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Abstract
In this work we study a Susceptible-Infected-Susceptible model coupled with a con-
tinuous opinion dynamics model. We assume that each individual can take measures
to reduce the probability of contagion, and the level of effort each agent applies can
change due to social interactions. We propose simple rules to model the propagation
of behaviors that modify the level of effort, and analyze their impact on the dynam-
ics of the disease. We derive a two dimensional set of ordinary differential equations
describing the dynamic of the proportion of the number of infected individuals and
the mean value of the effort parameter, and analyze the equilibria of the system. The
stability of the endemic phase and disease free equilibria depends only on the mean
value of the levels of efforts, and not on the initial distribution of levels of effort.
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1 Introduction

In the last few years an increasing interest emerged on epidemic models involving
changes in socio-cultural norms and behaviors, partly motivated by the emergence
of anti-vaccine movements in different countries and the challenge they pose to the
control of epidemic outbreaks.

Several authors divided the susceptible population in three (or more) different
groups, the vaccinated, the non-vaccinated individuals, and the ones that decided to
remain non-vaccinated, see for instance (Bauch 2005; Bauch and Earn 2004; Pires and
Crokidakis 2017). Also, related models considered two groups of susceptible agents,
the ones who are aware and those who are not aware of the threat of an infection
(Clancy 2018; Misra et al. 2011; Yang et al. 2017). In those cases, each group has its
own rate of contagion. Groups with different degrees of susceptibility, such as age-
dependent groups, and a class of exposed agents were considered. The difficulty to
analyze the corresponding models increases with the amount of classes and groups
since they lead to coupled systems of differential equations involvingmany parameters
describing the transitions between different groups.

Usually, agents can move from one group to another due to the mechanisms of the
disease (for instance, a susceptible agent was exposed and becomes infected, or an
infected agent recovers after the infection), or due to a personal decision based on
its own beliefs or the influence of other agents. So, the transitions involve a set of
ordinary differential equations modelling the disease dynamics coupled with different
social contact processes like the voter model, Axelrod’s cultural transmission model
(Axelrod 1997), imitation dynamics (Bauch 2005), or other discrete opinion dynamics
models like Galam’s, Sznajd’s, or Ochrombel’s (Galam and Zucker 2000; Ochrombel
2001; Slanina andLavicka 2003; Sznajd-Weron andSznajd 2000).Now, the possibility
of an epidemic outbreak, and its long-term impact, will depend on the size of those
groups, the mechanisms of transmission of the disease, the social contact process, and
also on the clustering or other properties of the network modelling the social structure
of the population, see for instance (Dorso et al. 2017; da Silva et al. 2019; Su et al.
2018; Tyson et al. 2020; Zhou et al. 2019).

In particular, when vaccines are available, opinion-based models were used to
analyze the transition from susceptible to vaccinated states, as a result of social inter-
actions, see (Dorso et al. 2017; Pires and Crokidakis 2017). However, the decision
of being vaccinated depends on other factors like their cost, risks, and perceived
advantages, see for instance the Bauch’s work (Bauch 2005), where a replicator-type
equation was added to a classical SIR model, and the payoff of being vaccinated
changes depending on the risk of contagion.

However, there aremany infectious diseases that can not be analyzedwith these kind
of models because their prevention depends on a sustained effort over time through
preventive measures, and there are no vaccines available. As a paradigmatic examples
we can consider the actual Covid-19 pandemic, the 2009 flu pandemic caused by the
H1N1 virus, or the outbreaks of Dengue, Zika, and Chikungunya (Fauci and Morens
2016). In those cases it is possible to analyze the spread of behaviors (and misbehav-
iors) related to infectious diseases using continuous opinion dynamics models, like
the ones considered by Bellomo, Deffuant, Toscani, Weisbuch and their collaborators,
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see for instance (Aletti et al. 2007; Bellomo 2008; Bellomo et al. 2013; Deffuant et al.
2000; Pedraza et al. 2020; Pérez-Llanos et al. 2018; Toscani 2006).

So, we present here a variant of a classic Susceptible-Infected-Susceptible (SIS)
model coupled with a continuous opinion dynamics model. Briefly, the state of any
agent j in the society is characterized by the pair (a j , p j ), where a j ∈ {I , S} means
that the agent is infected or susceptible, respectively, and p j ∈ (0, 1) is a factor
reducing the transmission of the disease; p j is related to its level of effort to avoid the
infection, the lower is p j , the greater are the prevention measures taken by the agent
to avoid contagion.

Let us mention a related model by Funk, Gilad, Watkins and Jansen (Funk et al.
2009), where the discrete set of positive integers {k}k≥0 represents different levels of
awareness or effort (being 0 themaximum level of awareness, which implies immunity
against the disease). The spreading of awareness on the population depends on several
mechanisms: information transmission due to interaction among agents, a decay term
since individuals forget the acquired information, and a reset term since each infected
agent becomes fully informed and goes to 0. A Susceptible-Infected-Recovered (SIR)
model was considered, which always converges to an equilibrium without infected
people. When an infected agent interacts with a susceptible agent at level k, the prob-
ability of infection is proportional to (1 − ρk) for some fixed ρ ∈ [0, 1]. The authors
studied this model using agent-based simulations, and derived a SIR system coupled
with an equation for the information diffusion which is non-closed since it depends
on the location of agents. Let us observe that long range jumps of agents awareness
levels are allowed, since infected agents go directly to zero. This introduces some kind
of non-locality to the equations.

