stochastic differential equations:

dz1 = (a11z1 + a12z2)dt + √
D11dW1

dz2 = (a21z1 + a22z2)dt + √
D22dW2

(13)

share the same probability distribution Π(z(t), t) (Allen et al. 2008; O’Regan 2018).

3.2 Spectral Density

To derive leading indicators of extinction, we begin with the spectral density of the
fluctuating subpopulation within each patch. The technique of Fourier transformation
can be used to obtain this function. For the full derivation, we refer the interested
reader to prior work (Nisbet and Gurney 1982; O’Regan 2018).

Briefly, we note that any continuous function z(t) defined for −L/2 ≤ t ≤ L/2
may be expressed in terms of its Fourier transform z̃(ω),

z(t) = 1

2π

∫ ∞

−∞
z̃(ω) exp(iωt) dω, (14)

with ω denoting angular frequency. The Fourier transform of z(t) is then given by

z̃(ω) =
∫ L/2

−L/2
z(t) exp(−iωt) dt . (15)

We rewrite system (13) in a form that lends itself to the method of Fourier transfor-
mation:

dz1
dt

= a11z1(t) + a12z2(t) + √
D11Γ1(t),

dz2
dt

= a21z1(t) + a22z2(t) + √
D22Γ2(t),

(16)

where Γ1(t) and Γ2(t) denote white noise processes associated with the covariance
matrix {Di j }. Fourier transformation of system (16) yields:

iω̃z1(ω) = a11̃z1(ω) + a12̃z2(ω) + √
D11Γ̃1(ω),

iω̃z2(ω) = a21̃z1(ω) + a22̃z2(ω) + √
D22Γ̃2(ω),

(17)

where z̃1(ω), z̃2(ω), Γ̃1(ω) and Γ̃2(ω) are the Fourier transforms of the functions
z1(t), z2(t), Γ1(t) and Γ2(t), respectively. We can then obtain z̃1(ω) as

z̃1(ω) = (a22 − iω)
√
D11Γ1(ω)

δ − ω2 − iTω
− a12

√
D22Γ2(ω)

δ − ω2 − iTω
, (18)
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where T and δ are the trace and determinant of the Jacobian matrix {ai j }, respectively.
Using (18), we can establish the spectral density of the fluctuations, which we denote
by

S1(ω) = D11a222 + D22a212 + D11ω
2

(ω2 − δ)2 + T 2ω2 . (19)

(See the Appendix in the work by O’Regan for the complete derivation.) Similarly,
the spectral density of fluctuations of the subpopulation in the second patch can be
obtained as:

S2(ω) = D22a211 + D11a221 + D22ω
2

(ω2 − δ)2 + T 2ω2 . (20)

3.3 Leading Indicators in the Spatially Homogeneous Setting

Here, we derive analytic expressions for the variance, coefficient of variation, lag-1
autocovariance function and lag-1 autocorrelation function for the spatially homoge-
neous model with 0 < β < 1 and d > 0. For the spatially homogeneous model,
a11 = a22 = −2

√
β(

√
β + 1) − d and a12 = a21 = d. The spectral density of the

fluctuations of the subpopulations in each patch i is given by

Si (ω) = σ 2
μ(1 + √

β)2[2√β(
√

β + 1) + d]2 + σ 2
a d

2 + σ 2
a ω2

(ω2 − [(2√β(
√

β + 1) + d)2 − d2])2 + 4(2
√

β(
√

β + 1) + d)2ω2
(21)

To obtain the variance of the fluctuations, we integrate the spectral density over all
frequencies:

1

2π

∫ ∞

−∞
Si (ω)dω = 1

π

∫ ∞

0
Si (ω)dω. (22)

Evaluating this integral expression yields

vμ(β, d) = (
√

β + 1)[2√β(
√

β + 1) + d]σ 2
μ

8
√

β[d + √
β(

√
β + 1)] (23)

