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Abstract
Realistic examples of reaction–diffusion phenomena governing spatial and spa-
tiotemporal pattern formation are rarely isolated systems, either chemically or
thermodynamically. However, even formulations of ‘open’ reaction–diffusion systems
often neglect the role of domain boundaries. Most idealizations of closed reaction–
diffusion systems employ no-flux boundary conditions, and often patterns will form
up to, or along, these boundaries. Motivated by boundaries of patterning fields related
to the emergence of spatial form in embryonic development, we propose a set of mixed
boundary conditions for a two-species reaction–diffusion system which forms inho-
mogeneous solutions away from the boundary of the domain for a variety of different
reaction kinetics, with a prescribed uniform state near the boundary. We show that
these boundary conditions can be derived from a larger heterogeneous field, indicat-
ing that these conditions can arise naturally if cell signalling or other properties of the
medium vary in space. We explain the basic mechanisms behind this pattern localiza-
tion and demonstrate that it can capture a large range of localized patterning in one,
two, and three dimensions and that this framework can be applied to systems involving
more than two species. Furthermore, the boundary conditions proposed lead to more
symmetrical patterns on the interior of the domain and plausibly capture more realistic
boundaries in developmental systems. Finally, we show that these isolated patterns are
more robust to fluctuations in initial conditions and that they allow intriguing possi-
bilities of pattern selection via geometry, distinct from known selection mechanisms.
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1 Introduction

Reaction–diffusion systems (RDS) are employed to model an increasingly wide-range
of phenomena (Ball 2001; Kuramoto 2003; Murray 2004). Following Turing’s work
(Turing 1952), an enormous literature has developed using these models to capture
aspects of patterns seen in biology and chemistry (Gierer and Meinhardt 1972; Mur-
ray 1981; De Kepper et al. 1991; Cross and Hohenberg 1993; Kondo and Miura
2010; Maini et al. 2012). However, as noted by Turing, these models are idealiza-
tions and cannot account for many observations of real developmental systems (Maini
et al. 2012). We further extend present efforts to increase the realism, and hence the
explanatory power, of this theory by considering the role of boundary conditions in
isolating patterns away from domain boundaries. By ‘pattern,’ we mean a localized
solution (a non-random spatial arrangement) of a morphogen above a threshold value,
which in embryonic settings would correspond to a sufficient level to induce biolog-
ically meaningful change in cell state. Our main aim here is to demonstrate that a
simple choice of boundary conditions can guarantee interior localization of patterns.
By deriving these boundary conditions from a heterogeneous problem, we argue that
such pattern isolation can be understood as arising from different kinds of boundaries
due to differential gene expression across a field, with patterns forming only in some
sub-region of the domain.

Stationary Turing patterns, as well as other complex behaviours of RDS such as
oscillations and chemical chaos, are genuinely non-equilibrium thermodynamic pro-
cesses. Since the early work of Nicolis and Prigogine (Prigogine and Nicolis 1971;
Nicolis and Prigogine 1977), substantial further work has extended this thermody-
namic perspective of Turing instabilities as a non-equilibrium phenomenon associated
with open systems (Cross andHohenberg 1993; Ross 2008; Falasco et al. 2018; Espos-
ito 2020). However, very little emphasis in these works is put on the role of boundary
conditions. In the classical review of pattern selection (Borckmans et al. 1995), for
instance, the authors explicitly state that they will not be concerned with the role of
boundary conditions. While many authors describe the impact of boundary conditions
on such non-equilibrium phenomena (Cross and Hohenberg 1993; Murray 2004), rel-
atively few consider more exotic conditions beyond the standard Neumann, Dirichlet,
or periodic settings (Setayeshgar and Cross 1998; Dillon et al. 1994; Klika et al. 2018).
Physically, periodic boundary conditions can be justified for a flat approximation of
a curved manifold, which can be appropriate for patterns appearing across the entire
surface of an organism. However, the typical Neumann boundary conditions used to
study pattern formation are very clearly a mathematical idealization of what are often
open systems. Arcuri and Murray (1986) have suggested that such idealized bound-
aries are likely unrealistic and that inhomogeneous boundary conditions can lead to
more robust pattern formation (i.e. less sensitivity on initial conditions).

Many developmental systems exhibit localized patterning within a structurally
homogeneous field (i.e. a domain without any spatial heterogeneity in diffusive fluxes
or reactions due to variations in cell type or arrangement). Examples include ectoder-
mal structures such as hair or teeth (Tucker and Sharpe 2004; Johansson and Headon
2014) and the role of auxin in plant root initiation (Duckett et al. 1994; Fischer et al.
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2006; Avitabile et al. 2018). Periodic patterning of the primary hair follicles1 in mam-
malian whiskers and hair more generally, for instance, suggests a regionalization of
different patterning fields within which RDS may explain the emergence of patterns.
However, as noted in Murray (2004), Neumann boundary conditions can exhibit pat-
terning all the way up to the boundary, often leading to partial patterns at the boundary
(e.g. half-spots in the case of spotty patterns). Of course, inhomogeneous solutions
of nonlinear RDS may exhibit a variety of different behaviours, depending on the
parameters and initial data of the system. In many cases (such as in the limit of large
diffusivity ratios), it has been shown that spike solutions can approach, and be pinned
to, boundaries, particularly points of extremal curvature in multiple spatial dimen-
sions (Iron and Ward 2000a, b; Kolokolnikov and Ward 2004; Miyamoto 2005; Ei
and Ishimoto 2013). In other cases, initial data consisting only of internal spots can
be shown to remain in a configuration of internal spots due to boundary repulsion
(Kolokolnikov et al. 2009; Chen and Ward 2011). Numerically, as shown in Sect. 3,
Neumann conditions will generically allow patterns to form up to the boundary for a
variety of systems and parameters starting from small perturbations of a homogeneous
steady state.

There have been several different approaches to designing RDS which exhibit pat-
terns isolated away from the boundaries. A simple approach pursued by Varea et al.
(1997) was tomodify the reaction kinetics at a boundary to push the system outside the
Turing regime locally, so that patterning was restricted to an interior region. Similar
ideas were explored with a variety of more complex spatial heterogeneities in reaction
kinetics (Page et al. 2003, 2005), or diffusive fluxes (Benson et al. 1993). Recently,
this kind of localized patterning has been justified in the linear regime either in the
case of smoothly varying heterogeneity (Krause et al. 2020) or jumps (step functions)
in the kinetics (Kozák et al. 2019). Similar work has been considered in some nonlin-
ear regimes, where spike pinning, and hence pattern localization, can be obtained via
heterogeneity in kinetics (Ward et al. 2002; Avitabile et al. 2018). Another approach,
pursued in the context of the positioning of bacterial protein clusters, is to understand
pattern selection from a nonlinear theory and look for nonlinearities which exhibit the
desired isolated patterns (Murray and Sourjik 2017; Subramanian and Murray 2021).

More generally, several studies have investigated inhomogeneous or mixed bound-
ary conditions. Dirichlet boundary conditions can have a variety of effects on patterns,
including modifying parameters for which patterns are observed (Maini and Myer-
scough 1997). Robin conditions in pattern-forming RDS have recently been shown to
impact the number of interior spots (Tzou et al. 2011), and inhomogeneous fluxes of
inhibitor can lead to movement of interior pulse solutions in 1-D towards the source
of the flux (in addition to changing amplitudes and spacing) (Tzou and Ward 2018).
Closer to what we will propose here, Dillon et al. (1994) investigated a variety of
different boundary conditions for each species in a two-species RDS, demonstrating

1 Claxton and others have noted that in mature skin of many species of mammals, the hair follicles are
present in clusters and are not evenly periodic. This arises from there being different waves of hair follicle
formation, with the first of these being truly periodic and the one that relates to the breaking of symmetry
(Claxton 1964; Nagorcka andMooney 1985; Glover et al. 2017). The subsequent waves then are influenced
by the primary hair follicles of the first wave and yield numerous follicles that cluster around the primary
follicles.
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that different pattern selection mechanisms could be influenced by the choice of these
boundary conditions.

While we are primarily interested in understanding isolated patterns, our work also
falls into the larger context of trying to connect Turing’s simple patterning mechanism
with the complex reality of biological development. As Turing himself said, pattern
formation occurs in stages through subsequent patterning (Turing 1952). There are
difficult questions of how to idealize such situations to elucidate the fundamental
mechanisms at play in any particular stage. One such question is the robustness of
Turing patterns, both in terms of the dependence of steady patterned states on initial
data, and the strict requirements on parameters needed for RDS to admit Turing-type
patterns (Maini et al. 2012; Woolley et al. 2017; Scholes et al. 2019). Domain growth
has been suggested as one way to help improve robustness (Crampin et al. 2002;
Krause et al. 2019; Van Gorder et al. 2021), as has stochasticity (Woolley et al. 2011).
Here, we will suggest that RDS exhibiting isolated patterning will also be more robust
in both enlarging the parameter space within which we see patterns, as discussed in
Maini andMyerscough (1997), and in admitting fewer possible steady-state solutions.