In our model, when two agents interact, they change their states as a consequence of
both the epidemic and opinion dynamics as detailed in Sect. 2. Informally, although the
rates of contact β and recovery γ remain unchanged, a susceptible agent i is infected
with probability piβ after a contact with an infected agent j . Then, both agents i
and j increase or decrease their levels of effort depending on the existence or not of
contagion after the interaction. We also examine the possibility where the contagion
probability depends on the infected agent, p jβ, or depends on both agents measures,
pi p jβ.

On the other hand, if two susceptible or two infected agents interact, each onemoves
its own effort level toward the other agents value as in continuous opinion dynamics
models (Aletti et al. 2007; Toscani 2006), depending on a third parameter which does
not enter in the coefficients of the system of equations. It plays a role only on the
formation of consensus, see (Pinasco et al. 2017), since the mean value of the level of
effort remains unchanged after this kind of interaction.

We are mainly interested here in the extinction or not of the disease. To this end, in
Sect. 3 we derive a system of ordinary differential equations describing the proportion
of susceptible agents and the mean value of the level of efforts of the population, 〈p〉,
in the mean field approximation.

Although the system depends on 〈pS〉, the mean value of the level of efforts of
the susceptible population, simulations show that 〈p〉 and 〈pS〉 are very similar, and
coincide when the parameter in the social interaction goes to zero. So, assuming
〈p〉 = 〈pS〉, we study the system of ordinary differential equations satisfied by 〈p〉
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and the proportion S of susceptible agents. We find the fixed points and classify them
according to their stability in Sect. 4.

In the long-time limit, when the increase or decrease of the level of effort depends
on the same parameter, the value 〈p〉 converges to 〈p〉∞ = (1+ β)−1, independently
of the initial distribution of values of p in the population. If they depend on different
parameters, we get two values 〈p〉±∞, depending onwhich one is greater, and analogous
results hold. We show, in particular, the existence of a threshold depending only on
the contact rate β and on the recovery rate γ , and not in the initial value of 〈p〉, such
that the disease does not become endemic if and only if

Rm := 〈p〉∞R0 = 2β

γ (1 + β)
≤ 1.

Notice that 2β is the rate of contagion in this model, and that R0 = 2β/γ is the basic
reproduction number of the standard SIS model. We call this modified reproduction
number Rm the behaviorally reduced reproduction number, since the factor 1 + β

appears due to the social process and helps to reduce the propagation of the disease,
decreasing the basic reproduction number R0 of the standard SIS model. Notice that
this modified reproduction number Rm is obtained asymptotically when both the SIS
and the social dynamics evolve. A discussion of the significance of Rm is given in
Sect. 5. Agent-based simulations of the dynamics strongly agree with the theoretical
results.

We conclude in Sect. 6, and we add a short “Appendix” with the derivation of the
equation for the evolution of the proportion of susceptible agents, and the correspond-
ing equations for other contagion rules.

2 TheModel

Let us assume that we have a population of n agents, each one characterized by a pair
(ai , pi ), where ai represents the state of agent i , namely ai = S if it is susceptible and
ai = I if it is infected, and pi ∈ [0, 1] denotes its level of effort to avoid infection.

The purely epidemiological parameters are the recovery rate γ , and the contact rate
β. Both are assumed to be constant.

When two agents i , j interact, they will change their parameters from (ai , pi ) to
(a∗

i , p
∗
i ), and from (a j , p j ) to (a∗

j , p
∗
j ) respectively. The recovery dynamic is similar

to the classical SIS model: an infected agent becomes susceptible in a unit of time
with probability γ , without interactions. On the other hand the dynamics of infection
depends on the social parameter: if a susceptible agent i interacts with an infected
agent, it becomes infected with probability piβ.

Remark 2.1 We are assuming here that only the level of effort of the susceptible agent
matters, as in Funk et al. (2009). Alternative rules can be imposed here. For instance,
the contagion dynamic could depend on pi , p j , or both. These rules can be studied in
the exact sameway.Wepresent the corresponding equations below, and their derivation
can be found in the “Appendix”.
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However, drastic changes in effort levels, such as those that occur in Funk et al.
(2009), need a different approach, since this model includes long jumps in their values
of awareness.

When two agents i and j , either both susceptible or both infected, interact, their
level of measures of prevention pi and p j will change following a social dynamic rule
similar to the one introduced by Deffuant and Weisbuch (see (Deffuant et al. 2000;
Pérez-Llanos et al. 2018; Toscani 2006)): each agent moves its parameter p toward
the other agent’s value. More precisely, following (Deffuant et al. 2000), we introduce
a positive fixed parameter h ∈ [0, 1], the compromise parameter, which measures
the ability of an agent to adapt its own level of effort in social interactions. After an
interaction with agent j , agent i will change its level to

p∗
i = pi + h(p j − pi ).

When h = 0 no change occurs, while for h = 1/2 both agents choose the mean value
of their levels of effort. This compromise parameter h represents the susceptibility to
persuasion, the extent to which an agent is willing to modify its behavior due to the
influence of other agents. Different theories from social sciences support this behavior:
Asch’s social pressure theory (Asch 1955), where an agent tries to adapt its opinion to
others agents opinions, and the persuasive argument theory of Burnstein and Vinokur
(1977), where agents exchange arguments and modify their positions after analyzing
them.