To obtain the autocovariance function, we compute

1

2π

∫ ∞

−∞
Si (ω) cos(ωτ)dω = 1

π

∫ ∞

0
Si (ω) cos(ωτ)dω (24)

using the evenness of Si (ω). Integrating expression (24) with τ = 1 gives

aμ(β, d) = σ 2
μ(

√
β + 1)[d exp(2d) + √

β + exp(2d)
√

β + β + exp(2d)β]
8
√

β[d + √
β(

√
β + 1)]

× exp(−2[d + √
β(

√
β + 1)])

(25)
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Dividing this expression by the variance gives the lag-1 autocorrelation function:

ac f1(β) = d exp(2d) + √
β + exp(2d)

√
β + β + exp(2d)β

d + 2
√

β(
√

β + 1)

× exp(−2[d + √
β(

√
β + 1)])

(26)

It can be shown that the variance and lag-1 autocorrelation functions can be written
in terms of the eigenvalues λ1 and λ2 of the spatially homogeneous system:

vμ(β, d) = σ 2
μ

16
(|λ1| + |λ2|) |λ1|

2

|λ2|
(

1

1 + √
2|λ1| + 1

)
. (27)

ac f1(β) = 1

|λ1| + |λ2|
[|λ1| exp(−|λ2|) + |λ2| exp(−|λ1|)

]
(28)

To find the coefficient of variation statistic for each patch, we divide the standard
deviation of the fluctuations by the subpopulation mean 1 + √

β in each patch:

CVμ(β, d) = σμ

√
2

4(1 + √
β)

√
(1 + √

β)(d + 2
√

β + 2β)√
β(d + β + √

β)
(29)

In summary, measures of variability depend on the strength of noise. It can be seen
that the leading indicators are continuous functions of β and the dispersal parameter
d. All leading indicator functions exist for 0 < β < 1 and are defined for d > 0.

3.4 Theoretical Predictions

Next, we are interested in the qualitative behavior of the leading indicators as patch
quality is degraded, that is, as the intrinsic patch quality β of each subpopulation
approaches zero from the right, for β ∈ (0, 1). Taking the limit of each expression as
β → 0+ yields:

lim
β→0+ vμ(β, d) = +∞, (30)

lim
β→0+ CVμ(β, d) = +∞, (31)

lim
β→0+ ac f1(β, d) = 1. (32)

To better intuit the behavior of the statistics as the tipping point of the system is
approached due to changes in intrinsic dynamics, we compute the first derivative
of each statistic with respect to β (Table 2). By calculating the first derivative of
each function with respect to β, provided d > 0 and 0 < β < 1, we find that
va(β, d), vμ(β, d),CVa(β, d),CVμ(β, d) andac f1(β, d) are strictly decreasing func-
tions of β; therefore, all of these functions increase monotonically as β approaches
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zero from the right (Table 2). Thus, we predict strictly increasing trends in lag-1 auto-
correlation, variance and coefficient of variation, as extinction is approached in each
patch.

To understand the effect of coupling on the behavior of the temporal leading indica-
tors, we examine these functions as d approaches zero from above and as d approaches
positive infinity.

As d decreases to zero from above, the limit of each statistic approaches the expres-
sion for the statistic in the case without dispersal:

lim
d→0+ vμ(β, d) = σ 2

μ(
√

β + 1)

4
√

β
, (33)

lim
d→0+ CVμ(β, d) = σμ

2
√√

β + β
, (34)

lim
d→0+ ac f1(β, d) = exp

[
−2

√√
β + β

]
. (35)

Consequently, the summary statistics capture the behavior of the whole system as
being similar to that of isolated subsystems. If coupling increases to infinity, the limits
are

lim
d→∞ vμ(β, d) = σ 2

μ(
√

β + 1)

8
√

β
, (36)

lim
d→∞CVμ(β, d) = σμ

√
2

4
√√

β + β
, (37)

lim
d→∞ ac f1(β, d) = exp

[
−2

√√
β + β

]
. (38)

Increasing the degree of patch connectivity muffles the temporal signals that quantify
variability. As d → ∞, the variance approaches 1/2 of the variance in the absence
of dispersal. So, in a very well-mixed metapopulation, the temporal variance in each
patch will be muted relative to isolated patches. Similarly, as d approaches infinity, the
coefficient of variation approaches 1/

√
2 of its analogue in the absence of coupling.