In developmental settings, the source of boundaries between regions which exhibit
periodic patterning, and those which do not, can vary between tissue type and the
specific morphogen signalling dynamics. In particular, boundaries can arise due to
either explicit heterogeneity in the tissue (where cells of different types explicitly
demarcate patterning regions, due to previous fate determination) or due to more
complex and diffuse mechanisms involving cell state, which may be refined into sharp
boundaries via, e.g. bistability. Such boundaries can be thought of as an example of
positional information (Meinhardt 1983; Green and Sharpe 2015). We briefly discuss
the biology of such boundary formation before presenting our modelling framework.

1.1 Biological Interlude: Boundaries in Developmental Patterning

Activator and inhibitor species are taken to represent specific molecules (or more
accurately, signalling pathways) in biological systems. These undergo processes of
synthesis, decay, and diffusion, depending on the type of molecule employed as a
signal. Most intercellular communication is achieved through gene-encoded polypep-
tides (proteins), with some smaller molecules also playing roles as diffusible signals.
The synthesis of these signals is largely controlled by rates of gene expression (tran-
scription and translation) within cells, directly in the case of proteins, and for small
molecules indirectly through production of enzymes that catalyse their formation.
These molecules are secreted from cells, then diffuse, either alone or interacting with
other proteins, through subcellular structures, or themeshwork of extracellular matrix.
Ultimately, these molecules are capable of attaching to receptors on the surface of, or
sometimes within, cells in the vicinity. The effect of receptor binding is to trigger a
typically multi-step process of signal transduction, ultimately altering rates of gene
expression (molecule synthesis), or cell behaviour (such as cell shape or movement)
(Bradshaw and Dennis 2009).

Many extracellular proteins that act as signals are themselves bound in the extra-
cellular space by inhibitory or transport proteins. Thus, inactive complexes can be
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formed, capable of diffusing but unable to bind receptors and elicit a response. An
example is the BoneMorphogenetic Protein (BMP) family, several members of which
have been implicated in reaction–diffusion periodic patterning systems of skin (Ho
et al. 2019; Glover et al. 2017), limb skeleton (Raspopovic et al. 2014), and gut (Wal-
ton et al. 2016), and for which a range of distinct extracellular inhibitor proteins have
been characterized (Walsh et al. 2010).

Two points relevant to this work that arise from these general features of cell–cell
communication are (i) that the specificity ofmolecular interactions is very high and (ii)
that the candidate activator and inhibitor molecules in many systems do not interact
directly, but rather through chains of intermediates in signalling pathways. The speci-
ficity of molecular interactions and indirect nature of activator–inhibitor interaction
permit selective spatial variation in the properties of the activator and inhibitor that we
will explore in this paper. Boundaries relevant to reaction–diffusion patterning will
be defined by the geometry of the embryo or organ, and by spatial variation in the
expression of genes that encode or modulate activator and inhibitor synthesis, diffu-
sion, biological activity, and decay. Geometric boundaries are unavoidable and often
prominent in experimental systems at the cut edges of the tissue, as they have a strong
influence on pattern formation (Glover et al. 2017).

Variation in gene expression can come about due to differences in tissue struc-
ture that cause entirely distinct cell types to be directly apposed. This is observed in
composite organs such as skin and gut, in which distinct and non-intermingling cell
types with deeply divergent developmental origins are organized into a tightly-packed
epithelial sheet and a looser mesenchyme rich in extracellular matrix. In each of these
tissues, the cells express a distinct subset of the genome, have different shapes and
mobility, and the extracellular space between the cells has very different properties.
These two tissue types are separated by a specialized planar matrix called the base-
ment membrane. The locations of boundaries between these components are marked
by abrupt changes in tissue structure that are readily visible at the anatomical or his-
tological levels.

On a finer scale, differences in gene expression within a particular tissue (that is,
composed primarily of cells of the same type) can arise from previous patterning
events, such as an external organizing region emitting a graded signal that influences
part of the patterning field. Graded boundaries may persist in that form, or can be
refined into sharp boundaries by, for example, the action of mutually antagonistic
factors that create bistable systems, notable in the formation of discrete segments
(Briscoe and Small 2015). If the output of such systems influences the production
of a receptor or an extracellular inhibitor for a component of the reaction–diffusion
system, then across the boundary this factor would be predicted to diffuse, but to lack
any biological activity. Boundaries characterized by differences in gene expression
may be present in structurally homogeneous tissues and require application of spe-
cialized molecular methods to reveal them. For example, in vertebrate embryonic gut
regionalization, initially diffuse boundaries become sharper (Li et al. 2009), and BMP
receptor expression becomes distinct in different regions or segments along the tract
(Smith et al. 2000). In Fig. 1a, we depict both kinds of boundaries, and in (b) we show
an example of a boundary observed in the ability of a tissue to respond to BMP within
the otherwise-homogeneous gut tract described above.

123



82 Page 6 of 35 A. L. Krause et al.

Fig. 1 a A graphical representation of three kinds of boundaries, leading to the concentration profile of
the intracellular protein u shown at the top. The production of this protein is stimulated as a result of the
activation of black receptors after binding to the dumbbell-shaped extracellular signalling molecules. The
red and blue rectangular cells represent two distinct cell states, with the blue capable of expressing the
receptor. The green oblate cells instead represent a different cell type, separated by a basement membrane
(which, in our depiction, is assumed to not influence the intracellular concentration of u). Finally, the
blue cells also have a gradient of receptor expression towards the right boundary (which itself may be a
hard no-flux boundary), leading to a more diffuse intracellular concentration of the protein u. b In situ
hybridization of a chick gut (developmental stage E4.5) with a riboprobe to BMPR1A from Fig. 1(H) of
Smith et al. (2000). The purple/blue stain shows the ability of the tissue to receive BMP signals, whereas
the white/translucent areas lack this receptor and do not have the same response to BMP (though BMPmay
still diffuse throughout these regions) (Color Figure Online)

Thus, the spatially varying presence or absence of a receptor, a component of
its signal transduction pathway, or an extracellular inhibitor, can itself constitute a
boundary relevant to the behaviour of a reaction–diffusion patterning system, even in
a structurally homogeneous field of cells. Such a boundary can have a selective effect
on a single species (activator or inhibitor) in the reaction–diffusion system, which will
be free to diffuse across the boundary and persist physically, but without the ability to
influence reaction kinetics in this region of the field.

1.2 Mixed Boundary Conditions

We now consider modelling such boundaries in a reaction–diffusion system. Through-
out the paper, wewill consider a generic two-species RDS in the domain x ∈ � ⊂ R

n :

∂u

∂t
= ∇2u + f (u, v), (1)

∂v

∂t
= D∇2v + g(u, v), (2)

where D > 1 is a ratio of diffusion coefficients. In the classical case of activator–
inhibitor kinetics, where v is a self-inhibitor, D > 1 is a necessary condition for
inhomogeneous steady solutions (at least in convex domains (Kishimoto and Wein-
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berger 1985)). Hereafter, we restrict attention to this case in our analysis, and consider
u and v as presumptive activator and inhibitor, respectively.

We will show that inhomogeneous steady solutions (Turing-type patterns and oth-
erwise) can be isolated away from the domain boundary. This can be achieved by
using the boundary conditions

u = R, n · ∇v = 0, for all x ∈ ∂�, (3)

where R should be approximately a minimum of u in a patterned state (e.g. with Neu-
mann boundary conditions). Specifically, if we compute a stable steady-state solution
given Neumann boundary conditions and initial data perturbed from the homogeneous
equilibrium, we will take R = min�(u). Below we will show that the precise value of
R seems to play only a small role in influencing the pattern, at least for some reaction
kinetics. While it can have quantitative effects on the size and spacing of localized
solutions, our numerical results suggest that taking R less than the homogeneous
steady state suffices to lead to interior patterning. In some sense this is obvious, as we
are fixing the value of u at the boundary. We will focus on the case where the activator
is fixed at the boundary and the inhibitor is not allowed to diffuse (i.e. satisfies zero
flux conditions). In principle, our results on interior localization will hold if we swap
the boundary conditions between activator and inhibitor, but the lengthscale of the
boundary influence will be larger in the case of the inhibitor being fixed (as D > 1,
and often D � 1, for a pattern-forming RDS). Finally, we note that other values
of R may be suitable for the development of interior localization, particularly in the
presence of multistability or multiple species interactions; see Sect. 3.3 for examples.

In developmental settings, the discussion in the preceding subsection allows us to
consider u and v as behaving differently outside the domain � due to boundaries in
receptor distribution or gene expression for example; in turn, this can lead to different
boundary conditions for the activator and inhibitor. We will justify the boundary con-
ditions given in (3) asymptotically in Sect. 2.1 by explicitly considering a spatially
heterogeneous extension of the system defined on a larger domain. We also remark
that these conditions arise naturally in the case that u represents temperature, and v

a chemical which undergoes exothermic or endothermic reactions (Serna et al. 2017;
Van Gorder 2020). Throughout, we will refer to (3) as mixed boundary conditions,
though other authors have used the term nonscalar boundary conditions (Dillon et al.
1994). We will contrast these boundary conditions with homogeneous Neumann con-
ditions on both species, and refer to the latter simply asNeumann conditions for brevity
throughout the manuscript.