On the other hand, if a susceptible agent interacts with an infected agent, both
will increase (respectively, decrease) their levels of effort whenever the agent remains
susceptible (resp., becomes infected). We can think this rule as if both agents have
a social interaction with a third hypothetical agent who has the maximum (resp.,
minimum) level of effort p = 0 (resp., p = 1), with two different compromise
parameters h1, h2 ∈ [0, 1/2]. Hence, we have

p∗
i = pi − h1 pi , or p∗

i = pi + h2(1 − pi )

if contagion occurs or not.
Let us state precisely the rules of the dynamics, together with their interpretation:

– Persuasion or imitation: a susceptible (respectively, infected) agent i remains
susceptible if he interacts with another susceptible (resp., infected) agent j . Both
change their levels of effort to

p∗
i = pi + h(p j − pi ),

p∗
j = p j + h(pi − p j ),

that is, each one adopts an effort level intermediate between its own value and the
one of the other agent.

– Contagion and Fear: a susceptible agent i becomes infected with probability piβ
after an interaction with an infected agent j . In this case, i and j feel that their
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efforts are not enough, and change their p parameters to

p∗
i = pi − h1 pi ,

p∗
j = p j − h1 p j .

– Confidence: a susceptible agent i remains susceptible with probability 1 − piβ
after an interaction with an infected agent j . In this case, i and j feel that their
efforts are excessive and change them to

p∗
i = pi + h2(1 − pi ),

p∗
j = p j + h2(1 − p j ).

– Recovery: a random agent i is selected and becomes susceptible with probability
γ if it was infected, and no change of pi occur.

Let us observe that both dynamics are coupled, in the sense that the same contact
can produce a new infection and a change in the levels of effort of both agents. It is
easy to add a separate dynamic which only impacts on the effort of agents.

3 Theoretical Analysis

In this section we derive an ordinary differential equation for 〈p〉, the mean value of
agents levels of effort, and another one for S, the proportion of susceptible agents.

Let us mention that if h1 	= h2, the system is not closed, since it involves the second
moment 〈p2S〉, andweneed an extra equation for it.However, this newequation depends
on 〈p3S〉, and so on. This way we get an infinite hierarchy of coupled equations.

There are several ways to deal with this problem. In statistical mechanics and many
other problems, under appropriate hypotheses, a closure of moments is introduced
to truncate this kind of hierarchies. Another option is to introduce a measure valued
function μt for the distribution of agents on the levels of effort and it is possible to
obtain a more detailed description through a Boltzmann-like equation coupled with a
SIS system describing the infection dynamics. We prefer to defer the technical details
and the mathematical proofs of existence, uniqueness and stability of such equations
to another work.

In the next section we consider two simpler approaches.
Let us first introduce the following notation which will be used below. We assume

that there are finitely many agents, say n, and denote k(t) the expected number of
susceptible agents at time t . The proportions S(t) and I (t) of susceptible and infected
agents are then given by

S(t) = k(t)

n
, I (t) = 1 − S(t).
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The mean values 〈p〉, 〈pS〉 and 〈p2S〉 of the p parameter in the susceptible population
and the mean of p in the whole population are

PS =
∑

i∈Sus
pi , 〈pS〉 = PS

k(t)
,

〈p2S〉 = 1

k(t)

∑

i∈Sus
p2i , 〈p〉 = 1

n

∑

i

pi ,

where we denote by Sus and Inf the (time dependent) subsets of susceptible and
infected agents respectively.

We assume that interactions between agents occur following a Poisson process with
constant rate, that can be assumed equal to 1 without loss of generality, rescaling time
if necessary, In particular the probability of an interaction in a small time interval
[t, t +�t] is �t + o(�t), no interaction occurs with probability 1−�t + o(�t), and
two or more interactions occur with a negligible probability o(�t). In what follows
we will neglect the o(�t). When an interaction occurs, two agents are selected at
random (uniformly across all agents), and they interact following the rules described
in Sect. 2.

Our main objective in this section is to derive the differential equations describing
the evolution of the expected values of S(t) and 〈p〉.

3.1 Evolution of the effort level of a single agent.

Let us fix a single agent i , and study the evolution of its effort level at time t , i.e. the
expected change pi (t + �t) − pi (t) in a small time window [t, t + �t]. We have the
following master equation for pi (t + �t):

pi (t + �t) = (1 − �t) pi (t) + �t p∗
i (t), (1)

where the first term is the probability that no interaction occurs and pi remains the
same, and, in the secondone,wehave the expectedvalue of p∗

i whena single interaction
occurs. In order to compute p∗

i we need the possible values it can take and their
probabilities, which depend on the state of agent i .

The probability that agents i and j are selected is 2
n(n−1) . Notice that the factor

2 comes from the fact that agent i can be selected as the first or second agent in
the interaction. If we derive a classical SIS model under this assumption, we get
R0 = 2β/γ , a fact that must be remembered in order to compare it to the modified
reproduction number when agents behaviors are considered.