Table 2 shows that the derivative of each function monotonically decreases with d,
provided d > 0, 0 < β < 1 and σ > 0.

Notice that the lag-1 autocorrelation function approaches exp[−2
√√

β + β] as β

approaches either 0 or ∞. The first derivative of ac f1(β, d) with respect to d is

∂

∂d
ac f1(β, d) = −exp[−2(d + √

β + β)](√β + β)[2d − exp(2d) + (1 + 2
√

β)2]
(d + 2(

√
β + β))2

Provided that d is strictly positive and β ∈ (0, 1), there is a critical point of ac f1(β, d)

at

dc = −1

2
(1 + 2

√
β)2−1

2
ProductLog[− exp[−(1 + 2

√
β)2]. (39)
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Applying the second derivative test shows that a local minimum of ac f1(β, d) occurs
at dc:

∂2ac f1(β, dc)

∂2d
= 8(

√
β + β) exp[−2(

√
β + β)]

ProductLog[− exp[−(1 + 2
√

β)2]]
× 1

(1 + ProductLog[− exp[−(1 + 2
√

β)2]])

The second derivative is always positive at dc, because the denominator of the expres-
sion above is strictly positive, owing to the dominance of the square term.

As a result, with low dispersal in the spatially homogeneous system, the neigh-
boring points xi (t) and xi (t + 1) in a stationary time series are highly correlated. As
dispersal increases, the temporal correlation between xi (t) and xi (t + 1) decreases,
due to mixing between both patches. For d > dc, however, autocorrelation increases
because dispersal is sufficiently high to result in a single population. In summary,
xi (t) and xi (t + 1) are least correlated at intermediate levels of patch connectivity.
For intermediate levels of dispersal, we can expect the lag-1 autocorrelation to be
lower relative to that of isolated patches, but if coupling is sufficiently high, the lag-1
autocorrelation approaches that of a single patch.

3.5 Numerical Predictions for the Summary Statistics

Numerically evaluating the summary statistics at the mean (x∗
1 , x

∗
2 ) = (1 + √

β, 1 +√
β) confirms our theoretical predictions. As β approaches zero from the right in

each patch, the leading indicators change as predicted by the theory (Fig. 2). The
presence of coupling dampens patterns in indicator statistics that measure variability.
Furthermore, a high dispersal rate leads to larger changes in the lag-1 autocorrelation
statistic for populations in synchrony, in contrast with isolated patches, as predicted
with a decrease in β.

4 SimulationMethodology

The theoretical predictions for the summary statistics in Sect. 3 are calculated about
the steady state (i.e., the subpopulation mean (x∗

1 , x
∗
2 ) = (1+√

β, 1+√
β)). In order

to test the robustness of the theoretical predictions for the leading indicator statistics
under worsening patch quality, we conducted a simulation study using the fast–slow
model derived in Sect. 2. Using the parameters in Table 1, we simulated the stochastic
fast–slow models approaching a tipping point under low and high dispersal regimes,
and under both spatially homogeneous (system (2) and (3)) and heterogeneous (system
(4) and (5)) environmental conditions.

Here, we use the simulation procedure implemented in prior work (O’Regan 2018).
All computations were performed in MATLAB (MATLAB 2020).

123



Tipping Cascades in a Multi-patch System with Noise and… Page 21 of 27 112

5 Results

Increases in lag-1 autocorrelation, variance and coefficient of variation are seen in the
simulation study of the coupled two-patch model (Fig. 3). As the theory shows, higher
dispersal levels result in decreases in the magnitude and rate of change of the trends in
the indicator statistics. Median Kendall correlation coefficient values are all positive,
demonstrating that on average, positive trends in indicator statistics occur as tipping
is approached. Also, the median correlation coefficient values for the coefficient of
variation are very close to 1, indicating that under multiplicative noise, one can expect
a strong positive relationship between a worsening environment and the coefficient
of variation. This finding is common across dispersal levels. In summary, indicator
statistics behave as predicted by the theory, with the coefficient of variation performing
consistently well as an indicator of CSD across all cases explored here.

5.1 The Impact of Spatial Heterogeneity on CSD

Spatial systems are generally heterogeneous in nature (Levin 1976;O’Regan 2018). To
investigate how spatial heterogeneities affect CSD in a spatially extended dynamical
system, and whether the predictions for the leading indicator statistics for the spa-
tially homogeneous model are robust to heterogeneities, we formulated a fast–slow
spatially heterogeneous model with multiplicative noise. We assumed that environ-
mental conditions remain constant in the first patch, while conditions steadily decline
in the second patch. We investigated the dynamics when patch 1 is a “strong source,"
meaning that the patch quality is high and population growth occurs under favorable
conditions. We also explored the onset of CSDwhen the first patch is a “weak source,"
that is, when conditions for population growth are poor, and the population is close
to extinction. Figure 4 shows simulations of the fast–slow model with a strong source
patch and a deteriorating patch under low and high dispersal. Due to mixing between
the subpopulations, both patches decline in habitat quality. Although the second patch
deteriorates at the same rate as the declining patches in the spatially homogeneous
system, the strong source patch exhibits a rescue effect in the regime of high dispersal.
Both patches decline at similar rates due to the high level of connectivity between the
subpopulations.

Similar patterns of subpopulation decline due to high levels of coupling are also
observed when the first patch is depleted of resources (Fig. 5). When a poor quality
patch is coupled with a degrading subpopulation, both subpopulations decline toward
extinction and exhibit larger fluctuations compared to subpopulations where one patch
has a good environment (compare Figs. 4, 5). The weak source patch does not show
a strong rescue effect, even for higher levels of coupling. The spatially heterogeneous
metapopulationwith aweak source patch appears to bemore responsive to the intrinsic
dynamics within each patch, because each patch has an initial transient before the
system relaxes to the moving steady state of the fast–slow system (Fig. 5). Initially,
the subpopulation in patch 1 is buffered from extinction due to dispersal of individuals
from patch 2, which has a better initial environmental quality than the second patch.
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Figures 4 and 5 suggest the following hypothesis: due to a rescue effect, temporal
indicators of CSD should be weaker in a spatially heterogeneous system with a strong
source patch than a spatially heterogeneous system with a weak source patch. The
latter system is closer to the extinction threshold, whereas the metapopulation with a
strong source patch is buffered from extinction.

5.1.1 Theoretical Predictions

In order to examine the behavior of leading indicators of extinction in a spatially
heterogeneous system, we numerically integrated equations (19) and (20) for each
steady-state value (x∗

1 , x
∗
2 ) of system (1) (which we used to represent the mean of

the stochastic fast–slow system) for β2 values ranging between 1 and 10−2, while β1
remained constant (Table 1), and we used the integrals to calculate summary statistics.
Figures 6 and 7 show the behaviors of the summary statistics as β2 decreases toward
zero from the right. In a similar manner as the spatially homogeneous system , the lag-
1 autocorrelation function, variance and coefficient of variation all increase, in both
patches, as environmental conditions in patch 2 decline. Moreover, trends in leading
indicators are dampened with increasing dispersal, just as predicted in the case of the
spatially homogeneous system.

Since conditions in the second patch are deteriorating, it is reasonable to expect
that subpopulation x2 would exhibit a stronger sign of CSD than the x1 subpopulation
subject to a constant growth rate in the first patch. We find that this is indeed the case.
Under low dispersal and good conditions in patch 1, x2 exhibits a stronger signal of
CSD than x1, as indicated by the magnitude and slope of the summary statistics; this
is true under high dispersal as well (Fig. 7).

Under high dispersal and poor environmental quality for the second patch, patterns
in leading indicators are similar in both patches (Fig. 7).When dispersal is low, leading
indicators obtained from population fluctuations in patch 2 change more rapidly than
those obtained from patch 1 as β2 approaches zero from the right. Further away from
the extinction point at β2 = 0, patch 1 has larger variance, lag-1 autocorrelation and
coefficient of variation due to poor conditions that make the x1 subpopulation more
susceptible to extinction. All of the summary statistics increase, in both patches, as β2
approaches zero.

Comparing the magnitudes of the signals in Figs. 6 and 7, we observe stronger
signals of CSD in the summary statistics obtained from the spatially heterogeneous
model with a weak source patch than the model with a good quality patch. These
predictions suggest that the spatially heterogeneous system with a weak source patch,
which is near extinction, should exhibit stronger signals of CSD than the model with
a good source patch that favors system longevity.

5.1.2 Simulation Study Predictions

Predictions for the summary statistics calculated from the spatially heterogeneous
fast–slow model over a moving window (Figs. 7, 8) confirm the predicted trends
obtained by numerical integration (Figs. 5, 6). From the median τ values, there is
considerably more variability in leading indicator trends than those obtained from
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simulations of the spatially homogeneous system (compare the median Kendall’s τ

values in Fig. 4 with those from Figs. 8 and 9). Furthermore, the prediction that
stronger signals of CSD are observed in the spatially heterogeneous system with a
weak source patch than the corresponding system with a strong source patch is robust
in the simulated models (compare τ values in Fig. 8 with those in Fig. 9). Just as in
the spatially homogeneous system, the coefficient of variation appears to be the most
reliable indicator of extinction.

5.2 Partial Observability in Tipping Cascades

As discussed in Sect. 1, a given multi-dimensional system is likely to be observable
in only one dimension. We can thus explore the likelihood of a tipping cascade as
follows. By defining the extinction threshold by L := L1 = L2 = 0, the Allee
threshold as Ai := 1 − √

βi (Johnson and Hastings 2018) and the high threshold as
Hi := 1 + √

βi for i = 1, 2, we notice that Li < Ai < Hi in the bistable regime of
the strong Allee effect. Hence, we can consider the question of whether there exists a
signal for CSD in the system, given that only one patch is observable and deteriorates
in quality. This amounts to checking whether or not a transition from H1 to L1 in the
first patch is captured by the full system, with the second patch maintained at either
H2 or L2. In other words, the cases here correspond to (H1, H2) → (L1, H2) and
(H1, L2) → (L1, L2), respectively. Together, these two cases capture the scenario
of a tipping cascade, whereby the system can begin at a high-high state and end in a
catastrophic collapse at the low-low state (note that the states (L1, H2) and (H1, L2)

can be considered as equivalent (Mallela and Hastings 2021)).
In the spatially homogeneous scenario (i.e., β1 = β2 = β), we note that the

thresholds discussed above are the same for both patches. The expressions for the
respective leading indicators are also identical across patches. Thus, we can refer to
expressions (30) to (32) in Sect. 3, to understand that all of the leading indicators
describing CSD in the second patch have strictly increasing trends as extinction is
approached in the first patch. Hence, observing the second patch adequately informs
our assessment of the first patch.

For purposes of display, we analyze the case of multiplicative noise in the spatially
heterogeneous casewithβ1 �= β2 (Fig. 10). Increases in lag-1 autocorrelation, variance
and coefficient of variation for the second patch are seen in a study of the coupled
two-patch model with multiplicative noise. Lower values of β2, reflecting a poorer
quality of the second patch, result in stronger signals of CSD for the first patch. This
is true across all dispersal levels. For a fixed combination of β1 and β2, the strength
(magnitude) of the signal decreases with higher dispersal, for both the variance and
coefficient of variation. Interestingly, however, in the case of the lag-1 autocorrelation
indicator, the signal strength does not decay with increasing dispersal. We note that
our analyses here capture both parts of a tipping cascade. In summary, the lag-1
autocorrelation statistic appears to be robust with respect to partial observability of
tipping throughout the system.
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6 Discussion

Predicting tipping cascades is a complex task. Temporal, patch-specific indicators
are potentially useful for anticipating catastrophic events in networks with poor con-
nectivity and environmental noise. We formulated a stochastic fast–slow two-patch
model that is valid for different environmental conditions. By simulating the stochastic
fast–slow model, we showed that predicted trends in the leading indicators are robust,
implying that CSD manifests prior to tipping.

Noise, network connectivity and return rates to the steady state collectively char-
acterize the behavior of temporal summary statistics for the two-patch model studied
here. Assuming spatial homogeneity, we showed that increasing the level of coupling
between patches reduces signal strengths by decreasing their magnitude relative to
those obtained for isolated populations. The lag-1 autocorrelation function exhibits
non-monotonic behavior with increasing coupling strength. The simulation study
shows that the coefficient of variation is the most robust temporal indicator across
different coupling regimes, as well as for various environmental conditions. These
predictions for the behavior of the leading indicators are robust even if the constraint
of spatial homogeneity is relaxed. The analytic expressions derived in the homoge-
neous case are useful for prediction in spatially heterogeneous systems, where having
patch-specific indicators that account for coupling between subsystems becomesmore
important.

Increasing the degree of coupling induces synchronous dynamics in both patches in
the heterogeneous model. When a good-quality patch is available, rescue effects due
to dispersal buffer the system from a catastrophic collapse by introducing synchrony
in the network dynamics. Alternatively, in the heterogeneous system with a weak
source patch, the dynamics of the poor quality patch follow those of the declining
subpopulation over a short transient, and both subpopulations simultaneously decrease
toward extinction. These results suggest that both patches in the system should be
monitored. However, we have a stronger result in the scenario of observing a tipping
cascade. In particular, a signal in one patch is sufficient to inform our understanding
of its counterpart. This finding can have important implications in several settings. For
example, nearly all species are buffeted by stochasticity and many of them could have
Allee dynamics (Liebhold and Bascompte 2003).

Akey shortcomingof ourfindings relates to the limits of applicability ofCSD,which
forms the basis of research on early warning signals (Clements and Ozgul 2018). As
is typical of the transition from theory to practice, we must be careful in applying our
methods, rooted in alternative stable states theory and more specifically bifurcation
theory, to real ecological data (Burthe et al. 2016). Moreover, while critical slowing
down and its associated components of instability are present in some biological
models, it is absent from several others, including systems displaying catastrophic
failures (Boerlijst et al. 2013). Wemust also be cognizant of the fact that predictability
does not necessarily allow for prevention, as the fate of the systemmay be unavoidable
(Boettiger et al. 2013).

In addition, we used a simple model for a saddle-node bifurcation to describe the
intrinsic patch dynamics, but the framework can be generalized for bistable ecosys-
tems present in nature. For instance, accounting for spatial structure and movement
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pathways through networks (Suweis and D’Odorico 2014) is a natural way to extend
the two-patchmodel presented here. Becausewe are interested in the scenario of noise-
induced tipping via a saddle-node bifurcation, with a smooth and gradual approach to
the tipping point, extinction is highly likely. A factor that may influence the time to
extinction is the dispersal rate between patches, which could lead to a rescue effect.
In other words,we emphasize the importance of transient dynamics in our analyses
over a finite time horizon and do not explore persistence in the long-term dynamics
of the system. We do note, however, that prior work explored the role of patch dis-
persion in the persistence of stochastic populations, through a linear model without
Allee effects (Evans et al. 2013) and a density-dependent logistic model without Allee
effects (Hening et al. 2018). In summary, we have studied a general model for early
warning systems of tipping cascades. Although the analytic expressions for leading
indicators need to be numerically evaluated for the spatially heterogeneousmodel, they
still play a key role in the identification of critical slowing down in coupled ecological
networks.
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