The rest of the paper is organized as follows. In Sect. 2, we analytically show how
the mixed boundary conditions (3) can be obtained from a heterogeneous problem on
an enlarged domain. We also describe how these boundary conditions force pattern
isolation away from the boundary in terms of a local pattern-selection mechanism.
In Sect. 3, we demonstrate a broad numerical exploration of this interior localization
across a variety of two-species reaction kinetics with qualitatively distinct kinds of
patterns. We also show that the same mechanism can operate in three spatial dimen-
sions, as well as in systems with more than two species. Finally, in Sect. 4 we conclude
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by discussing both phenomenological and mechanistic applications of these boundary
conditions, as well as a number of further research directions.

2 Heterogeneity and Isolated Patterning

We now explore two aspects of the boundary conditions (3). First we explain how they
arise from an asymptotic analysis of a heterogeneous problem, motivated by regions
of different gene expression as discussed in Sect. 1.1. Viewing these conditions as
arising from spatial heterogeneity is consistent both with the biological observations
discussed there, as well as with the theoretical literature on localization of patterns
in heterogeneous media. We then discuss steady-state selection mechanisms observed
from different boundary conditions, explaining some aspects of the isolated patterning
we expect to achieve with these boundary conditions.

2.1 Derivation of Mixed Boundary Conditions from a Heterogeneous Problem

Working non-dimensionally throughout, we consider a larger domain �̃ ⊂ R
n , and

a strict subset of it � ⊂ �̃ such that �̃\� is connected, with all domain boundaries
sufficiently smooth. We now consider the non-dimensional heterogeneous reaction–
diffusion system,

∂u

∂t
= ∇2u +

{
f (u, v), for x ∈ �,

ρ(R − u), for x ∈ �̃\�,
(4)

∂v

∂t
= D∇2v +

{
g(u, v), for x ∈ �,

g2(u, v), for x ∈ �̃\�.
(5)

For concreteness, we consider Neumann conditions for both species on ∂�̃.
This heterogeneous system can be understood as two regions of different activity

(e.g. signal transduction and gene expression) in the medium. Within the inte-
rior region, �, the normal activator–inhibitor dynamics are present, whereas in the
exterior region, �̃\�, the activator relaxes to an equilibrium concentration on a non-
dimensional timescale of 1/ρ, while the inhibitor may interact with the activator in a
different manner g2 with a timescale Tg2 . Such dynamics are easily obtained in exam-
ples where gene expression is spatially modulated due to previous symmetry breaking
and fate specification events, leading to heterogeneity in local signalling dynamics or
in tissue/cell type as discussed in Sect. 1.1.

One can show that for sufficiently large ρ, the one-dimensional steady-state version
of Eqs. (4)–(5) can, to leading asymptotic order, be reduced to considering the steady-
state problem (1)–(2) on the smaller domain � with the boundary conditions (3). In
higher dimensions, however, one must impose additional geometric constraints. For
concreteness, to capture the general casewe consider the problem in two spatial dimen-
sions, remarking that extensions to higher dimensions follow the same reasoning. We
let � = ∂� be the boundary between the internal and external regions of �̃ (equiva-
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Fig. 2 Geometry of the full domain �̃, with a region in �̃\� enlarged to showvarious asymptotic parameters
and coordinates along the boundary discussed in the text. Note that η is, in general, a ratio of the maximum
thickness of �̃\� to arclength of �, but for illustrative purposes we assume the arclength is order unity.
Similarly, we assume sufficient smoothness of both internal and exterior boundaries so that the local mean
curvature is always order unity or smaller

lently, the internal boundary of �̃\�) and define η as the (non-dimensional) ratio of the
maximum thickness (normal to �) of �̃\� to the arclength of �. The one-dimensional
case follows exactly the same reasoning as given below for two dimensions, without
the technicalities related to the geometry.

We proceed to show that for sufficiently large ρ and for �̃\� sufficiently slender
and regular, steady states of this system asymptotically reduce to those of the reaction–
diffusion system (1)–(3) defined on the interior domain�. Additionally, the dynamics
of u and v outside the interior domain are simple and (asymptotically) determined
analytically. In particular, with η � 1 denoting the assumption of slenderness for
�̃\�, we consider the asymptotic regime ρ � 1 and η � 1. We focus on steady
states, as transient solutions to the heterogeneous problem (4)–(5) need not satisfy
the no-flux boundary condition for v on ∂� in this asymptotic scaling without further
restrictions on kinetic timescales. Our results will then show that the steady states of
(1)–(3) will be precisely the same as those of (4)–(5). Similarly, wewill need to exploit
the geometry of a slender domain to prevent problems with transverse gradients in v;
in one spatial dimension the restriction of η � 1 can be relaxed completely. See Fig. 2
for a geometric depiction.

Our first objective is to determine how the solution within the interior of the bound-
ary of � is related to the solution in the exterior of � on approaching the boundary
�. To proceed, we first mollify the transition between the two regions with a function
Hδ which is centred on this boundary and transitions from zero to unity in the normal
direction of the inner boundary of �̃\�. We also assume � has a well-defined and
bounded curvature. Furthermore, the transition across this boundary is on a (dimen-
sionless) lengthscale of δ � η, and since the mollification scale δ is for mathematical
convenience, it is taken to be smaller than any physical scale below.

The mollified steady-state equations on the extended domain are

0 = ∇2u + Hδ f (u, v) + (1 − Hδ)ρ(R − u), 0 = D∇2v + Hδg(u, v)

+(1 − Hδ)g2(u, v). (6)
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We introduce an orthonormal curvilinear coordinate system given by (ζ1, ζ2) along
the curve�, where the level set ζ1 = 0 corresponds to� with the ζ1 axis perpendicular
to� and pointing into the interior of �̃\�. We now follow the derivation of an Eikonal
equation along the boundary [see, e.g. Keener and Sneyd (1998)]. Using the Einstein
summation convention, the chain rule gives

∂

∂xi
= ∂ζ j

∂xi

∂

∂ζ j
=: αi j

∂

∂ζ j

and hence, for example,

∇2v = αi pαiq
∂2v

∂ζp∂ζq
+ ∂αi p

∂xi

∂v

∂ζp
.

We have that the vector

∇xζ1 =
(

∂ζ1

∂x1
,
∂ζ1

∂x2

)
= (α11, α21) = α,

is normal to � and, by the need for orthonormality, we fix the scale of ζ1 so that α is
a unit normal and then κ := ∇ · α is the mean curvature of �. In particular, assuming
the curvature is of order unity relative to the small parameter δ entails the scale of ζ1
is order unity. Further noting

αi1αi2 = ∇xζ1 · ∇xζ2 = 0,

by orthogonality of the (ζ1, ζ2) coordinate system, we have

∇2v = ∂2v

∂2ζ1
+ κ

∂v

∂ζ1
+ c1

∂v

∂ζ2
+ c2

∂2v

∂ζ 2
2

,

where the coefficients c1, c2 come from the Jacobian of the transformation and are of
the same order as κ or smaller. Hence, these terms will be asymptotically small once
we rescale ζ1 below. Derivatives of u will have an identical expansion.

Given the scale of the transition of Hδ , we now consider a prospective boundary
layer ofwidth of the scale δ at the boundary� and thuswe consider ζ ′

1 = ζ1/δ, ζ ′
2 = ζ2.

Hence, at leading order we have uζ ′
1ζ

′
1

= vζ ′
1ζ

′
1

= 0 in the transition region and so v is
linear in ζ ′

1, i.e.

v = P(ζ ′
2)ζ

′
1 + Q(ζ ′

2),

and similarly for u in this region. However, boundedness of this inner solution when
leaving the transition region (i.e. as ζ ′

1 → ∞) forces P(ζ ′
2) to be zero so that matching

to an outer solution is possible, and thus, u = u(ζ ′
2) = u(ζ2), v = v(ζ ′

2) = v(ζ2).
The independence of u and v from the normal coordinate, ζ ′

1, in the prospective
boundary layer, means that on matching into this layer on either side of �, we attain
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continuity of u and v. Within the δ-boundary layer, we have ∂v/∂ζ ′
1 ∼ 0 at leading

order; however, this does not mean physical fluxes are essentially zero, since the
mollification lengthscale δ is taken to be smaller than any physical lengthscale and v

may vary significantly over the latter, with analogous remarks for u. Nonetheless, the
collapse of the prospective δ-boundary layer strongly suggests the continuity of u, v

across � should be supplemented by continuity of flux.
To explicitly deduce this, let z2 such that |ζ2 − z2| ≤ δ1/2 be fixed and consider

the integral form of the steady-state conservation relation (given by (6)) on the pillbox
region

P = {(ζ1, ζ2)|ζ1 ∈ [−δ, δ], ζ2 − z2 ∈ [−δ1/2, δ1/2}].

Integrating the conservation equation (6) for v over the pillbox and applying Green’s
theorem give

0 = D
∫ z2+δ1/2

z2−δ1/2
− ∂v

∂ζ1
(−δ, ζ̄2)dζ̄2 + D

∫ z2+δ1/2

z2−δ1/2

∂v

∂ζ1
(δ, ζ̄2)dζ̄2 + O(δ) + O(ρδ3/2),

(7)

and similarly for u. In particular, the absence of a boundary layer at � entails that u, v

are bounded, with bounded normal derivatives with bounds independent of δ. Thus,
the O(δ) terms emerge from the other flux boundary integrals and the O(ρδ3/2) term
emerges from the integrals of sinks and sources over the pillbox, noting that the area
of the pillbox P is 4δ3/2 and the largest source term scales with ρ � 1. However, the
asymptotic parameter δ is from the mollification of a Heaviside function, and thus, we
can take δ3/2ρ ∼ O(δ), since δ has been introduced for mathematical convenience
and can be taken as small as required, whereas ρ is constrained by the underlying
biophysical limits of source production in the interpretation of the model. Hence,
using the integral mean value theorem on the above integrals, dividing by δ1/2 and
taking the limit δ → 0, we have continuity of flux, and thus normal derivative, across
� for v, and analogously for u, as expected.

Knowing how to match across �, we now need to consider our next objective,
which is to determine the behaviour of the solutions within the region �̃\� to assign
boundary conditions for a reduced model on the boundary �. We take advantage of
the slenderness of �̃\�, characterized by an aspect ratio of its normal extent to the
arclength of � via η � 1. It is most useful to see if non-trivial behaviour may occur
in the normal direction as, if present, such behaviour would preclude a homogeneous
Neumann condition for v in the reduced system.We thus rescale ζ ∗

1 = ζ1/η, ζ ∗
2 = ζ2,

and at leading order in η we have

D
(
η−2vζ ∗

1 ζ ∗
1

+ O
(
η−1

))
= g2(u, v).
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If the characteristic time of the inhibitor kinetics in the exterior, Tg2 , is large when
compared to that of diffusion, η2D−1 � Tg2 , we finally have, from (6),

vζ ∗
1 ζ ∗

1
= 0,

at least once away from � by a scale of more than δ � η. We have also assumed that
the domain of �̃\� is sufficiently regular to ensure κ ∼ o(1/η), which will occur if
the radius of curvature is on the lengthscale of the perimeter of �̃\�, rather than the
smaller lengthscale of its thickness.

We now need to make a further regularity assumption about �̃\�, namely that its
external boundary can be specified by ζ ∗

1 = F(ζ ∗
2 ) where F ∼ O(1) by construction

and is also a single-valued function that satisfies η|F ′(ζ ∗
2 )| � 1,where prime denotes

derivative. Hence, we do not consider an external boundary consisting of a curve that,
for example, has a cusp or varies too rapidly. From this assumption, we have that the
normal derivative operator on the exterior boundary of �̃\� is proportional to

∂

∂ζ ∗
1

− ηF ′(ζ ∗
2 )

∂

∂ζ ∗
2

≈ ∂

∂ζ ∗
1

.

Thus, working at leading order in η|F ′(ζ2)| � 1, homogeneous Neumann conditions
on the exterior boundary of �̃\� give vζ ∗

1
= 0 at the external boundary, and hence,

we have v = v(ζ ∗
2 ) = v(ζ2) throughout �̃\�, except possibly δ-close to �.

As will emerge below, we ultimately consider the leading order behaviour when
the asymptotic parameters satisfy 1/δ � ρ1/2 � 1/η � 1. The restriction 1/δ �
ρ1/2 entails the scale of the mollification region, δ, is the smallest scale present as
required since the mollification is introduced for analytical expedience, rather than as
a fundamental feature of the biophysics. The constraint ρ1/2 � 1/η ensures the source
strength is sufficiently large to enforce approximately homogeneous solutions in the
region �̃\�, as observed below. Finally, η � 1 is required to render the problem to
be effectively one-dimensional at leading order and enforces �̃\� to be slender. To
proceed, we consider u in the region �̃\�, whereby at leading order

0 = uζ ∗
1 ζ ∗

1
+ η2ρ(R − u), (8)

once away from � by a scale of more than δ. Noting the Neumann boundary condition
on the exterior boundary, Eq. (8) gives

u(ζ ∗
1 , ζ ∗

2 ) = R + A(ζ ∗
2 ) cosh

(
ρ1/2η(F(ζ ∗

2 ) − ζ ∗
1 )

)
. (9)

For δ sufficiently small, the above solution will only vary by an asymptotically small
amount across the δ-scale mollification region, as there is no boundary layer. Hence, as
ζ ∗
1 → 0, this solution is continuous with the solution on � as the latter approaches �

for the same value of ζ ∗
2 , and analogously for the flux. No useful information is gained

by continuity of concentration. However, continuity of flux entails ∂u/∂ζ1 ∼ O(1) as
ρ increases on approaching�, assuming ∂u/∂ζ1 in� does not blow upwith increasing
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ρ, which is consistent with numerical simulations (below) and parabolic regularity.
We then have that Eq. (9) yields

∂u

∂ζ1

∣∣∣∣
ζ1=0+

= ∂ζ ∗
1

∂ζ1

∂u

∂ζ ∗
1

∣∣∣∣
ζ ∗
1 =0+

= −ρ1/2A(ζ ∗
2 ) sinh(ρ1/2ηF(ζ ∗

2 )) ∼ O(1), (10)

and hence,

|A(ζ ∗
2 )| ∼ O

(
1

ρ1/2

1

sinh(ρ1/2ηF(ζ ∗
2 ))

)
. (11)

We further have that ρ is sufficiently large to ensure ρ1/2 � 1/η, and we have
already taken η � 1. Noting that cosh(p) is monotonically increasing for p > 0, and
F(ζ ∗

2 ) ≥ ζ ∗
1 ≥ 0, F(ζ ∗

2 ) > 0 in �̃\�, we then have for solution (9) that

|A(ζ ∗
2 ) cosh

(
ρ1/2η(F(ζ ∗

2 ) − ζ ∗
1 )

)
| ≤ |A(ζ ∗

2 )| cosh
(
ρ1/2ηF(ζ ∗

2 )
)

∼ O

(
1

ρ1/2 coth(ρ1/2ηF(ζ ∗
2 ))

)

∼ O

(
1

ρ1/2

)
.

Thus, providing R � 1/ρ1/2, we have u = R is an estimate of the solution throughout
�̃\� with asymptotically small relative error. We typically take R ∼ O(1) so that
a small relative error in the approximation of u = R in the region �̃\� is assured
by our assumption of ρ1/2 � 1/η � 1. In addition, if R ∼ O(1/ρ1/2) we have
u ∼ O(1/ρ1/2), so that the estimate u = R presents with asymptotically small
absolute error, even though the relative error is of order unity or possibly larger.

Finally, we consider the effective boundary conditions for the steady states of the
reduced system (1)–(2),

0 = ∇2u + f (u, v), 0 = D∇2v + g(u, v), (12)

on the domain �, which has external boundary � with ρ1/2 � 1/η � 1 and suffi-
ciently regular �̃\�. Continuity of flux immediately gives homogeneous Neumann
conditions for v on � for the reduced system, while continuity is inappropriate for v,
since v is not determined in �̃\�, except ultimately via its coupling to the solution
on the interior of �. In contrast, we have u = R to leading order in �̃\� and thus
continuity gives the Dirichlet condition u = R as a boundary condition on � for the
reduced system. Note the continuity of flux across � is still required if considering
the full system on �̃, and this would be enforced by the appropriate choice of the
integration degree of freedom A(ζ ∗

2 ) in Eq. (9) via use of the expression for ∂u/∂ζ1
at ζ1 = 0+ in Eq. (10). In particular using a Neumann boundary condition for u with
the reduced system, Eq. (12) would admit solutions that do not match continuity of u
across the boundary. We will explore this idea further in the next subsection, referring
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specifically to Fig. 4 as a demonstration of this solution selection mechanism under
different boundary conditions.

In summary, we have that, providing �̃\� is sufficiently slender and regular, and
with ρ sufficiently large, the behaviour of steady solutions of Eqs. (4)–(5) on �̃ is
given, to asymptotic accuracy, by solutions of Eqs. (12) within the domain � with the
boundary conditions on� that u = R and that the normal derivative of v, that is ∂v/∂n,
is zero. We note that the set of steady-state solutions will match between the hetero-
geneous and reduced problems, but solutions to the time dependent problems could
allow for solution selection based on transients, leading to a disagreement between the
two models. Nevertheless, we expect this to be rare or only have small effects in typ-
ical cases, which we demonstrate numerically in Sect. 3. Finally, we also remark that
the asymptotic restrictions, particularly regarding the slender geometry, can also be
observed numerically to have typically little effect on stationary solution behaviours
when comparing these two models, which we demonstrate from full numerical sim-
ulations in Sect. 3 for specific nonlinear kinetics. The driving force in deriving the
conditions (3) is the heterogeneous switching between interacting and weakly or non-
interacting species, which can be understood in the context of the biology described
in Sect. 1.1.

2.2 Interior Patterning as Steady-State Selection

Here we further elucidate why these boundary conditions will lead to confinement of
patterned states on the interior of the domain, using a particular example of reaction
kinetics in a one-dimensional domain. We consider patterned steady states as subsets
of all admissible ones in the periodic case and show how specific subsets of this set
are selected by different boundary conditions. The motivation here is the discussion
of equivariant bifurcation theory and the impact of symmetry on solution branches in
Dillon et al. (1994). Specifically, we numerically show that there are typically many
solutions that satisfy Neumann or periodic conditions for u and v, but only a subset
of these satisfy the mixed conditions (3) when R is chosen to coincide with a specific
minimum value of u from the Neumann solutions. In particular, solutions with these
mixed boundary conditions are forced to pattern away from the boundaries as they
are exactly chosen to match a Neumann solution with patterning only on the interior.
We numerically observe that small changes in R from this value lead to small local
changes at the boundary, but broadly similar solution structures overall.

To demonstrate this concretely, we simulate the Schnakenberg kinetics fromTable 1
(thoughwith different domain lengths, L) using periodic, Neumann, andmixed bound-
ary conditions. We employ a method-of-lines approach to simulate the RDS, using
the standard three-point stencil to discretize the Laplacian. We use the MATLAB
function ‘ode15s’ to evolve these ordinary differential equations in time, and theMAT-
LAB function ‘fsolve’ to compute steady-state solutions to the discretized system on
n = 2000 points. Writing (u∗, v∗) as the homogeneous steady state, we consider an
initial condition of the form (u∗(1 + 10−2Fi ), v∗(1 + 10−2Gi )), where Fi ,Gi are
independent normally distributed random variables with unit variance at each node i .
Startingwith periodic boundary conditions, we evolve this initial condition for t = 104
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(a) (b)

(c) (d)

Fig. 3 Steady-state solutions from simulations of the Schnakenberg kinetics in Table 1 under four choices
of boundary conditions. Ten simulations are shown where in a, the initial simulation uses random initial
data, but each subsequent simulation is initialized by cyclically shifting this solution 5% along the length
L , and a stable steady state is found (by cyclic symmetry, these are automatically stable steady states as
the first one was). For b–d, the initial data are taken as each of the steady states in (a), evolved for t = 100
units in time, and then used to find a nearby stable steady state. Note that the Neumann solutions are a
subset of the periodic ones. Finally the first set of mixed steady states c are, up to numerical accuracy, a
subset of the Neumann steady states b, whereas the second set a are close to, but not the same as, these.
Note the colours used in c, d correspond to the last plotted solution, as all ten solution curves fall onto the
same points. Parameters used were a = 0.1, b = 1.7, c = 1, D = 20, and domain length L = 25 (Color
Figure Online)

units of time, and then use its value to find a nearby stable steady state (which is always
almost identical to the last transient state, suggesting it is reachable from random ini-
tial data). From this steady-state solution, we generate nine others, shown in Fig. 3a,
by shifting this steady-state pattern cyclically. By the translational invariance of the
Laplacian with periodic boundary conditions, any stable shifted steady-state solution
with any shift is still a stable steady-state solution, and we confirm this numerically.

We use these ten shifted periodic solutions as initial conditions for simulating the
RDS using three other sets of boundary conditions and then again find stable steady
states after evolution in time.We use Neumann conditions in Fig. 3b, mixed conditions
given in (3) with R equal to the minimal value of u from the Neumann case in (c), and
conditions (3) with R = 0 in (d). We see precisely the pattern selection as described,
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(a) (b)

(c) (d)

Fig. 4 Steady-state solutions from simulations of the Schnakenberg kinetics in Table 1 under four choices
of boundary conditions, exactly as in Fig. 3 except taking a domain length of L = 20. Note that in b,
the solutions in red and blue have different amplitudes than those in light yellow and green (Color Figure
Online)

with the Neumann solutions corresponding to a shifted version of those in the periodic
case (hence only admitting two shifted solutions, rather than infinitely many). The
mixed conditions with R set as the minimum value of u with Neumann conditions
select precisely one solution from the two Neumann solutions (and no others). Finally,
using R = 0 in (d) locally changes the solution from (c) near the boundary, but
qualitatively does not change the solution (nor are any new solutions found in this
case). Simulations with random initial conditions, as well as repeating this procedure
with 100 different periodic solutions as initial data, yield precisely the same curves
shown in (b)–(d) as these are the only attracting steady states for all of these different
initial data.

More generally, solutions satisfying Neumann boundary conditions need not give
rise to periodic patterns, particularly if the domain permits half-integermodes (Murray
2004). In Fig. 4, we give an example of this following the same procedure as in Fig. 3
with a reduced domain length. Two of the four solutions given in Fig. 4b do not
correspond to solutions with periodic boundary conditions shown in (a), possessing a
different amplitude. Setting R as the minimal value of u from these simulations with
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Neumann conditions (considering only the solutions which are also periodic, shown
in green in (b)), we obtain a single solution with mixed conditions in (c). Setting R
equal to either the other minimum of u from the Neumann conditions, or to 0, has only
a small influence on the solution near the boundary, as can be seen in (d). The mixed
boundary conditions further exclude half-integer mode solutions.

The reduction in the admissible set of patterns has only been shown numerically
for this particular example, and one would need to employ more sophisticated math-
ematical techniques to demonstrate this for all kinetics and parameters, and beyond
one-dimensional examples. Nevertheless, the PDEs in question are local, and so any
solution where v is extremal and u is minimal at the same points which satisfy both
Neumann and periodic boundary conditions will also satisfy the conditions (3) when
R is suitably chosen (i.e. exactly or approximately equal to a minimum of a Neumann
solution). It is not always the case that reaction–diffusion patterns will have both
species sharing extremal points, but this can be shown near a Turing bifurcation via
linearization, and is observed (at least approximately) in many systems numerically
beyond the bifurcation (Dillon et al. 1994). We note that in Figs. 3d and 4d, the value
of R chosen selects a steady solution with a nonzero boundary flux, suggesting that
u is being depleted at the boundaries due to reactions outside of the domain. Hence,
this is why we view these as a type of ‘open’ system, which are common in biological
systems though less well-studied in general compared to closed systems. The pattern
selection mechanism described here also suggests that peaks of the activator u should
be approximately half of a wavelength away from the boundary, and we will directly
test this prediction across a range of parameters and kinetics in Sect. 3.1.

3 Demonstrations of Robust Isolated Patterning

We now give example simulations of RDS with the boundary conditions (3), as well
as those with Neumann boundary conditions. Additionally, we compare these with
simulations of the heterogeneous problem (4)–(5) with Neumann conditions on the
outer boundary, to demonstrate that our asymptotic reduction to the mixed boundary
conditions is valid for large values of the relaxation rate ρ and suitably thin extended
domains. Finally we will also give example simulations in more complicated geome-
tries and higher-dimensional domains, as well as systems with more than two species,
showing that the isolated patterning emergent from our mixed boundary conditions
extends beyond these initial examples.

For all of these simulations, we used the commercial finite-element software COM-
SOL. In the two-dimensional simulations, we used a minimum of 5 × 104 triangular
second-order finite elements, and in the three-dimensional simulations we used at
least 105 tetrahedral elements. We always chose parameters such that there was a
unique homogeneous steady state for the kinetics, given by f and g for homoge-
neous Neumann boundary conditions,2 and we perturbed this state by multiplying it
by a normally distributed random variable of standard deviation 10−2 and unit mean,

2 Note that such an initial condition need not satisfy the boundary conditions (3), but will effectively
instantly relax to solutions satisfying these conditions at the boundary under time evolution, as the system
is parabolic.
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sampled identically and independently at each finite element (as in Sect. 2.2 in the one-
dimensional case). All simulations shown throughout this section are given at t = 105

units of time, by which point they were within numerical tolerances of a stationary
solution. The timestepping was implemented using a standard adaptive backwards-
differentiation formula of orders 1 through 5. Refinements in space were used to check
convergence for particular simulations, and finite-difference simulations were carried
out in MATLAB (using the five-point Laplacian stencil) to check convergence to the
same steady-state pattern from identical initial data.

3.1 Interior Patterning Across Two-Species Kinetics

We now describe results from simulations of each of the reaction kinetics and param-
eter regimes shown in Table 1. These are given in Table 2, where the first column
indicates the parameter set, the second column simulations with Neumann boundary
conditions, the third column simulations with conditions (3), and finally the fourth
column simulations of the enlarged heterogeneous system (4)–(5). For each of these
simulations, we used the same realization of the random initial condition, as all of these
systems can admit multistability of different inhomogeneous steady states depending
on the initial data (Borckmans et al. 1995; Jensen et al. 1993), and results are displayed
for sufficiently long times to ensure transient behaviour has relaxed onto steady states.

Comparing the Neumann simulations with those using our mixed boundary con-
ditions in Table 2, we can clearly see that the mixed boundary conditions lead to the
inhomogeneous patterns being confined to the interior of the domain. Additionally, it
is visually apparent in each case that the distance from the peak of an outermost struc-
ture (spot or stripe) to the boundary is approximately half of the wavelength between
interior structures, despite the fact that R was not set to be exactly theminimumpattern
value as in Sect. 2.2. Finally, as the same initial perturbations were used across all
simulations, comparing the mixed boundary conditions to the heterogeneous ones, we
see essentially identical steady-state solutions in all cases except for the FitzHugh–
Nagumo kinetics, which admit small differences between the steady states selected.
We also considered how the asymptotic reduction holds for different domain geome-
tries and for smaller values of ρ, but for brevity omit this analysis (largely as it depends
heavily on the kinetics and type of pattern studied). Essentially these results confirm
our analysis in Sect. 2.1 that the mixed conditions approximate such heterogeneous
problems, at least once any transients have relaxed. We note that these boundaries
have discontinuous derivatives at the corners, but simulations on circular domains
have identical properties. Similarly, simulations with much larger external regions
(e.g. when �̃ is [−L, 2L]× [−L, 2L], so that the domain length is three times larger)
give steady states with interior patterning, as in those on the interior domain with
mixed boundary conditions in Table 2. This suggests that, at least in some cases, the
geometric assumptions on the exterior domain can be relaxed, though we will not
pursue this further here.

These boundary conditions have some influence on the structure of the resulting
patterns beyond the boundaries, especially in the case of the labyrinthine patterns
shown in Table 2. The stripes in the Schnakenberg example show a clear confine-
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Table 2 Concentrations of u from simulations of the kinetics and parameters given in Table 1withNeumann
conditions, themixed boundary conditions (3), and in a heterogeneous systemgiven by (4)–(5)withρ = 105

and Neumann conditions on the exterior boundary

Maximal values of u are in the light yellow regions, and minimal values in the dark blue, though precise
numerical values vary between kinetics and parameters, which are specified in full in Table 1. The domain
in columns two and three was the square � = [0, L]2, and the heterogeneous domain was the enlarged
square �̃ = [− 0.05L, 1.05L]2, using the same interior domain� as described near Eqs. (4)–(5). This final
column has an interior domain � corresponding to the black square, where the boundaries in the second
and third columns are located. For each set of kinetics, the colour scale is fixed across the row, and the
approximate minimum/maximum (dark blue/light yellow) values are as follows: SCH (Spots) 0/23.56; SCH
(Labyrinthine) 0/3.58; GM 0/163.9; TH (Spots) 1.56/37.4; TH (Stripes) 2/16.2; FHN -1.65/1.65
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ment due to the square geometry. In the labyrinthine case for Thomas kinetics, we
see that the (roughly) hexagonal arrangement of inverted spots in the Neumann case
is forced into a square arrangement in the centre of the domain with the mixed condi-
tions, with a stripe-like structure now surrounding this region. The FitzHugh–Nagumo
structures are qualitatively similar on the interior of the domain, with random-looking
labyrinthine stripes, but the boundary is clearly marked with a striped region having
some local effects on the meandering of the stripes inside. As these labyrinthine solu-
tions aremore global in structure than localized spots, we expect less isotropic patterns
and more of an influence of the confining geometry and initial conditions. This is true
even in the Neumann case, as we can see by the orientation of the Schnakenberg
stripes aligning in a large part of the domain with one of the axes. We also remark
that the alignment of labyrinthine patterns with Neumann boundary conditions can be
sensitive to initial conditions, and one can obtain quantitatively large differences for
different realizations of random initial conditions. In contrast, the Schnakenberg and
Thomas kinetics with our mixed boundary conditions gave consistently the same final
steady state seemingly independent of a variety of initial conditions (though the posi-
tioning of the interior structures of the FitzHugh–Nagumo steady states did depend
on initial conditions). Depending on the application, robust alignment may or may not
be desirable. We will further explore interior patterning and pattern selection effects
in the next section by considering more complicated domains.

We remark that the solutions obtained are reasonably robust to choices of R, which
were taken to be close to theminimal value of u in theNeumann solutions. Specifically,
variations of 0.1 in any direction had no effect except in locally changing the value of
u near the boundary, and larger variations in R led to local changes with some impact
on pattern selection, but no real qualitative influence on the structure of solutions away
from the boundary. The lengthscales L were chosen to be sufficiently large to avoid
finite-size effects of a few localized structures. Finally, we remark that the lengthscale
of the outer domain had no influence on the resulting patterns when it was increased
to a width of 0.5L , suggesting a robustness to the qualitative effect extending beyond
the thin-domain assumption made in Sect. 2.1. As this assumption is not needed in the
1-D case, we suspect it is a technicality not affecting the generic situation and could
in principle be relaxed, though we do not pursue this here.

3.2 Higher-Dimensions and Complex Geometries

We now demonstrate the effects of more complicated domain geometries on patterns
with the mixed boundary conditions (3). As seen in the simulations in the previous
section, both spot and labyrinthine patterns were more ordered with these conditions,
compared to theNeumann case. In particular, the labyrinthine patterns shown inTable 2
conform to the geometry in the case of the mixed conditions (3), whereas the Neu-
mann patterns were seemingly less affected by the boundary, having a broadly more
isotropic character. We now show how these labyrinthine patterns are influenced by
more complicated domain boundaries with Neumann and our mixed conditions. We
then demonstrate that interior confinement, as well as these pattern selection effects,
extend to higher spatial dimensions.
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Throughout these examples, we will use the Schnakenberg kinetics from Table 1
and primarily focus on parameter regimes which give rise to labyrinthine solutions,
comparing qualitative features such as stripe orientation and defects. We remark that
for periodic boundary conditions and small-amplitude patterns near the onset of a
Turing instability, there is a dichotomy between stripe and spot solutions (Ermentrout
1991), determined by signs and relative magnitudes of quadratic and cubic interac-
tions. More recent work has shown that such a simple classification does not hold
beyond the weakly nonlinear regime, and qualitatively different kinds of patterns can
be simultaneously stable or interact (Borckmans et al. 1995; Jensen et al. 1993; Bozzini
et al. 2015). We observe here that the largest qualitative differences are determined by
the geometry (and the initial data in the Neumann setting) in the labyrinthine cases.
We focus on defects (regions where the stripes are no longer contiguous at the highest
value of u, which appear like dappled spots), in addition to stripe orientation.

First we consider circular and elliptical domains in Fig. 5. As anticipated, solu-
tions with Neumann boundary conditions in Fig. 5a–c exhibit orientations which are
seemingly independent of the domain geometry, though there is some correlation of
stripe orientation. Stripe defects appear in all cases with Neumann boundary condi-
tions, mostly near the boundaries where stripes of different orientation intersect. In
comparison, there is clearly more symmetry in the confined patterns generated by
mixed boundary conditions in Fig. 5d–f, which broadly maintain orientations consis-
tent with the domain geometry. Defects with mixed boundary conditions only occur
in the elliptical cases and seem to be where the stripe curvature is greatest.

In each of the cases with Neumann boundary conditions, there are slightly different
numbers of stripes (depending on what one classifies as a stripe), with (c) having the
largest number for these simulations. Different random initial conditions can lead to
substantial variation in the number of such structures, depending on what orientation
most stripes take. In contrast, if one considers a contiguous region of higher-than-
average values of u as a stripe, then the confined patterns generated bymixed boundary
conditions all have exactly four of these. This is despite the fact that the largest ellipse
occupies three times the area of the circle, and these observations appear to be robust
to different random perturbations of the initial conditions. Finally, these results are
relatively insensitive to the value of R, as simulations with R = 0.2 and R = 0.7 (not
shown) gave rise to qualitatively identical patterns, with the only observable difference
being the minimal value taken. These values were chosen as the minimum of u in the
Neumann cases was u ≈ 0.62.

Next we consider more complicated domains by looking at those formed by per-
turbing the circle with periodic polar functions. We consider the following parametric
domain boundary:

x(s) = L cos(s)
√
1 + γ sin(6s), y(s) = L sin(s)

√
1 + γ sin(6s), for s ∈ [0, 2π ],

(13)
where L is now a measure of the domain length (the radius of the circle for γ = 0),
and γ ∈ [0, 1) signifies the deviation from this circle. The sin(6s) term makes the
perturbations resemble a 6-lobed polar rose or rhodonea curve.

InFig. 6,wedemonstrate patterns on suchdomains for three different values ofγ .As
in the elliptical case, the solutionswith onlyNeumann conditions in (a)–(c) have stripes
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Values of u computed with Neumann and the mixed boundary conditions (3) on the interior of circles
and ellipses. Simulations shown are on a domain with a semi-minor axis of 40, and semi-major axes of 40
in a, d, 80 in b, e, and 120 in c, f. We used the Schnakenberg kinetics in Table 1 with a = 0.01, b = 1.7,
c = 1, D = 20, and R = 0 in the mixed case. Colour scales were fixed between a minimum (dark blue) of
0 and a maximum (light yellow) of 2.87 (Color Figure Online)

(a) (b) (c)

(d) (e) (f)

Fig. 6 Values of u computed with Neumann boundary conditions, as well as the mixed boundary conditions
(3) on the interior of the domain given parametrically in (13). Simulations shown are on a domain with
size characterized by L = 70 using the Schnakenberg kinetics in Table 1 with a = 0.01, b = 1.7, c = 1,
D = 20, and, in the mixed case, R = 0. Colour scales were fixed between a minimum (dark blue) of 0 and
a maximum (light yellow) of 2.91 (Color Figure Online)
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Fig. 7 Thresholded values of u from simulations of (1)–(2) using purely Neumann boundary conditions in
a, and the mixed conditions (3) in b. Triangular elements were only shown for values of u > 3 in order to
visualize these three-dimensional patterns. Simulations shown are on a domain of size 15× 15× 60 using
the Schnakenberg kinetics in Table 1 with a = 0.1, b = 1.8, c = 1, D = 103, and, in the mixed case,
R = 0. The maximum value of u (light yellow) is 23.56, and the minimum (dark blue) is 0 (Color Figure
Online)

with similar alignments, and defectswhen theymeet stripeswith different orientations.
Very little direct effect of the boundaries can be seen in these simulations, with the
patterns broadly consisting of seemingly randomly oriented stripes (with orientations
depending on initial data). In contrast, the confined patterns in Fig. 6 clearly conform
to the boundary, with defects again appearing at regions where the stripes (but not
necessarily the boundaries) might be expected to have large curvature. As before,
while the structure of the Neumann solutions can vary tremendously depending on
the initial data, the mixed boundary conditions lead to consistent patterns even when
the initial data are different. In the centre of each of these domains, independent of
the value of γ , is a pattern of seven inverted spots (one surrounded by six others).
These simulations demonstrate an intriguing possibility of selecting for hybrid stripe
and spot solutions in the domain through the discrete symmetry of the geometry. As
in the elliptical case, qualitatively similar patterns are seen for R = 0.2 and R = 0.7.

We now consider the same comparisons for three-dimensional patterns. Classifica-
tion of patterns in higher dimensions is evenmore difficult than in the two-dimensional
case, though there has been work on specific model systems (DeWit et al. 1992, 1997;
Shoji and Yamada 2007; Leda et al. 2009). As the number of Turing-type structures
that can exist in three dimensions is vast, we only give two examples to demonstrate
the influence of these boundary conditions. To visualize these patterns, we will only
plot the solution on the tetrahedral finite elements above some threshold, so that the
observed structures correspond to regions of high concentration of u.

In Fig. 7, we give examples of localized sphere-like structures which emerge again
in the Schnakenberg kinetics in a rectangular domain. As expected from the two-
dimensional examples, spheres in the Neumann case form hemispheres and quadrants
(quarter-spheres), along the boundary. In contrast, the mixed boundary conditions lead
to symmetrical spheres of the solution u along the centre of the domain, approximately
half of awavelength away from the boundary in any direction as in the two-dimensional
case. As in the case of spots in the two-dimensional examples given in Table 2, it is
clear that the patterns with these boundary conditions are substantially more ordered
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Fig. 8 Thresholded values of u from simulations of (1)–(2) using Neumann boundary conditions in a (with
slices shown in b), and the mixed conditions (3) in c (with slices shown in d). For the plots in a, c, triangular
elements were only shown for values of u > 2.5 in order to visualize these three-dimensional patterns.
Simulations shown are on a domain of size 25 × 25 × 25 using the Schnakenberg kinetics in Table 1 with
a = 0.1, b = 1.7, c = 1, D = 30, and, in the mixed case, R = 0. The maximum value of u (light yellow)
is 3.58, and the minimum (dark blue) is 0 (Color Figure Online)

and symmetrical. Additionally, we find a robustness of pattern structure across dif-
ferent random initial conditions which contrasts with the case of Neumann boundary
conditions.

In Fig. 8, we give an example where more lamella-like structures (analogous to
stripes in two-dimensions) appear. These patterns are more complicated and harder
to visualize, so cross-sections have been included to help picture them beyond the
regions of high activator concentration. The Neumann case admits complicated tube-
like structures inside the domain, as well as forming partial tubes along the boundary.
In contrast, the confined patterns resemble a face-centred cubic lattice with tubular
connections between sphere-like regions of high activator concentration. This example
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Fig. 9 Values of u from simulations of (1)–(2). The domain is the same as in Table 2 except that a region
of the domain has been removed from the left boundary. In a, c, a rectangular region of height 0.7L and
width 0.05L has been removed from the domain, and in b, d an elliptical region of semi-major axis of
0.35L and semi-minor axis 0.2L has been removed. We use the mixed conditions (3) along all of the square
boundaries, and Neumann conditions along the three rectangular cut boundaries in a, c, and the elliptical
cut boundaries in b, d. Simulations shown are on a domain of size L = 60 using the Thomas kinetics and
parameters from Table 1 as labelled, with maximal and minimal values of u as in Table 2

clearly shows a difference between the seeminglymore random appearance of patterns
in the Neumann case, compared to the extremely structured confined patterns arising
from the mixed boundary conditions.

Lastly in this section, we consider domains which are composed of both Neumann
and the mixed boundary conditions (3). Such a setting may arise from cutting a piece
of tissue from a patterning field and then inserting an impermeable material, with local
no-flux boundaries along the cut. In Fig. 9, we give examples of spots and stripes in
the Thomas kinetics from Table 2, where we have shown rectangular and elliptical
‘cuts’ in the domain along the left boundary, so that these boundaries have Neumann
conditions but all others have the mixed conditions. We see half-spots forming only
along these Neumann boundaries in panels (a) and (b). In panels (c) and (d) we observe
a more pronounced selection effect of the Neumann boundary conditions, where the
domain with the small rectangle removed has an internal structure consistent with
the corresponding simulation from Table 2 (though with patterns forming up to the
Neumann boundary), but the elliptical cut induces a selection of horizontal stripe
patterns even away from this boundary. Such a selection mechanism could be a useful
approach to validating these boundary conditions in experimental systems.
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3.3 Extensions to Many-Species

Interior pattern localization from mixed boundary conditions can be extended beyond
two-species systems. Pattern formation in three and more species systems is far richer
than in the two-species case, even when restricting to patterns arising from Turing
instabilities (Pearson and Bruno 1992; Satnoianu et al. 2000), and such multispecies
kinetics have been studied extensively in recent years in developmental contexts (Klika
et al. 2012; Diego et al. 2018; Scholes et al. 2019). We will give a brief example,
motivated by pattern formation in three-species Lotka–Volterra systems. We note that
two-species Lotka–Volterra systems do not admit patterns except in the case of convex
domains and bistability (Kishimoto and Weinberger 1985; Kurowski et al. 2017),
though three-species models do (Taylor et al. 2020).

We consider the system

∂ui
∂t

= Di∇2ui + ui

⎛
⎝1 −

3∑
j=1

ai j u j

⎞
⎠ , for i = 1, 2, 3, (14)

where Di > 0 are the diffusion coefficients of each species and ai j ∈ R are the
interaction coefficients. This is a particular non-dimensionalization of a standard gen-
eralized Lotka–Volterra model with diffusion modelling random dispersal. The form
of interactions between species permits competition for resources, as well as predation
from a generalist or intraguild predator who is also competing for resources with the
prey; see Taylor et al. (2020) for more details about the ecological interpretation. We
will use the following extension of the two-species mixed boundary conditions (3),

u1(x, t) = R, n · ∇u2 = n · ∇u3 = 0, for all x ∈ ∂�. (15)

We will also consider homogeneous Neumann conditions (on all species) for compar-
ison, again simply referring to these as Neumann conditions.

We show simulations of this system with parameters giving spots and labyrinthine
patterns in Fig. 10 for both Neumann boundary conditions, and the mixed boundary
conditions (15). As in the two species simulations above, we see the mixed boundary
conditions forcing the patterned regions of u1 into the interior of the domain, and
some pattern modulation due to nonlinear interactions between patterned regions. For
instance, in (b) we see a few smaller spots due to crowding, and in (d) we see a clear
mode selection from the boundaries as shown before in the labyrinthine examples. Of
course both of these kinds of patterns can also occur with Neumann conditions, but
may be more prevalent for mixed boundary conditions as they confine patterns to the
interior. Besides these influences, the patterns are qualitatively similar on the interior
of the domain, especially between (a) and (b). Simulations in an extended domain,
analogous to the system (4)–(5), gave the same results as using (15) (not shown).

We have chosen the species with a fixed Dirichlet boundary condition here to be u1,
which has the smallest diffusion coefficient. We now explore applying the Dirichlet
condition to the other two species. As the system is multistable in the absence of
diffusion, we can exploit this to choose a value of R = 1/aii , where i = 2 or 3 indexes
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Fig. 10 Values of u1 from simulations of (14) with either Neumann or the mixed boundary conditions (15).
We used a11 = 1.1, a12 = a13 = a21 = 0.8, a23 = 0.8, a31 = 1.7, a32 = −1, a33 = 1.1, D1 = 0.1,
D2 = 100, and D3 = 1, with a22 = 1 in a, b and a22 = 1.3 in c, d. � was taken to be a square domain of
side length L = 300. u2 is in phase with u1, and u3 is out of phase with these. The colours correspond to
a maximal value of 0.7 (light yellow) and a minimal value of 0 (dark blue). Simulations are shown at time
t = 105, andwere initialized using normal perturbations of the homogeneous steady state as described in the
beginning of the section. See Figure 1 of Taylor et al. (2020) for an ecological description and interpretation
of the parameters. We took R = 0 in the case of mixed boundary conditions. (Color Figure Online).

Fig. 11 Values of u1 from simulations of (14) with mixed boundary conditions u2 = 1/a22, n · ∇u1 =
n · ∇u3 = 0 in a, b, and u3 = 1/a33, n · ∇u1 = n · ∇u2 = 0 in c, d. We used a11 = 1.1, a12 = a13 =
a21 = 0.8, a23 = 0.8, a31 = 1.7, a32 = −1, a33 = 1.1, D1 = 0.1, D2 = 100, and D3 = 1, with a22 = 1
in a, c and a22 = 1.3 in b, d.�was taken to be a square domain of side length L = 300. u2 is in phase with
u1, and u3 is out of phase with these. The colours correspond to a maximal value of 0.7 (light yellow) and
a minimal value of 0 (dark blue). Simulations are shown at time t = 105, and were initialize using normal
perturbations of the homogeneous steady state as described in the beginning of the section. (Color Figure
Online).

the species with the Dirichlet condition, which forces u1 ≈ 0 in the neighbourhood
of the boundary (as both (0, 1/a22, 0) and (0, 0, 1/a33) are steady states of the kinetic
part of (14)). We show these simulations in Fig. 11. In the case of u3 fixed at the
boundary, with the intermediate diffusion value, we see qualitatively similar solutions
between Figs. 10b and 11c, as well as 10d and 11d, with only small defects or pattern
selection differences between them. In the case of u2 being fixed at the boundary,
however, we see much larger regions of homogeneity extending from the boundary
in Fig. 11a, b, as the fixed value of u2 can diffuse much more readily throughout the
domain due to the size of its diffusive flux. This is as anticipated in the discussion at
the end of Sect. 1.2. We remark that taking R = 1 has no influence on the qualitative
solutions observed (not shown).

While this is only a single example of a multispecies model, we anticipate that
the generalization to n species will have qualitatively similar effects. Without loss
of generality, the arguments given in Sect. 2.1 can be extended to the n species case
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as long as all constraints are satisfied. In particular, we anticipate that placing the
Dirichlet condition on any single species will confine the patterns to the interior via
the same mechanism suggested in Sect. 2.2. We do note, however, that interactions
with multistability can lead to more complex behaviour, and may require a choice of
R different from what is stated in Sect. 1.2. For instance, if we took R = 0 in the
examples shown in Fig. 11, we would see a similar localization of the interior pattern,
but the region around it would have u1 ≈ 0.7 (i.e. a maximal value) rather than u1 ≈ 0.
Lastly, we remark that while this system exhibits multistability, Turing instabilities
onlymake sense around the coexistence equilibrium of all three species (as they cannot
exist around two-species coexistence equilibria, and the extinction steady state would
lead to negative values of at least one species). We leave exploration of more general
multistable systems to future work.

4 Discussion

Isolation of patterns in reaction–diffusion systems (RDS) on the interior of a domain
can be motivated both phenomenologically, by observing patterning fields which are
clearly subsets of a given region, or mechanistically in terms of boundaries in gene
expression. Such gene expression boundaries themselves can either emerge due to pre-
vious cell fate specification or local signalling dynamics. Here we have developed a
novel method of inducing such isolated patterns with a simple change in the boundary
conditions governing the RDS. We have justified these boundary conditions by con-
sidering heterogeneous RDS modelling a change in reaction dynamics explicitly and
shown that such systems can reduce asymptotically to RDS satisfying these mixed
boundary conditions at steady state, given weak geometric and kinetic constraints.
This is consistent with the theoretical literature showing pattern localization and mod-
ulation in heterogeneous environments (Varea et al. 1997; Page et al. 2003, 2005;
Krause et al. 2020; Kozák et al. 2019), as well as the regionalization of patterning seen
experimentally (Johansson and Headon 2014). These conditions give a simple way
of modelling these localization phenomena, without having to resort to modelling the
heterogeneity that may have given rise to isolated patterning regions. We have further
shown that isolated patterning can be obtained quite generically using these mixed
boundary conditions across a range of reaction–diffusion systems, geometries, spatial
dimensions, and even in systems of more than two interacting species.

As described in the introduction, there are still major gaps in our understanding of
RDS, particularly as models in developmental biology. While the original formulation
of Turing’s theory is a powerful and simple way of obtaining periodically patterned
states, it suffers from a number of robustness problems, in part due to this simplicity
(Maini et al. 2012; Woolley et al. 2017; Scholes et al. 2019). In addition to demon-
strating isolated patterning, our results indicate some level of robustness in pattern
selection, partly explained in Sect. 2.2. Specifically, the numerically observed steady
states in the case of homogeneous Neumann conditions can generally depend on initial
data, as multistability of steady states is common, especially in two or more spatial
dimensions (Borckmans et al. 1995). In contrast, there were far fewer such cases of
multistability of patterns observed from simulations with the mixed boundary condi-
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tions (3). Of course, more work is needed to precisely explain this phenomenon, but it
is consistent with the discussion of how bifurcation branches of solutions change under
different boundary conditions in Dillon et al. (1994). Additionally, while we did not
explore this in great detail here, the Turing space for these mixed boundary conditions
can be enlarged, as discussed in Maini and Myerscough (1997), plausibly helping to
overcome the constraints in finding parameters which admit patterned solutions.

While we focused on analyzing terminal steady-state patterns, we remark that the
boundary conditions (3) often had transient impacts which may be relevant in applica-
tions. In particular, in every simulation investigated, we observed that these boundary
conditions led to a substantially faster convergence towards the steady-state pattern.
In the case of labyrinthine patterns, these conditions often led to orders of magni-
tude faster convergence. Specifically, for the Schnakenberg kinetics with labyrinthine
parameters in Table 1, the solution with conditions (3) was within plotting accuracy of
the final steady state within O(102) units of time, whereas the solution with homoge-
neous Neumann conditions only attained the final stripe orientations shown in Table 2
after O(104) units of time. We conjecture that this is not, at least primarily, due to
a change in linear stability of the final pattern, but is because of fewer steady states
satisfying these boundary conditions, and hence less shadowing of unstable equilibria.
These results are consistent with earlier results on inhomogeneous Robin conditions
(Arcuri and Murray 1986). As with the above discussion of counting equilibria, we
leave further investigation to future work.

Finally, we mention that our results also demonstrate a novel application of domain
geometry in robustly giving rise to patterns of qualitatively different types. Specifically,
in Fig. 6 we see that inverted spots can be selected on the interior of these domains,
with stripes closer to the boundaries, due to the symmetry of the domain geometry. As
far aswe are aware, this is a novel local pattern selectionmechanism quite distinct from
those exploiting a reduction in dimension to transition from spots to stripes (Murray
1981, 2004). In general, the sensitivity of patterns with respect to geometry, and the
use of domain geometry to influence patterning, has not been studied as extensively
as other aspects of RDS, especially for more general boundary conditions.

Many periodic patterns in development are spatially localized within some region
of an otherwise homogeneous tissue. There are at least three distinct ways that such
regionalization can occur, as described in Sect. 1.1. Determining precisely what is
happening at such boundaries is difficult, and often their exact geometry is unknown.
If, for example, a periodic pattern of spots forms in one part of a field but not another,
it does not immediately reveal where the functionally relevant boundary might be,
whether it is graded or sharp, whether it is relevant for activator and inhibitor equally
or selective for one species, and whether it promotes the formation of spots nearby
(and so the boundary lies close to the edge of the spotted area) or repels them (and so
it lies at some distance from the margin of the spotted area). The boundary conditions
presented here give a simple way to model such phenomena, when the boundary is
assumed to be repelling, without having precise knowledge of what the field is doing
near or beyond the boundaries where periodic patterns are observed. The examples
given in Sect. 3.2, and in particular the ‘cut’ domains shown in Fig. 9, provide ways
of validating these isolating boundary conditions via experiments which alter domain
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geometry, as we have demonstrated strong effects of such geometry on the emergent
patterns.

As mentioned in the introduction, Neumann boundary conditions can also exhibit
isolated patterning if the initial data consist of internal spot solutions (Kolokolnikov
et al. 2009; Chen and Ward 2011). It would be interesting to quantify if such internal
states are generic in some sense, by comparing and contrasting their basins of attraction
from states with boundary spots. Such a quantification of ‘generic’ behaviour would
be valuable to inform questions of biological robustness of these mechanisms. There
are also important open questions raised about pattern formation multistability with
these mixed boundary conditions, and how one might choose the value of R in more
general systems, as discussed in Sect. 3.3.

There are numerous other extensions of the basic ideas here, but we restrict attention
to five possible areas of future work. As above, there is work to be done in more rigor-
ously justifying our conclusions regarding equilibria, pattern selection, and transient
dynamics. As the examples in Table 1 all have large diffusivity ratios D, the shadow-
limit approaches of Ward et al. (2002) (and many other references) could be used
to provide further insight on interior localization. On the biological side, exploring
patterning field boundaries with these kinds of models in mind could help us under-
stand the key aspects of the detailed biological mechanisms at play. There are also
important questions, raised in Esposito (2020) and elsewhere, about the underlying
thermodynamics of RDS, and the role that boundaries play. We also remark that there
are examples of more complicated multi-domain and bulk-surface models, where the
role of boundary conditions and geometry have major impacts, and there are impor-
tant connections between those models and the spatially heterogeneous ones studied
in Sect. 2.1 (Krause et al. 2020). Finally, we have restricted our attention to studying
stationary solutions, but RDS can exhibit a wide variety of spatiotemporal behaviours,
such as spatiotemporal chaos and spiralwaves observed in excitable systems (Sánchez-
Garduno et al. 2019). Preliminary simulations of such dynamics suggest that ourmixed
boundary conditions can also lead to localized behaviour in these systems, with pos-
sible applications in electrophysiology and other areas [e.g. little is known regarding
how boundaries influence re-entrant wave dynamics (Clayton et al. 2011)]. While
there has been great progress in extending Turing’s insights into pattern formation and
RDS, there is substantial work left, especially in terms of elucidating the connections
with real embryonic development.
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