Let us assume first that i is a susceptible agent at time t . The new value p∗
i will

change depending on the following two things: that an infection occurs if the other
agent is infected, and the specific level of effort of agent j if it is susceptible. We have

– p∗
i = pi − h1 pi , when i becomes infected after interacting with one of the n − k

infected agents. This event occurs with probability 2
n
n−k
n−1β pi ;
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– p∗
i = pi + h2(1 − pi ) when i remains susceptible after interacting with one of

the n − k infected agents, which occurs with probability 2
n
n−k
n−1 (1 − β pi );

– p∗
i = pi − h(pi − p j ) when i interacts with another susceptible agent j , which

occurs with probability 2
n(n−1) , for any susceptible agent j we can choose.

After replacing in Eq. (1) and rearranging terms, we get

pi (t + �t) − pi (t) = 2�t

n(n − 1)

[
−h1(n − k)β p2i + h2(1 − pi )(n − k)(1 − β pi )

−h
∑

j∈Sus
(pi − p j )

⎤

⎦ .

(2)

Remark 3.1 Let us remark that in the last term of the sum all the susceptible agents
appear since the expected level of effort depends on the particular agent we choose,
while in the first and second terms we can select any of the n − k infected agents and
their parameters do not enter in the computation.

If the probability of contagion depends on the parameter of the infected agent, or
on the parameters of both agents, we must change the probability of contagion and
the selection of the involved agents accordingly, see Sect. 3.3 below.

Now we consider the case that i is an infected agent. The value p∗
i will depend

on the specific parameter of the susceptible agent j we choose, and whether or not
contagion occurs. The probabilities that i infects or not j are

Prob(i infects j) = 2

n(n − 1)
β p j ,

Prob(i does not infect j) = 2

n(n − 1)
(1 − β p j ).

We write again the expected change of p∗
i as a conditional probability on the effort of

the particular susceptible agent:

– p∗
i = pi − h1 pi when the other agent becomes infected, and this occurs with

probability 2β
n(n−1) for each susceptible agent j ;

– p∗
i = pi + h2(1 − pi ) when the other agent remains susceptible,and this occurs

with probability
2β p j
n(n−1) for each susceptible agent j ;

– p∗
i = pi − h(pi − p j ) when i interacts with any other infected agent j , which

occurs with probability
2(1−β p j ))

n(n−1) .

Hence, after replacing in the master Eq. (1) we obtain

pi (t + �t) − pi (t) = 2�t

n(n − 1)

⎡

⎣−h1 pi
∑

j∈Sus
p jβ + h2(1 − pi )

∑

j∈Sus
(1 − p jβ)
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−h
∑

j∈Inf
(pi − p j )

⎤

⎦ .

We can write the last equation in a more compact way noticing that

∑

j∈Sus
p j = PS,

∑

j∈Sus
(1 − p jβ) = k − βPS,

and we obtain

pi (t + �t) − pi (t) = 2�t

n(n − 1)
[−h1β pi PS + h2(1 − pi )(k − βPS)

−h
∑

j∈Inf
(pi − p j )

⎤

⎦ .

(3)

Finally, dividing by �t in (2) and (3), and taking the limit as �t → 0, we obtain
an ordinary differential equation for pi when i is a susceptible or infected agent,

d

dt
pi (t) = 2

n(n − 1)

[
− h1(n − k)β p2i + h2(1 − pi )(n − k)(1 − β pi )

−h
∑

j∈Sus
(pi − p j )

]
(4)

d

dt
pi (t) = 2

n(n − 1)

[
− h1β pi PS + h2(1 − pi )(k − βPS) − h

∑

j∈Inf
(pi − p j )

]
.(5)

3.2 Derivation of themean-field equations.

We can now obtain the equation for 〈p〉 = 1
n

∑n
i=1 pi , the mean value of p. Splitting

the sum as
∑n

i=1 pi = ∑
i∈Sus pi + ∑

i∈Inf pi , and using (4) and (5), we obtain

n2(n − 1)

2

d

dt
〈p(t)〉

=
∑

i∈Sus

[
− h1(n − k)β p2i + h2(1 − pi )(n − k)(1 − β pi ) − h

∑

j∈Sus
(pi − p j )

]

+
∑

i∈Inf

[
− h1β pi PS + h2(1 − pi )(k − βPS) − h

∑

j∈Inf
(pi − p j )

]
.

Noticing that

∑

i∈Sus

∑

j∈Sus
(pi − p j ) =

∑

i∈Inf

∑

j∈Inf
(pi − p j ) = 0,
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we observe that the parameter h has no influence in 〈p〉 since the levels of effort of both
agents get closer to each other and the mean does not change. Hence, the competition
between fear and confidence drives the dynamics.

Letting g := h1 − h2 i.e. h1 = h2 + g, after rearranging terms we have

n2(n − 1)

2

d

dt
〈p(t)〉 = h2(n − k)

∑

i∈Sus
(1 − (1 + β)pi ) + h2

∑

i∈Inf
(k − βPS − pi k)

−
∑

i∈Sus
g(n − k)β p2i −

∑

i∈Inf
gβ pi PS

= h2(n − k)[2k − (1 + 2β)PS] − h2k
∑

i∈Inf
pi

−
∑

i∈Sus
g(n − k)β p2i −

∑

i∈Inf
gβ pi PS .

Writing

∑

i∈Inf
pi =

n∑

i=1

pi −
∑

i∈Sus
pi = n〈p〉 − k〈pS〉 = n(〈p〉 − 〈pS〉) + (n − k)〈pS〉,

we obtain

n2(n − 1)

2

d

dt
〈p(t)〉 = 2h2(n − k)k[1 − (1 + β)〈pS〉] − h2kn(〈p〉 − 〈pS〉)

− g(n − k)βk〈p2S〉 − gβPs[n(〈p〉 − 〈pS〉) + (n − k)〈pS〉],

and by dividing by n2,

(n − 1)

2

d

dt
〈p(t)〉 =2h2S(1 − S)[1 − (1 + β)〈pS(t)〉] − h2S(〈p〉 − 〈pS〉)

− gβS
[
(1 − S)〈p2S〉 + 〈pS〉[(〈p〉 − 〈pS〉) + (1 − S)〈pS〉]

]
.

Finally, we can rescale time to get rid off the factor n − 1. Rearranging the terms we
obtain the equation

d
dt 〈p〉 = 4h2S(1 − S)[1 − (1 + β)〈pS〉] − 2h2S(〈p〉 − 〈pS〉)

−2gβS
[
(1 − S)

(
〈p2S〉 + 〈pS〉2

)
+ 〈pS〉

(
〈p〉 − 〈pS〉

)]
.

(6)

Remark 3.2 Let us recall that h1 − h2 = g, so the last term is not present if h1 = h2.

Remark 3.3 In much the same way, we get the equation

d

dt
S = (1 − S)(γ − 2〈pS〉βS). (7)
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Its derivation can be found in the “Appendix”. It is similar to the usual derivation of
the SIS model. The main differences with classical models are the mean susceptibility
〈pS〉β, and the factor 2, which appears since both selected agents can infect or get
infected (as opposed to the derivation of the classical SIS equation where only one
agent, usually selected first, can get infected).

3.3 Other contagion rules

It is possible to derive the mean field equations for other contagion rules in a similar
way. To this end, let us call

〈pI 〉 = 1

n − k

∑

j∈Inf
p j , 〈p2I 〉 = 1

n − k

∑

j∈Inf
p2j .

Suppose thatwhen a susceptible agent i interactswith an infected agent j , contagion
occurs with probability p jβ. In this case, after changing the probability of the different
events accordingly, we get the following equations:

d

dt
〈p〉 =2h2S(1 − S)(2 − 2β〈pI 〉 − 〈pS〉 − 〈pI 〉)

+ 2(h2 − h1)βS(1 − S)(〈pI 〉〈pS〉 + 〈p2I 〉), (8)

d

dt
S =(1 − S)(γ − 2〈pI 〉βS). (9)

On the other hand, if the probability of contagion depends on both effort levels,
that is, contagion occurs with probability pi p jβ, we get

d

dt
〈p〉 =2h2S(1 − S)(2 − 〈pI 〉 − 〈pS〉 − 2β〈pS〉〈pI 〉)

+ 2(h2 − h1)β(〈p2S〉〈pI 〉 + 〈pS〉〈p2I 〉), (10)

d

dt
S =(1 − S)(γ − 2〈pI 〉〈pS〉βS). (11)

See the “Appendix” for details.

4 Qualitative study of the dynamic

Let us note that the definition of the microscopic interaction rules given in Sect. 2
concerning the level of effort implies that both susceptible and infected agents react
in the same way. This suggests that their mean level of effort would be the same. The
agent simulations in the left panel of Fig. 1 confirm this intuition, showing that the
difference between 〈pS〉 and 〈p〉 is of order h. Thus, taking h � 1, we will assume
from now on that 〈pS〉 = 〈p〉.
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Fig. 1 Agent based simulations with n = 10000 agents, β = 0.7, γ = 0.3, and p initially uniformly
distributed in [0.7, 0.9]. Left panel: plot of 〈pS〉 − 〈p〉 for h1 = h2 = h = 0.1, 0.01, 0.001, and 0.0001.
Right panel: plot of the variance Var(p) = 〈p2〉 − 〈p〉2 for h1 = h2 = h = 0.01, 0.001, and 0.0001

Notice the Eq. (6) for 〈p〉 involves 〈p2〉, and an equation for 〈p2〉 would involve
〈p3〉, and so on, thus resulting in an infinite hierarchy of equations. In order to avoid
the infinite hierarchy of moments, we consider two options. The first and simplest one
is to limit ourselves to the case h1 = h2. Indeed in that case, g = 0 and, recalling we
assumed 〈pS〉 = 〈p〉, (6) reduces to

d

dt
〈p〉 = 4h2S(1 − S)[1 − (1 + β)〈p〉]. (12)

The second one comes from the fact that the variance Var(p) = 〈p2〉 − 〈p〉2 goes
to zero, so 〈p2〉 ∼ 〈p〉2, and this enables us to deal also with the case h1 	= h2. We
show in the right panel in Fig. 1 the evolution of Var(p) for three values of h, and
h = h1 = h2. We observe in the simulations that Var(p) = o(h).

Moreover, let us note that h disappeared in the limit equation since 〈p〉 is invari-
ant under this interaction. Hence, by considering the approximation h 
 h1, h2, a
consensus is reached in a shorter time scale, see for instance (Pinasco et al. 2017).

4.1 The case h1 = h2

Since g = 0, and recalling we assumed 〈pS〉 = 〈p〉, Eqs. (6) and (7) for 〈p〉 and S
become

d

dt
〈p〉 = 4h2(1 − S)S[1 − (1 + β)〈p〉], (13)

d

dt
S = (1 − S)

(
γ − 2〈p〉βS

)
. (14)

Notice that the square [0, 1] × [0, 1] is clearly invariant for the system, and that
its fixed points in [0, 1] × [0, 1] are the line {S = 1} and the point (〈p〉, S) =(

1
1+β

,
γ (1+β)

2β

)
with γ (1+β)

2β ≤ 1.

Let us study the asymptotic behaviour of a solution starting from a point
(〈p〉(0), S(0)) ∈ [0, 1] × [0, 1). Since S(t) < 1 for any t and noticing that d

dt 〈p〉
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has same sign as 1 − (1 + β)〈p〉, we see that

lim
t→+∞〈p〉 = p∞ = 1

1 + β
.

We can then rewrite (14) as

1

2β

d

dt
S = 〈p〉(1 − S)

( γ

2β〈p〉 − S
)

= 〈p〉(1 − S)
(
R−1
m + ε(t) − S

)
,

where R−1
m := γ (1+β)

2β and ε(t)
t→+∞−→ 0. We now distinguish three cases.

I f R−1
m > 1 then there exists T > 0 such that R−1

m + ε(t) ≥ 1 for any t ≥ T . It

follows that for t ≥ T we have d
dt S ≥ 0 with equality only when S = 1. We conclude

that limt→+∞ S(t) = 1.
I f R−1

m < 1 then for any a, b ∈ [0, 1), a < R−1
m < b, there exists T ′ > 0 such that

for t ≥ T ′ we have

〈p〉(1 − s)
(
R−1
m + ε(t) − s

)
> 0 ∀ s ∈ [0, a],

〈p〉(1 − s)
(
R−1
m + ε(t) − s

)
< 0 ∀ s ∈ [b, 1)

Thus S enters the interval [a, b] at some time T ≥ T ′ and stays there forever. Since this
holds for any a, b ∈ [0, 1) with a < R−1

m < b, we deduce that limt→+∞ S(t) = R−1
m .

I f Rm = 1 then for any δ ∈ (0, 1), there exists T ′ > 0 such that for t ≥ T ′,
|ε(t)| < δ/2 so that

〈p〉(1 − s)
(
R−1
m + ε(t) − s

)
> 0 ∀ s ∈ [0, 1 − δ].

Thus if S(0) < 1− δ, then S(t) must enter the interval [1− δ, 1] at some time T ≥ T ′
and stay there forever. If S(0) ≥ 1 − δ then S(t) ≥ 1 − δ for any t ≥ 0. Since this
holds for any δ > 0 we deduce that limt→+∞ S(t) = 1.

We can summarize the previous discussion in the following Theorem.

Theorem 4.1 For any initial condition (〈p〉(0), S(0)) ∈ [0, 1] × [0, 1], the solution
(〈p〉, S) of (13)–(14) satisfies

lim
t→+∞〈p〉 = p∞ = 1

1 + β
.

If S(0) = 1 then S(t) = 1 for any t ≥ 0, and if S(0) < 1 then

lim
t→+∞ S(t) =

{
1 if Rm ≤ 1,

R−1
m if Rm > 1,
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where Rm = 2β
γ (1+β)

.

4.2 The case h1 �= h2

Assuming that h 
 h1, h2, or 〈p2〉 ∼ 〈p〉2, Eqs. (6) and (7) for 〈p〉 and S read now

d

dt
〈p〉 = 4h2S(1 − S)

[
1 − (1 + β)〈p〉 + (1 − h1/h2)β〈p〉2

]
(15)

d

dt
S = (1 − S)

(
γ − 2〈p〉βS

)
. (16)

We consider first the case h1 > h2 where fear dominates confidence. It is easily
seen that there exists p−∞ ∈ (0, (1 + β)−1) such that

d

dt
〈p〉

{
> 0 if 〈p〉 ∈ [0, p−∞)

< 0 if 〈p〉 ∈ [p−∞, (1 + β)−1)

Thus 〈p〉 → p−∞. Hence, there exists a unique positive equilibrium p−∞ for the first
equation, which is stable, and 0 < p−∞ < (1 + β)−1. The rest of the analysis follows
as before, replacing Rm by R−

m = p−∞R0.
In the same way, when h1 < h2, agents relax their protection measures, and there

exists a unique positive equilibrium p+∞ to Eq. (15), which is stable and p+∞ > (1 +
β)−1. Again, we can repeat the rest of the analysis as before, obtaining R+

m = p+∞R0.
Let us note that p−∞ < (1 + β)−1 < p+∞ implies that, for h1 > h2, people attain

a level of effort that helps to mitigate the propagation of the disease better than the
corresponding one for h1 = h2 - the opposite occurs when h1 < h2.

4.3 Other contagion rules

We omit the analysis of the alternative rules presented before in Sect. 3.3 since it is
similar. Let us mention only that, for h1 = h2, and assuming 〈pI 〉 = 〈pS〉 = 〈p〉, we
get

d

dt
〈p〉 =4h2S(1 − S)(1 − (1 + β)〈p〉),
d

dt
S =(1 − S)(γ − 2〈p〉βS).

when the contagion depends on the level of effort of infected individuals. The equilibria
and their stability are the same as before.

If the contagion depends on the level of effort of both agents, we obtain

d

dt
〈p〉 =4h2S(1 − S)(1 − 〈p〉 − β〈p〉2),
d

dt
S =(1 − S)(γ − 2〈p〉2βS).
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The first equation has a single positive equilibria

〈p〉∞ =
√
1 + 4β − 1

2β
∈ (0, 1),

and 〈p〉 → 〈p〉∞ when t → +∞ if initially S(0) ∈ (0, 1). In order to compare 〈p〉∞
and the limit number of Susceptible individuals in the endemic equilibria, namely
γ /(2〈p〉2∞β), with what happens when contagion depends on the susceptible individ-
ual only, notice that

√
1 + 4β − 1

2β
>

1

1 + β
, and

(√
1 + 4β − 1

2β

)2
<

1

1 + β
.

It follows that if contagion depends on the level of effort of both agents, they asymp-
totically implement more relaxed measures of protection, and the combined efforts
contribute lead to a bigger number of limit susceptible individuals.

5 The behaviourally reduced reproduction number Rm and
simulations

A critical parameter in compartmental epidemic models is R0, the basic reproduction
number, which gives the expected number of contagions associated to a single infected
individual who enters in a susceptible population. In the classical SIS model,

R0 = 2β

γ
,

see for instance (Anderson and May 1992) (recall that the factor 2 appears since both
the first or second agent can become infected). Then, as time evolves, the effective
reproduction number Rt = R0S(t) is a better descriptor of the dynamics since it takes
into account that there are less susceptible agents. In the SIS model, Rt stabilizes at
Rt = 1 in the endemic phase, and an equilibrium between recovered and new infected
individuals appears, reaching a stable number of infected agents.

In the model studied in this paper, we observe from Eq. (14) that at time t we have
an effective reproduction number

Rt = 〈p(t)〉2β
γ

S(t).

Since 〈p(t)〉 → p∞ for h1 = h2, and to p±∞ if h1 	= h2,we introduce thebehaviourally
reduced reproduction numbers

Rm = p∞
2β

γ
and R±

m = p±∞
2β

γ
.
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Fig. 2 Plot of the proportion of Infected agents at the stable equilibria, for γ = 0.6 and varying β. The
dotted blue curve represent the equilibria for the classical SIS dynamics, the black one are the theoretical
equilibria computed in Theorem 4.1, and the red stars are agent-based simulations of the dynamics with
10000 agents and p uniformly distributed in [0.7, 0.9]

It follows from the previous results that given an epidemic outbreak, i.e. S(0) < 1,
then the disease tends to disappear if Rm ≤ 1 whereas it becomes endemic if Rm > 1 -
the same is valid for R±

m . In Fig. 2, for γ = 0.6, we compare the bifurcation diagram of
the classical SIS model with the one presented in this work. Varying β, we observe the
bifurcation at R0 = 2β/γ of the classical SIS model (blue dotted curve). In contrast,
the role played by the social interactions in our model delays the bifurcation until
Rm = R0/(1 + β), and effectively lowers the final number of infected agents in the
endemic state (black line). The red stars in the diagram correspond to agent-based
simulations of the dynamics. We observe a very good agreement with the predicted
value of infected agents at equilibria given by Theorem 4.1.

To further appreciate the agreement between the theoretical results of Theorem 4.1
and the agent-based simulations, we present in Fig. 3 a heat map for the proportion of
susceptible agents at equilibria obtained in Theorem 4.1 (left panel), and performing
agent-based simulations (right panel). We observe in the left panel that the region in
the space of parameters where the disease is endemic is smaller than the corresponding
one for a classical SIS model, delimited with the yellow line R0 = 1. Also, the agent-
based simulations in the right panel confirm that the ODE system (13)–(14) accurately
models the dynamics.

6 Conclusions and Final Remarks

We derived an epidemic model coupled with a continuous opinion dynamics model.
We assumed that each individual can take measures to reduce the probability of con-
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Fig. 3 Heat map of the proportion of susceptible agents at equilibria. Upper panel: theoretical values from
Theorem 4.1. Lower panel: agent based simulation of the dynamics with 10000 agents and p initially
uniformly distributed in [0.7, 0.9]. The yellow line correspond to R0 = 1 in a classical SIS model

tagion, and the level of effort that each agent applies change due to social interactions.
We model few mechanisms, fear to contagion, confidence after a contact without con-
tagion, and persuasion, as the main reasons for behavioral change, and we studied
their impact on the dynamics of the disease.

We obtained a system of two ordinary differential equations, one for the proportion
of infected people, and another one for the mean value of the effort parameter. The
meanvalue of the effort enters as a coefficient in the original SIS systemwhichmodifies
the rate of contagion. At the same time it changes as a consequence of epidemic events,
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since it decreases or increases when a contagion occurs or not. Hence, the behavioral
dynamics modify the parameters of the SIS system. We can compare the system
with other behavioral epidemic models, where an additional equation in a SIS or SIR
model as in Bauch (2005) represent new compartment, and the behavioral dynamics
drags the susceptible population into the vaccinated compartment. Different factors
like imitation, costs of vaccination, or perceived risk due to the infected population,
appears in the coefficients of this additional equation, which is a replicator equation
with varying payoffs since depends on the proportion of infected agents.

We study the asymptotic behaviour of the solutions, and we obtained a generaliza-
tion of the basic reproduction number R0, denoted Rm , and given by

Rm = 2β

γ (1 + β)

when h1 = h2, and where β and γ are the contact and recovery rate of the disease. We
proved the existence of similar critical values R±

m when h1 	= h2. Let us recall that the
factor 2 in Rm appears since both the first and second agents can become infected after
an interaction. We prefer to keep this for simplicity and symmetry in the formulation
of the problem, Notice however that comparison with the R0 of classical models must
include the factor 2 (that is, if the rate of contagion of a disease studied with our model
is β, this is equivalent to a rate 2β when only the first agent in some encounter can be
infected).

There are several questions of practical interest, particularly in this moment with
the Covid-19 pandemic active. To be clear, we are not claiming the direct applicability
of our specific rules of social interaction, although trends in the population can be
detected (like the degree of use of masks, sanitizer products, or social distance), thus
giving a personal probability of contagion βi , which can be studied as the product
piβ in our model. Of course, different questions are relevant if we consider Covid-19,
since a SEIR model (including exposed and removed agents) seems to be a better one
to analyze its evolution.

We have chosen the same scale of time for both the epidemic and social dynamics,
scaling only the number of agents, and keeping the parameter h2 in the equation for
〈p〉. It is possible to change the frequency of interactions, by separating the ones
related to the disease transmission, to the social ones ones which only affect the level
of effort. This is specially important in SIR type dynamics, since the interactions at
the start of the epidemic are critical for its evolution.

Also, fundamental agents, like e.g. governments, media, health organizations, were
not considered here, though their role as social agents interacting with all the popula-
tion cannot be neglected. On the negative side of social interactions, there are groups
of people proposing innocuous and even harmful measures, like anti-vaccines move-
ments, and we can see them today violating the social distance, or without masks, and
trying to convince other people to imitate them. They act as zealots or stubborn agents
and in a forthcoming paper we will study their role and their influence on the stability
of equilibria.
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Appendix

We briefly present the derivation of the mean-field Eq. (7), and Eqs. (8)–(11). We
closely follow the derivation presented in Sects. 3.1 and 3.2.

Contagion depending on the level of effort of the infected agent.

If agent i is susceptible then

n(n − 1)

2

pi (t + �t) − pi (t)

�t

= −h1 pi
∑

j∈Inf
β p j + h2(1 − pi )

∑

j∈Inf
(1 − β p j ) + h

∑

j∈Sus
(p j − pi )

= −h1β pi (n − k)〈pI 〉 + h2(n − k)(1 − pi )(1 − β〈pI 〉) + h
∑

j∈Sus
(p j − pi ).

Next if agent i is infected,

n(n − 1)

2

pi (t + �t) − pi (t)

�t

= −h1 pi
∑

j∈Sus
β pi + h2(1 − pi )

∑

j∈Sus
(1 − β pi ) + h

∑

j∈Inf
(p j − pi )

= −h1β p2i k + h2k(1 − pi )(1 − β pi ) + h
∑

j∈Inf
(p j − pi ).

Summing over i , by using that
∑

i, j∈Sus(p j − pi ) = ∑
i, j∈Inf(p j − pi ) = 0, after

taking the limit �t → 0, we obtain

n2(n − 1)

2

d

dt
〈p〉 = − h1β(n − k)〈pI 〉

∑

i∈Sus
pi + h2(n − k)

∑

i∈Sus
(1 − pi )(1 − β〈pI 〉)

− h1βk
∑

i∈Inf
p2i + h2k

∑

i∈Inf
(1 − pi )(1 − β pi ),

i.e.

n2(n − 1)

2

d

dt
〈p〉 = − h1βk(n − k)(〈pI 〉〈pS〉 + 〈p2I 〉)

+ h2k(n − k)(2 − (1 + 2β)〈pI 〉 − 〈pS〉 + β〈pI 〉〈pS〉 + β〈p2I 〉).
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Dividing by n2 gives

n − 1

2

d

dt
〈p〉 =(h2 − h1)βS(1 − S)

(
〈pI 〉〈pS〉 + 〈p2I 〉

)

+ h2S(1 − S)
(
2 − (1 + 2β)〈pI 〉 − 〈pS〉

)
,

and after rearranging and rescaling t we get Eq. (8).

Contagion depending on the level of effort of both agents.

As before, if agent i is susceptible then

n(n − 1)

2

pi (t + �t) − pi (t)

�t

= −h1 pi
∑

j∈Inf
β pi p j + h2(1 − pi )

∑

j∈Inf
(1 − β pi p j ) + h

∑

j∈Sus
(p j − pi )

= −h1β p2i (n − k)〈pI 〉 + h2(n − k)(1 − pi )(1 − β pi 〈pI 〉) + h
∑

j∈Sus
(p j − pi ).

Now, if agent i is infected,

n(n − 1)

2

pi (t + �t) − pi (t)

�t

= −h1 pi
∑

j∈Sus
β pi p j + h2(1 − pi )

∑

j∈Sus
(1 − β pi p j ) + h

∑

j∈Inf
(p j − pi )

= −h1β p2i k〈pS〉 + h2k(1 − pi )(1 − β pi 〈pS〉) + h
∑

j∈Inf
(p j − pi ).

Summing over i , by using that
∑

i, j∈Sus(p j − pi ) = ