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Abstract
Asmany ecosystemsworldwide are in peril, efforts tomanage them sustainably require
scientific advice. While numerous researchers around the world use a great variety of
models to understand ecological dynamics and their responses to disturbances, only a
small fraction of these models are ever used to inform ecosystem management. There
seems to be a perception that ecological models are not useful for management, even
though mathematical models are indispensable in many other fields. We were curious
about this mismatch, its roots, and potential ways to overcome it. We searched the
literature on recommendations and best practices for how to make ecological models
useful to the management of ecosystems and we searched for ‘success stories’ from
the past. We selected and examined several cases where models were instrumental
in ecosystem management. We documented their success and asked whether and to
what extent they followed recommended best practices. We found that there is not
a unique way to conduct a research project that is useful in management decisions.
While research is more likely to have impact when conducted with many stakehold-
ers involved and specific to a situation for which data are available, there are great
examples of small groups or individuals conducting highly influential research even
in the absence of detailed data. We put the question of modelling for ecosystem man-
agement into a socio-economic and national context and give our perspectives on how
the discipline could move forward.

Keywords Ecological modelling · Ecosystem management · Knowledge Translation

1 Introduction

Edward O. Wilson said that ‘It’s obvious that the key problem facing humanity in the
coming century is how to bring a better quality of life—for 8 billion or more people—

Extended author information available on the last page of the article
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without wrecking the environment entirely in the attempt’.1 Many ecosystems and
agro-ecosystems around the globe are disrupted (Messerli and Murniningtyas 2019),
species extinctions exceed the basic rate more than a hundred times, and crises and
regime shifts are becoming frequent phenomena (Ceballos et al. 2015). Scientifically
based, consistent, and sustainable ecosystem management is required to avert global
disaster. We share with others the conviction that a management task of this scale
and importance needs to be based on a rigorous theory and mathematical modelling
(Karunaratne and Asaeda 2002; De Lara and Doyen 2008; Fulford et al. 2020).We say
this despite a common perception that mathematical models for ecological processes
are not as useful and widespread as their counterparts in other areas (Peters 1991;
Sagoff 2016). The goal of our work is to evaluate this perception and to identify ways
in which mathematical models have been, and can continue to be, instrumental in gen-
erating understanding of ecological systems in general and of sustainable ecosystem
management in particular.

Mathematical models have a long and distinguished history in ecological theory
and have been applied to questions of endangered species conservation (Lebreton and
Clobert 1991; Green et al. 2005; Williams et al. 2004), biological invasion (Shige-
sada et al. 1995; Petrovskii and Li 2005; Lewis et al. 2016), and many others. Such
models come in many different forms, from simple statistical correlation or differ-
ential equation models to complex simulation scenarios. The inherent complexity of
ecological systems and processes is one reason why mathematical models are of key
importance. Amodel can act as a ‘virtual laboratory’ (Caswell 1988;Milton and Ohira
2014),where hypotheses can be tested and various scenarios and differentmanagement
strategies can be investigated under controlled conditions, safely and at relatively low
cost compared to experiments and empirical work (DeAngelis et al. 1998; Francis and
Hamm 2011; Österblom et al. 2013; Dietze 2017). However, the use of mathematical
models in ecosystems management is not as widespread as in many other areas, such
as aerospace engineering, finance, hydrology, power grid regulation, and disaster pre-
paredness (Sengupta and Bhumkar 2020; Howison et al. 1995; Singh and Woolhiser
2002; Deng et al. 2015; Steward and Wan 2007), where they have become indispens-
able tools to managers. Nonetheless, prominent success stories do exist, a fraction of
which we revisit in this paper, and inspire us to study ways in which mathematical
modelling can be better integrated into ecosystems management.

We focus on mechanistic mathematical models that describe how the state of a
system and the fate of its constituent species and substances evolve over time. Recent
advances inmodelling, analysis, and computing capabilities have increased the empha-
sis and usefulness of mechanistic models. This can include models formulated as
traditional dynamical systems in the form of (potentially stochastic) differential and
difference equations, or, more recently emerging interacting particle and agent-based
models (Bousquet and Le Page 2004; Parrott et al. 2011).

Despite all recent advances and successes, only a small portion of ecological mod-
elling research is used in management, regulatory, and decision-making processes.
Given the sheer magnitude of the challenges that we face and the success of mathe-

1 As told to Fred Branfman ‘Living in Shimmering Disequilibrium’ Salon.com, April 22, 2000. https://
www.salon.com/2000/04/22/eowilson/.
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matical models in other areas, this disconnect seems surprising, to say the least. It also
indicates a great untapped potential in dealing with some of the foremost challenges
of our times. In this study, we endeavour to gain insight into this disconnect. We give
examples of mechanistic ecological models that have had great impact in management
and decision-making. We give insights to modellers for how to make their work more
relevant for applications to sustainable ecosystem management, and pave the way for
mechanistic ecological models to take a prominent role in supporting decision-making
for a sustainable future. To affect the decision-making process, one has to know its
components and their interplay.We do not explicitly study it here in detail because this
has been done elsewhere, see, e.g. Dafoe (2003) and references therein. We do, how-
ever, mention various aspects of this process throughout our work where this context
information is necessary.

It is sometimes helpful to categorize the broad variety of process-based models
according to various criteria, but such a classification is neither obvious nor unique.
Classification according to mathematical criteria (e.g. deterministic or stochastic, dis-
crete or continuous) can be helpful for experts but gives little information about
predictive or explanatory power. We will refer to the distinction that Holling (1966)
proposed between strategic models, which are simple yet capable of revealing poten-
tial explanatory generalities, and tactical models, which are designed to predict the
dynamics of specific systems and tend to be more complex. Such distinctions about
models are not always so clear, and sometimes, the classification may refer to an
objective. Other classifications exist, for example by Levins (1966), who rated models
on the three axes of generality, realism and precision; see Evans et al. (2013) for a
review and discussion of this and other approaches.

We begin by reviewing the current literature on the topic from both academic and
government sources, andwe highlight their recommendations in terms of presentation,
collaboration, and type of model to use. Then, we critically analyse several success
stories, wheremechanisticmodels, published in the scientific literature, had significant
impact on policy and decision-making. We consider a variety of attributes for each
study, from simple article metrics and the type of model used to questions of model
presentation and urgency of the problem. By contacting the authors, we also investi-
gate the level of collaboration between researchers and managers or decision-makers
throughout the research process. We discuss a few specific ‘pathways to success’ that
are common in this area. We also reveal how the communication between the aca-
demic researcher community on the one hand, and the community of managers and
decision-makers on the other, is organized in different countries around the world, and
how different standards can create obstacles for collaboration while other aspects can
become opportunities for collaboration. We believe that our analysis and findings will
prove helpful to theoretical ecologists and ecological modellers interested in learning
how to facilitate the uptake of their research by decision-makers.

2 Characteristics of Models for Environmental Decision-Making

Models have long been essential for ecological theory in explaining how ecological
systemswork and have been used in amore appliedmanner in special areas of environ-
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mental management, such as ecotoxicological risk assessment (Pastorok et al. 2003),
integrated pest control (Huffaker 1980), wildlife management (Norton and Possing-
ham 1993), fisheries (Collie et al. 2016), and invasive species (Epanchin-Niell et al.
2012; Liebhold et al. 2016).

Some of the first ecological models used in the realm of legal decision-making
were linear compartmental models (ordinary differential equations). Such models can
be used to trace the fate of a substance through the environment (Sheppard 1948).
Motivated by the fallout of radionuclides from nuclear weapons testing, food chain
compartment models were developed to follow the movement and concentration of
those and, later, other contaminants. Reichle and Auerbach (2003) note that ‘Food
chain models have had important application in developing regulatory standards for
environmental exposures (ingestion) and in developing risk analysis for chemical
release’, although these models did not simulate the dynamics of these food chains,
only the movement of chemicals through the static chains.

Nevertheless, applications of mechanistic models in important environmental man-
agement decisions have remained rare. Scepticism still exists among many ecologists
and managers on the usefulness of ecological models in management (Clark and
Schmitz 2001; Lester 2019). According to Bunnell (1989), this problem of trust has
emerged from numerous failures of models to provide useful information to environ-
mental problems. He identifies some of the main reasons for this failure, including
models not addressing managers’ real questions, there not being an actual user envi-
sioned at the start of model development, and model complexity exceeding what can
be supported by data, leading to models not being adequately evaluated. Wright et al.
(2020) found that there is often a big gap between finding an optimal solution for
a given conservation challenge and implementing it. It is therefore possible that the
perceived lack of usefulness of models in conservation decisions is attributable to
challenges in implementation and not to the models themselves.

A number of authors have made recommendations for how to improve ecological
modelling designed for decision-making. A few key pieces of advice can be summa-
rized. First, there is broad agreement that a clear statement of the model objective is
needed (Pastorok et al. 1997; Starfield 1997; Clark 2010; Nichols 2001; Glaser and
Bridges 2007; Grimm et al. 2020). Formulation of a clear objective includes deciding
what the key variables are, the types of outputs, and the data requirements to attain the
objective. Second, there must be close coordination between environmental decision-
makers and modellers to develop a common understanding so that the science can
be transferred to managers (Swannack et al. 2012; Schuwirth et al. 2019) and other
stakeholders (Parrott 2017; Schmolke et al. 2010). Third, only those features that are
essential to the objective should be included in themodel (Nichols 2001). Fourth, clear
measures should be identified to evaluate the model’s success in attaining its objective
(Starfield 1997). Fifth, as noted by Bunnell (1989), working in teams is important, as
most management problems are multidisciplinary and require several types of exper-
tise. However, some of our examples will show that large interdisciplinary teams are
not necessary for producing high-impact papers.

A systematic strategy for using models for environmental decision support is pro-
posed by Schmolke et al. (2010). In addition to the principles noted above, they stress
the importance of an initial conceptual model formalization that includes all of the
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assumptions and a careful selection of the appropriate complexity level for the prob-
lem. They list the standard processes of parameterization, verification of the correct
formulation, sensitivity analysis, uncertainly quantification, validation, and thorough
documentation of steps.

Government agencies charged with making decisions about the environment have
often developed their own standardized protocols for model development and appli-
cation. Swannack et al. (2012) describe this process for ecological restoration by the
U.S. Army Corps of Engineers. In theory, the modelling process develops smoothly
from the conceptual model development through the quantitative model and evalua-
tion to application. In practice, the process is more iterative, with both conceptual and
quantitative models being changed as problems are met or new ideas arise along the
way. Problems may include data gaps for key parts of the model, which may have
to be filled with expert opinion (Lester 2019). Such a process of successive model
elaboration and refinement has also been described by Getz et al. (2018).

In such agency models, documentation and communication are essential parts of
the process (Swannack et al. 2012). Communication is essential at all stages of the
modelling process, including a clear statement of the objectives to stakeholders at
the outset (see above). Cartwright et al. (2016) give a comprehensive guide on how to
effectively communicate each aspect of the process, including schematics for presenta-
tions. To assist in decision-making, complex outputmust be communicated effectively.
Communication with stakeholders may be improved by linking mental models of the
stakeholders in the simulation models themselves (Elsawah et al. 2015).

There are many styles of ecological models, and there has been debate over which
approaches are best for models aimed at decision-making. Norton and Possingham
(1993) provide a taxonomy of various kinds of wildlife models. They felt that dynamic
spatial simulation models were best for projecting various management scenarios and
responses of systems to climate change. The most appropriate models for projecting
novel situationsmay be process-drivenmodels, which are based on a theoretical under-
standing of relevant ecological processes (Evans et al. 2013; Cuddington et al. 2013;
Schuwirth et al. 2019). If knowledge of the basic processes is available, especially at
the level of individuals, these models can project the response of an ecological system
to changing land use and climate. They can help distinguish among the relative bene-
fits of management alternatives and test hypotheses (Glaser and Bridges 2007; Lester
2019). Process models have also been useful in providing and suggesting ‘optimal’
ways to apply management in these areas (Clark 2010; Huffaker 1980; Buongiorno
and Gilless 1987). However, data at the level of detail needed are not always available.
As an alternative, Sutherland et al. (2012) propose that models for decision-making
use an empirically driven approach; that is, use phenomenological relationships. Even
though processes are modelled explicitly, they are simplified as transitions between
coarse-grained states, so the demand on data is reduced.

Robson (2014) observed that ‘ecologicalmodels only providemanagement-relevant
predictions of the behaviour of real systemswhen there are strong physical (as opposed
to chemical or ecological) drivers’. Such a statement reflects the fact that planning fre-
quently serves the goal of controlling a system by engineered structures and processes.
Hydrology is one example of a strong physical driver in freshwater systems. An exam-
ple is the massive Everglades restoration project, where highly detailed and validated
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hydrological models and physical structures are used to predict and regulate water
flow, water depth, and other aspects. Management impact on biological populations
is then evaluated according to habitat suitability models, which are, in their simplest
form, statistical correlation models based on natural history (Beerens et al. 2015).
Linking hydrology to population dynamic models has been rarer, but an apple snail
population model by Darby et al. (2015) is currently officially accepted and imple-
mented by the U.S. Army Corps of Engineers who oversee the project. Models such
as these, that combine physical and ecological components, sometimes referred to as
‘hard science–soft science’ models (Ziman 2002), could be an avenue for mechanistic
ecosystem models to gain importance in planning and management as in Darby et al.
(2015).

Similarly, river flow regulation and water extraction permits are typically based on
instream flow needs, which, in turn, use habitat suitability models for fish and stream
invertebrates (Gibbins et al. 2007). Phosphorous is considered the main driver for
phytoplankton dynamics in lakes, and the control of algal blooms is typically based
on restrictions for nutrient loading in tributary rivers. In all these cases, there exist
mechanisticmodels for populations and communities for some of the species involved,
and such models provide interesting insights into their sometimes complex dynamic
behaviour, but they are rarely included in official management plans and practice
(Anderson et al. 2006a). More recently, predictions of how populations respond to
climate change are based on climate envelope models that couple the physical drivers
(e.g. temperature) with habitat suitability correlations (Elith and Leathwick 2009).
More mechanistic models exist that reveal dynamics other than those predicted by
climate envelope models (Harsch et al. 2017), but we are unaware of management
applications.

We can say then that a great deal of advice has been provided on methodol-
ogy for developing modelling relevant to environmental decision-making. But actual
applications to such decision-making have been limited to relatively simple, largely
non-mechanistic, modelling approaches. It is clear that, ultimately, precision, feasibil-
ity, and principles of engineering need to bematchedwithmechanisms and complexity
of ecosystems for successful sustainable management. In the next section, we present
our approach to identifying features of mechanistic models that had impact on man-
agement decisions and explain some of their characteristics.

3 Analysis of Success Stories

An early success story of the influence of mechanistic ecological models in legislation
was the regulation of dichloro-diphenyl-trichloroethane (DDT). During the 1950s,
growing concern about the effects of DDT on thinning bird eggshells and its possible
carcinogenicity culminated in Rachel Carson’s book ‘Silent Spring’ in 1962. The
concerns voiced in the book eventually led to a ban on the use of DDT in the USA by
the U.S. Environmental Protection Agency in 1972 (Peterle 1991). Before that, court
actions had been initiated in Wisconsin to classify DDT as a pollutant. In these court
proceedings during 1968–1969, charts and equationswere presented that described the
bioaccumulation of DDT in and through the trophic levels of an ecosystem (Loucks
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1972; Harrison et al. 1970). Although there was some later criticism of the lack of
verification of the model, the result of the court proceedings was that the Examiner of
the Wisconsin Department of Natural Resources ruled that DDT and its analogs were
environmental pollutants (Henkin et al. 1971). Unfortunately, not many such success
stories are documented in the literature.

We authors wondered why such success stories are rare and tried to find more
examples while we all participated in a workshop entitled ‘New Mathematical Meth-
ods for Complex Systems in Ecology’ at the Banff International Research Station for
Mathematical Innovation and Discovery (BIRS)2. We were curious about what makes
a modelling paper influential in management decisions, so we asked the workshop
participants for suggestions of papers with such success stories. For each of the sug-
gested papers, we compiled a number of factors that we expected could be relevant
for work that has impact in management of ecosystems. We could determine each
paper’s performance with respect to several of these factors by consulting the pub-
lished record, mostly standard metrics such as number of citations or the impact factor
of the journal, and objective characteristics such as the type of model used or whether
data was considered in the study. Other aspects that have been deemed crucial for
success, such as clear communication and model presentation (see previous section),
are somewhat subjective and more difficult to evaluate. Even more difficult to evaluate
is the impact that a given publication has had. Rarely is this impact documented in the
actual publication; at best, it can sometimes be found in subsequent publications by
the same author(s). When there was no clear documentation of impact, we contacted
the authors directly and asked them about the impact of their work, the involvement
of stakeholders and their contribution to success. Most authors replied to our requests
and explained howmanagement impact arose from their work. Table 1 lists the papers
that we chose to highlight, together with some characteristics and metrics.

A first observation is that it is not easy to find modelling work in ecology that
has explicit impact in ecosystem management. Few examples were provided by the
workshop participants, and even for those, the nature of the impact was often not
clear and rarely documented. In our opinion, this difficulty of finding examples and
their documented impact reflects the fact that academic modellers and ecosystem
managers/decision-makers largely operate separately from one another and prevents
each side from learning about the other’s work and potentially collaborating where
overlap exists. Perception of the necessity to bridge this gap was our main motivation
for this study.

Our second observation, partly related to the first, is that the typical academic
metrics used to judge a paper’s value do not also indicate whether or not an ecological
model has had management impact. This dichotomy is true for official metrics such
as citation count, as well as for informal metrics such as the perceived rating of (some
of) the authors in the academic community. For example, Harrison et al. (1970) was
hugely influential in legislating a ban on DDT, but has fewer than 100 citations to date.
For other papers, management and academic impact both occur, as, for example, in the
study by Crouse et al. (1987) on the benefits of turtle excluding devices in fisheries,
which has over 1400 citations (Table 1).

2 https://www.birs.ca/events/2019/5-day-workshops/19w5108.
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This dichotomy does not mean that these metrics are not important. When govern-
ment representatives consult the academic literature, they may take such metrics as
indicators for the scientific community’s evaluation of the work and therefore decide
to use the paper’s results (Findlay, personal communication). There are, of course,
many scientists working in government laboratories who use mathematical models (in
our sense) as part of their toolbox when researching any given topic. The results may
influence decision-makers, but often do not see the light as academic publications and
are therefore largely hidden from the academic community.

Some of the papers that were suggested to us are published in very high impact
journals (e.g. Science), but this academic prominence is not necessary for a paper to
have management impact. For example, the Hokkaido Government in Japan adopted
a management program for sika deer on the basis of Matsuda et al. (1999), published
in Population Ecology. Even more surprising is the case of Vollenweider’s work on
lake eutrophication through the use of a mass balance and export model that seems
simplistic from today’s point of view but produces excellent predictions. According
to the author’s own account (Vollenweider 1987), the most influential of his works,
Vollenweider et al. (1970), was not even published in a peer-reviewed journal because
the funding agency did not give its consent. The later, peer-reviewed work is Vol-
lenweider (1975), and the impact of both is widely documented (Carpenter et al.
1985; Lowe and Steward 2011). In other cases, it is not clear whether publication
in a high-impact journal aided the application in management or, vice versa, (poten-
tial) important applications in management aided publication in high-impact journals.
While some authors reported that there was a significant lag between model publica-
tion and its management action (Krkošek et al. 2005), others report that management
action preceded publication (Hudjetz et al. 2014). Another feature we considered, that
is, the geographical extent of the ecological problem, does not seem to affect its use
in management. Table 1 contains numerous examples of both.

We were curious about model complexity and model realism in the studies that
were suggested to us as success stories. There are, of course, many different types of
(dynamic) mathematical models, such as differential equations, difference equations
and in particular matrix models, individual- and agent-based models, and others. We
found influential examples from all different types, but there are differences, which
we discuss now.

Matrix models are widely used and understood for discretely structured population
dynamics (Caswell 2000). Crouse et al. (1987) studied the effect of various factors on
turtle reproductive success. Their workwas instrumental inmandating turtle excluding
devices in the USA. Matrix models are considered highly accessible to non-modellers
and do play a significant role in conservation decisions and government reports, e.g.
the evaluation of the status of boreal caribou in Canada under the COSEWIC status
assessment report (Berglund et al. 2014). In fact, there are large data bases of life cycle
dynamics (i.e. parameterized matrix models) of various organisms that can be used by
researchers (e.g. the COMPADRE database for plant species3).

Differential or difference equation models with only a few equations are sometimes
seen as too simple, yet can be very useful, even if, or particularly when, parameter val-

3 https://www.compadre-db.org.
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ues are not known in site-specific detail. Despite their apparent simplicity, thesemodels
can easily yield complex dynamics. The potential for abrupt changes in behaviour (e.g.
tipping points) poses the question of parameter estimation and accuracy. The double-
edged sword of general simplicity versus site-specific details and complexity is always
present, but both types can have significant impact inmanagement. For example, Hast-
ings andBotsford (1999) used a simplistic, single-variable discrete-timemodel to show
that fisheries yield is equivalent with quota restrictions or with marine reserve regu-
lation. This paper contains no specific data, but with its general insights helped pave
the way for the concept of marine protected areas to enter the scientific and politi-
cal debate (Saarman et al. 2013). While this publication is the only example in our
list that does not contain specific data, other examples do exist, particularly in areas
where data are difficult to come by. In these situations, qualitative trends and rules of
thumb provide valuable conservation guidelines, for example, in terms of spatial scales
(Gaines et al. 2010). Mumby et al. (2007) studied the resilience of coral reefs using a
similarly simplistic model, which, despite being based on parameter values gathered
from expert knowledge rather than data, also became instrumental in management. A
more complicated discrete model by Lamberson et al. (1992) explored the population
dynamics of the northern spotted owl (including mating, reproduction, dispersal and
environmental stochasticity) in the presence of logging and habitat fragmentation, and
contributed to significant legislation for protection of the species. In some cases, a suite
of models, ranging from generic to specific, can be highly successful. For example,
a key question regarding the health and management of inland and coastal waters
is eutrophication. Basic research (Janse et al. 2010) demonstrated broadly that criti-
cal transitions from submerged aquatic to phytoplankton could occur in shallow lake
ecosystems. For more specific applications, Janssen et al. (2019) used a generic lake
ecosystemmodel to show how such critical transitions could occur in different ways in
different lake types. While this approach provided advice regarding best practices for
reversing eutrophication in particular lake types, the model was still fairly theoretical.
A highly site-specific spatio-temporal explicit model (with hydrology) was developed
over decades to determine effects of nutrient loading for the Everglades wetland, and
it is used in decision-making (Flower et al. 2019). In fisheries management, Collie
et al. (2016) acknowledged the success of models for single-species management but
calls for more tactical ecosystem models that include the dynamics of ecological and
environmental features.

Individual-based models (IBMs) are often quite appealing to practitioners and
non-scientists because these stochastic models are, or can be, formulated in terms
of behavioural rules rather than mathematical equations. On the other hand, their
detailed nature makes scientific reproducibility extremely difficult when small differ-
ences in implementation can lead to large differences in outcomes, which is why a
protocol for their description was developed (Railsback and Grimm 2019). Parame-
terization of individual-based models requires large amounts of data, but this effort
can result in models that yield highly site-specific results and often allow visually
appealing representation of those results. Examples of high-impact IBMs include the
inSALMO model by Railsback et al. (2013), which is one of a series of papers on an
individual-based model of the life cycle and behaviour of salmonids in rivers with the
goal to allocate restoration efforts. This model was developed in a partnership between
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Specific phenomenon (system, species) in the need of management

Observa�ons,
data collec�on

Strategic models

Tac�cal models

Decision-making

Management’s
percep�on

Empirical models

Fig. 1 Different paths of the informationflow resulting in decision-making supported byuse ofmathematical
models. The blue, yellow, and red paths (visualized by the corresponding chain of arrows) correspond to the
use of models of increasing complexity as required by the complexity of the given natural system. Along the
blue path, the approaches from a standard ecologist’s toolbox are predominantly used. Use of less standard
and/or more advanced mathematical techniques along the yellow and red paths introduces the crucial stage
of manager perception where the modelling results should be linked to the real world using manager’s terms
(that often differ from the modeller’s terms, see Sects. 4.1 and 4.2 for a discussion of ‘different cultures’)
(Color figure online)

government research laboratories, academia, and industry in the USA and has been
adopted by one laboratory of the National Marine Fisheries Service for management
research in California (Dudley 2018). The BEEHAVEmodel (Becher et al. 2014) was
developed by an academic–industry partnership in the UK for use in pollinator risk
assessment by industry and regulatory agencies. The European Food Safety Authority
(EFSA) has evaluated BEEHAVE and found its design suitable for the development
of a new model on its own and has decided to use BEEHAVE to define a reference
‘healthy’ honeybee colony (EFSA 2015). Yet another successful IBM, examining
grassland dynamics in a German national park, was also developed in close collabo-
ration with all stakeholders and its recommendations informed management actions
before the corresponding article was published (Hudjetz et al. 2014).

We observe that there is not one and only one way to conduct research on dynamic
ecosystem modelling and to disseminate its results in such a way that it is useful to
ecosystem management. This could be seen as bad news in that we cannot offer one
‘blue print’ to follow for models to have impact on management. We consider it good
news in that there are many different approaches that promise visibility and impact as
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long as some basic insights are respected. We distinguish three different ‘pathways to
success’ that may be taken depending on the nature of the problem and the type of the
modelling approach used, illustrated in Fig. 1. The blue path may arise in the cases of
relatively simple, low-dimensional dynamics, especially when predominantly linear
predictor variables are used that can be deduced from the analysis of field data using
statistical tools (Dietze 2017), sometimes as simple as the linear regression (Vollenwei-
der 1975).Nowell-established ecological theory ormechanisticmodels are involved in
this case; the predictors are usually (but not always) chosen based on biological knowl-
edge. The yellow path arises in the cases of higher-dimensional ecological dynamics
of intermediate complexity, where the predictor variables and their interactions are
not deducible directly from data, but relevant ecological theory supplemented with
conceptual, schematic models work well in describing the system’s properties and
suggesting a sustainable management practice (Hastings and Botsford 1999; Lamber-
son et al. 1992; Matsuda et al. 1999). Following this path, the model sometimes can
be formulated entirely qualitatively, using causal loop or stock-and-flow diagrams,
without using any equations, cf. Carpenter et al. (1985). Arguably, even if only a trend
can be predicted correctly, such models can still provide useful information to advise
decision-makers, for example for conservation purposes. The models arising in the
yellow path would often be accessible to analytical investigation, although not nec-
essarily be explicitly solvable. The red path arises in the cases of a high-dimensional
system of high complexity, where conceptual theory and models are not capable of
providing a meaningful description of the system’s properties. Such models are usu-
ally investigated through extensive numerical simulations, e.g. Thomas et al. (2009);
the corresponding field of research and methodology is known as computational ecol-
ogy (Pascual 2005; Petrovskii and Petrovskaya 2012). We mention that the difference
between ‘strategic’ models (yellow path) and ‘tactical’ models (red path) is often con-
ditional rather than absolute and may even depend on the preferences and experience
of the researchers. We also mention that the three coloured paths are typical but not
exclusive and some other, ad hoc or case-specific links and paths may be possible (not
shown in the figure for the sake of clarity). For instance, observations and field data
may suggest, through management’s perception, a straightforward approach to tackle
the problem without any need for modelling. Conversely, use of non-standard empiri-
cal models may require the stage of management’s perception and appreciation. Else,
sometimes the red path may include the stage where strategic models are attempted
before moving on to the “of” between “use” and “more” detailed tactical models, in
case the former are found to be too schematic.

In addition, the following points outline further responses that we obtained from
the authors of the papers selected for the analysis.

1. The scientific question should be currently relevant to managers and decision-
makers, ideally the question would come directly from them. Sometimes theo-
retical models can have impact if the topic is currently highly debated in the
community, e.g. Hastings and Botsford (1999).

2. The work should include all relevant aspects, which sometimes results in a series
of papers that build our understanding of a given system, e.g. Krkošek et al. (2005);
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Railsback et al. (2013). Sometimes, however, a single paper is sufficient to influ-
ence policy strongly, e.g. Crouse et al. (1987).

3. Ideally, stakeholders are involved from the beginning of the modelling process,
e.g. Becher et al. (2014); Railsback et al. (2013). However, this is, again, not
necessary if the authors are highly familiar with the pressing issue, as in Hastings
and Botsford (1999).

4. The use of data can be key to successful management outcomes. In models regard-
ing the management of specific species or locations, data are essential for the
analysis and parametrization, as in the turtle management arising from Crouse
et al. (1987). Using Markov decision processes with data from the U.S. Fish and
Wildlife Service, Johnson et al. (2016) explained the framework used to manage
mallards in the USA and Canada.

Even if all of these recommendations and suggestions are followed, there is no
guarantee that any particular research activity will have the desired influence on man-
agement and policy, or that it will have any impact at all. Policy and management
decisions are made in the context of a societal environment, so that even excellent
scientific work will not influence policy unless the goals and results of the research
are aligned with this larger context. The discussion below includes some observations
about this issue.

4 Discussion

4.1 Two Communities, Two Cultures: Managers’Perception of Modelling Studies

Despite the long history of ecological models as heuristic tools in understanding
ecological systems, there is disagreement over the impact of their applications to man-
agement and decision-making. On the one hand,models have been said to ‘have played
key roles in informing public debate and informing management decisions’ (Harris
et al. 2004). For example, the model by Epanchin-Niell et al. (2012) gave advice
on allocating expenditures between surveillance and eradication of invasive species.
Models have also shown the effectiveness of sterile insects techniques in invasives
with specific features (Liebhold et al. 2016). The adaptive management modelling
approach of Donovan et al. (2019) in collaboration with the Grand Canyon research
staff gave recommendations on an endangered species, the humpback chub. On the
other hand, models have also been criticized for their lack of predictive power and
that ‘problems that ecology should solve are not being solved,’ e.g. Peters (1991).
Such contradictory views might be explained by distinguishing two types of potential
uses of models for environmental issues, namely ‘exploratory/planning’ and ‘regula-
tory/legal’, as defined by Harmel et al. (2014). The former type of model provides
qualitative information that can be used to plan relevant research and influence opin-
ion. Most ecological modelling that is termed ‘applied’ is of the exploratory/planning
type, and the insights it provides often support the former point of view. However,
models that directly guide important environmental decisions and are incorporated
into management, that is, the regulatory/legal type, are much rarer, which tends to
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support Peters’s negative opinion. That reflects the difficulty of ecological models to
attain high predictive power and therefore leads to continued reports of scepticism
about the use of ecological models in decision-making, e.g. Clark and Schmitz (2001)
and Lester (2019). Part of the problem is that contributing to regulatory/legal decisions
is a multi-step process, and there is frequently a lack of funding for work that moves
from exploratory or proof-of-concept studies to a point where the findings are relevant
to regulators.

Arguably, one factor that hinders more efficient communication between ecological
modellers and ecosystem managers is the ‘cultural’ differences between the corre-
sponding communities. The set of indicators that managers routinely use to gauge
the value of a model is considerably different from those of an academic; see Find-
lay (2019); Harris et al. (2004); Schuwirth et al. (2019); Swannack et al. (2012). For
example, two factors that are often regarded by applied mathematicians as important
in order to maintain their respect and ranking in the community of applied mathemati-
cians are the journal where the paper is published and the ‘elegance’ of the model,
e.g. whether it is investigated analytically. However, these issues matter little if at all
for ecologicalmanagers. This narrow view of ‘important’ work in appliedmathematics
should be broadened to recognize more positively the value of collaborative research
with multiple authors with a variety of viewpoints (possibly including managers).

4.2 Social Context

What matters for decision-makers in general is (i) whether the evidence provided by
the model speaks directly to the issue/problem (all else being equal, indirect evidence
is something that managers tend to down-weight) (Sutherland et al. 2012) and (ii) what
the ‘costs’ are (economic, political due to public opinion and media coverage, etc.)
of taking a decision based on the evidence provided by the model (Lortie and Owen
2020). In Fig. 2, we illustrate three key information streams that are considered in the
development of policy, and discuss these elements below.

Since ecological research often points to management actions that are of benefit
to humans in the long term, but look detrimental to profits or jobs in the short term
(Hoffmann and Paulsen 2020; Caplan 2016; Hyde and Vachon 2019; Leonard 2019;
Scanlan 2017), governments will be more likely to implement the recommendations
of ecological research if public opinion supports such activity (Burstein 2003). The
required groundswell of public opinion is often created when grassroots organizations
are able to obtain media attention and gain sufficient momentum to shape public
opinion. This process can occur quickly, but can also involve decades of hard work
(Bullard and Johnson 2000; Fields 2018), and the level of success is context dependent
(Foweraker 2001). This activism is informed by research, some of it funded through
the basic research programs of individual researchers, some co-funded by activist
organizations.

Finally, decision-makers also need to consider the associated costs of the man-
agement action (Lortie and Owen 2020): costs of implementation, costs of doing
nothing, the likelihood that the recommendation might be in error, and the conse-
quences if the recommendation is in error. For illustration, consider two extremes:
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Fig. 2 Three information streams that are key components of policy development. These three streams
are important in determining whether or not research results will be used to inform policy. Decision-
makers must integrate information from government agency priorities (centre stream), costs (blue box),
and public opinion (red box). Research (university, government, etc.—green box) informs all three streams.
Public opinion is often rooted in media attention to grassroots issues (purple box). If there is sufficient
public support of management actions recommended by research, and the costs (monetary costs and/or
political costs of action and/or inaction) are favourable, the research can lead to policy action (gray box).
There is a bidirectional relationship between research and activist organizations because the latter are not
simply recipients of research knowledge, but can also be contributors by funding or co-funding, or—more
recently—through citizen science (Color figure online)

At one extreme are (a) inexpensive recommendations that are sure to lead a good
outcome easily observed by the public, and at the other extreme are (b) very costly
recommendations that may lead to a marginally better outcome or a good outcome
that is not apparent until many years have passed. Recommendations of type (a) are
easy for policy-makers to adopt, while recommendations of type (b) are unlikely to
be adopted. Recommended actions to reduce reliance on fossil fuels are definitely
of type (b), and government appetite to implement such actions has only begun to
develop momentum as the consequences of doing nothing become more obvious to
industry and the public (Diringer and Perciasepe 2020). Modelling work that includes
an in-depth study of uncertainty (ideally going beyond the imprecision of parameter
estimates, which is generally a relatively small source of uncertainty compared to
other sources), and that can nonetheless demonstrate a high level of confidence in the
predictions, will be more likely to inform management decisions (Cooke et al. 2020).
Management of invasive species provides a superb illustration of many of the issues
raised here. Monitoring can often prevent species from being introduced, but the cost
may be high. Proper management for species that have been introduced depends on
appropriate knowledge of the cost of damage by the invasive species (which can be
very difficult to assess) (Epanchin-Niell and Hastings 2010).

Several of our success story examples are caught between conservation goals and
economic interests, e.g. the question of turtle-excluding devices (Crouse et al. 1987),
the protection of the northern spotted owl (Lamberson et al. 1992), and the effect of
fish farms on sea lice among wild salmon (Krkošek et al. 2005). Since such potential
conflicts often garner media attention, modellers may find themselves in the spot-
light and might require training for communicating with media outlets. Parrott (2017)
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considers such communication skills as one of many non-scientific skills that are as
important as scientific skills for researchers aiming to help solve difficult ecological
problems with substantial socio-economic implications in interdisciplinary teams.

4.3 Government Research

As the use of science is important in the decision-making process, many if not most
government bodies not only fund research but also operate their own research institutes.
Hence, there is a lot of research done by government scientists, many of whom use
complex models and support management decisions, but publish only in government
reports. As academic researchers we could be more active about searching the gray
literature in order to tie in with and contribute to this research activity. In this section,
we showcase some selected opportunities for academics to connect with government
research. Our aim is to illustrate the variability of different forms of government
research and which role it can play. Along the way, we touch on modelling standards
of in-house work of government authorities.

In the USA, the Environmental Protection Agency (EPA) is the main environmental
regulatory agency and responsible for policy and regulatory decisions. Environmental
models ‘[…] are becoming a key component of science that is used not only within
the EPA but throughout federal agencies’ (Borg 2009). An example of a model used
by EPA is the AQUATOX model, developed by a private company, which simulates
an aquatic environment, tracking the fate and transport of pollutants and predicting
the effects they will have on an ecosystem (Park et al. 2008; Galic et al. 2019; Forbes
et al. 2017). Although AQUATOX is a complex model, it has been well enough peer
reviewed and tested to meet the three issues of importance to regulatory decision-
making: uncertainty, transparency, and consistency (Borg 2009; Galic et al. 2019). The
work by Springborn et al. (2016) was partially funded by USDA-APHIS and resulted
in changes in inspection procedures atUS ports. A list of all funding opportunities from
federal agencies can be found on grants.gov and are generally available to universities
and private companies. The Cooperative Extension System provides funding to Land-
Grant universities, in order to bring science directly to the regional and country level.

InCanada,mathematicalmodels forman important part of agencydecision-making,
especially in forestry and fisheries, which are two economically essential industries
in Canada with significant conservation challenges. For example, the Department of
Fisheries and Oceans employs the Habitat Ecosystem Assessment Tool to assess net
change of habitat productivity, using habitat suitability as a surrogate. The Canadian
Forest Service developed and continues to use several large-scale simulation mod-
els for forest management, fire regimes, or carbon cycling. The listing of species
by the Committee of the Status of Endangered Wildlife in Canada uses a range of
mathematical models, including matrix models for caribou (Berglund et al. 2014).
There are funding opportunities by government agencies that are available to aca-
demic researchers (e.g. the Early Intervention Strategy program for spruce budworm),
and there are government-academic research networks (e.g. FLUXNET).

In the European Union, the Joint Research Centre provides scientific advice to the
European Commission and to EU member states. Notably, the Competence Center
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on Modelling was launched in 2017 to promote a responsible use of models in EU
policy-making. Its key objectives are to increase the transparency, consistency, and
quality ofmodel use. There is an increasing trend inmodels being used in the Commis-
sion’s Impact Assessments4 from 2003 to 2018, reaching around 25–30% from 2015
onward (Acs et al. 2019). The policy areas with the highest number of model use are
environment (including climate), internal market, transport, and energy. Descriptions
of the models previously or currently used by the Commission are contained in the
Modelling Inventory and Knowledge Management System (MIDAS), which is open
to the public since December 2020.

In the UK, environment-concerned government institutions such as The Depart-
ment for Environment, Food and Rural Affairs provide relatively little funding for
academic research. Their interaction with academia seems occasional rather than reg-
ular and, as it stands, neither to inspire university researchers to make their results
useful for managing environmental problems nor to provide a framework for that.
Instead, environmental and ecological research in the UK, including that involving
mathematical modelling, is usually done in a few government-funded research insti-
tutes such as Rothamsted Research and the Centre for Ecology and Hydrology. In
spite of the apparent absence of any comprehensive system facilitating the interac-
tion between academia and decision-makers, UK academics are in fact encouraged
to explain how their research has ‘impact’ upon the economy, society, public policy,
culture, and the quality of life through the Research Excellence Framework.

In Germany, due to its federal political system, a host of federal ministries or state
authorities grant research contracts, primarily to the government’s own but also to
other research institutions. For example, as wolves are re-invading and establishing in
Germany, the Federal Agency for Nature Conservation ordered a study that developed
habitat models to assess the potential number of wolf territories (Kramer-Schadt et al.
2020). A number of non-university research institutes haveworking groups on or using
ecological modelling. The largest onemay be theDepartment of EcologicalModelling
at the Helmholtz Centre for Environmental Research, which has played a key role in
individual-based models of ecological systems. The framework of joint appointments
serves to strengthen connections between these non-university research institutes and
universities.

In Russia, most ecological research is funded by the state, and research outcomes
are often multidisciplinary. The Russian Academy of Sciences (RAS) is influential
in making decisions on environmental policy and statutory regulation. For example,
mathematical models have been developed for the sustainable management of Lake
Ladoga and Lake Onego (Rukhovets and Filatov 2010) or, in collaboration with nature
reserves, of the European beaver (Petrosyan et al. 2016). An example of universities
cooperating with the RAS is the EFIMOD model that is used for sustainable forest
management (Komarov et al. 2003).

In Spain, central and regional authorities, sometimes with the support of EU funds,
grant research contracts, whose outcomes help to make political decisions. One of the
most intense conservation programs in the last decades has been the conservation of
free-ranging Iberian lynx populations in the south of Spain and Portugal.Mathematical

4 Impact Assessments refer to the process of gathering and analysing evidence to support policy-making.
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models have been used to infer and forecast population growth and the possible results
of the management measures adopted (Heredia 2008). In particular, metapopulation
models have been used to understand the effect of habitat fragmentation and to design
ecological corridors for the species (Gaona et al. 1998).

These examples are not aimed at providing a comprehensive overview of govern-
ment research activities around the globe. Yet, they demonstrate a wide spectrum of
agencies, authorities, and programs with which academics could connect. While a
thorough comparison of government funding opportunities around the globe and their
uptake in the academic community could be of interest to academics and governments
alike, it is beyond the scope of this work and would only increase the variability of
research opportunities.

4.4 Modelling Software and Tools

For models to be used by practitioners like conservation biologists or agency staff
members, an important tenet is the availability of user-friendly software. This can
come, for example, in the form of R packages or off-the-shelf computer programs.
They make models easily accessible to practitioners and save them from having to
codemodels from scratch. Graphical user interfaces, tools for sensitivity or uncertainty
analysis, and compatibility with geographic information systems (GIS) often come as
added features. For example, the wide use of individual-based models may be fairly
attributed to user-friendly modelling frameworks, making available code libraries and
simplified programming language (e.g. NetLogo, Repast).

Process-based models play a prominent role in population viability analysis (PVA),
which provides a broad suite ofmodelling and data-fittingmethods that are well recog-
nized as supporting decision-making especially in habitat conservation and recovery
plans for threatened species (National Research Council 1995). PVA programs differ
in themodel type they use. For instance, the commercial RAMAS packages usematrix
population models, whereas the freely available VORTEX relies on individual-based
simulations. For modelling marine and aquatic ecosystems, AQUATOX and EcoPath
with EcoSim are commonly used tools, yet, the latter cannot completely handle age
structure, and its use in tactical applications like setting regulations is scarce. For a
review paper on integrating lake ecosystems modelling approaches, see Milton et al.
(2010). While mentioning these software products as examples, we stress that there
are many other options available, some of which are reviewed in Pastorok et al. (2001).
Users should exercise caution in applying these tools (e.g. Ellner et al. 2002), yet they
are recommended as valuable conservation tools by Brook et al. (2002). Certainly,
users ought to be aware about the underlying assumptions of the models ‘hidden’
behind graphical interfaces. To this end, the book byMorris and Doak (2002) is aimed
at training field biologists at using modelling in decision-making.

There exist many other tools and software packages, often in the area of statis-
tics and optimization to support data collection, threat assessment, or the ranking of
management options. Arguably, one of the most influential and relatively recent math-
ematical developments is Marxan, which has been described in a number of papers
as summarized in Watts et al. (2009). Marxan is a software program that implements
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an approximate mathematical solution to the optimization problem of siting reserves
to maximize the number of species included. Although the problem is easy to state,
exact solutions are not practical as the number of sites and species grows, so that the
approximate solution to what is essentially a very high-dimensional combinatorial
problem is appropriate. It is easy to understand why this work has been so influential.
The problem is easy to state and is one that decision-makers are both familiar with
and need to deal with. There is freely downloadable and easy to use software that
allows end users to implement the methods with relatively little need to deal with the
underlying mathematics. It is also informative to note what this work does not try to
do. The real novelty lies in the application, and not in the mathematical development.
The underlying modelling makes a number of assumptions leading to a problem of a
form that arises in a large number of cases.

4.5 Epidemiological Models

From a modelling perspective, epidemiology and ecology are two very close fields:
the models as well as the tools for their analysis are very similar, and many academic
researchers who work in one field also have keen interest in the other. Just like in
ecosystems models, there are many more academic publications on epidemiologi-
cal models than are used in decision-making, and just as with ecosystems models,
there is discussion on how to raise the visibility and use of models in policy-making
(Woolhouse 2011). Unlike ecosystems models, however, epidemiological modelling
has long been instrumental in public health management, for example to control HIV
(Anderson 1988), malaria (Mandal et al. 2011), and the 2002–2003 SARS epidemic
(Anderson et al. 2006b; Brauer and Wu 2009).

Before high-performance computing was widely available, results frommathemat-
ical models often lagged behind the rapid timeline for implementing public health
measures during an epidemic. In the current SARS-CoV-2 pandemic, however, math-
ematical models are being updated daily and are highly influential in the development
of policies aimed at controlling spread. Similar close integration of research and policy
occurred during the 2001 outbreak of foot and mouth disease (FMD) in Britain; math-
ematical models and simulations provided invaluable guidance to decision-makers
about control efforts (Dafoe 2003). Despite the many similarities, there are, of course,
a number of significant differences between epidemiology and ecosystems science:
public interest is much more easily roused by human health than by ecosystem health,
and consequently, much more funding is available for the former than for the latter.
Data quality is usually also much better for public health questions, where, for exam-
ple, influenza data can yield important insights even 100 years after an outbreak (He
et al. 2013).

5 Conclusions

Ecological systems and processes are inherently complex, and ongoing global change
only increases this complexity. In addition, management often needs to balance multi-
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ple stakeholder goals, for example in large-scale projects such as the restoration of the
Everglades or the San Francisco Bay-Delta (Van Eeten and Roe 2002).We believe that
sustainable ecosystem management should therefore be based on rigorous ecological
theory and verified by relevant mathematical models before being put into practice.

Despite the numerous examples where models of ecological dynamics have been
used with great success to help ecosystem managers in the decision-making process,
many theoretical ecologists and ecological modellers feel that their science has a
much stronger potential to support evidence-based decision-making than is currently
being used. The question becomes how to facilitate a tighter integration of ecological
modelling into decision-making processes. Our contribution to this question is to
analyse several success stories and to reveal features that often lead to success. It
is worth pointing out that there are common features of many of the success stories
presented in Table 1. The papers listed deal with either a specific problem (e.g. spotted
owl orDDT) or class of problems (e.g. eutrophication or overfishing), though of course
the issues are often more general.

Like essentially all good science, each of the contributions we highlight do answer
a question. We could also summarize these successes as cases where the contribution
is more to explain how the problem can be solved rather than why it occurs. The
latter is often a question that is pursued for academic reasons, and answering the how
question does depend on answering first the why question. The example of the turtle
exclusion devices illustrates this clearly where the why question of decline in turtle
numbers was a basic one of demography, while the issue how to achieve the desired
result led to the proposed solution. Viewed this way, it is clear that the likelihood of
impact can be enhanced by making use of ideas from social sciences and including
appropriate costs.

Our findings refute the idea that success of a project as measured by academic
criteria (e.g. citation metrics) is required for or leads to success in informing manage-
ment decisions. Similarly, there is no unique way to develop a model and approach
a problem that would guarantee its application in decision-making. Instead, there are
multiple pathways to success: themodel need not necessarily be simple (conceptual) or
complicated (realistic). However, the way in which it is presented to decision-makers
is indeed important. In fact, involving decision-makers and ecosystem managers from
the early stages of academic research increases the potential of the research to make
impact. In that respect, we are encouraged by calls for increased training in theo-
retical foundations and aspects of ecology (Rossberg et al. 2019) as well as by the
creation of numerous academic programs that provide multi-disciplinary training in
sustainability and biological conservation. These programs include scientific, socio-
economic, policy, and legal perspectives. Graduates from these programs will know
the value, advantages, and limitations of such models. They will be able to moderate
multi-stakeholder communication throughout the planning and research process.

A paradigmatic example for the involvement ofmanagers and politicians is given by
the campaign that resulted in banning DDT: ‘Before the show at Madison, Wisconsin
was over, 32 persons ranging in occupation from politician, lawyer, and arborist, to
bureaucrat, medical doctor and businessman had appeared to testify about DDT. Their
knowledge—or lack of it—makes up the hearing transcript, a document that records
some 2,500 pages of direct and cross-examination with a few thousand more pages
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of scientific, unscientific, and pictorial exhibits thrown in for good measure’ (Henkin
et al. 1971).

Yet, even in this respect, there is not only oneway to have an impact, so that the above
observation should not discourage theoretical ecologists and ecologicalmodellers who
are not directly involved with managers or politicians from aspiring to make an impact
on decision-making. It is one of our important findings that even the work done by
an individual or a small group can affect decision-making if a scientifically sound
model is used to address an important ecological problem and the model and results
are presented in a way accessible to decision-makers.

Ecological modelling and theory are not static but constantly evolving and improv-
ing. Here, we have showcased some success stories in a variety of areas. Other areas for
future modelling work will arise like in ecotoxicology, as suggested by EFSA (2018).
One of the reasons why ecological modelling has not been used as much as might be
expected in environmental decision-making is that models are often judged to have too
much uncertainty. To increase the influence of their work in decision-making, math-
ematical ecologists should continue to improve theory and models, including testing
them against the increasing stream of data (Dietze 2017).

We considered the question of how science can bemore helpful for decision-making
from the point of view of a mathematical modeller, while similar questions are being
asked in other communities involved with sustainability and ecosystem health. Most
come to the same conclusions that communication is key in the process: listening
closely to stakeholders’ needs and explaining in simple terms the scientific tools
involved, their powers and their limitations (Parrott 2017; Cooke et al. 2020; Will
et al. 2021). Many share with us the conviction that evidence-based decision-making
can make this world a better place for all.
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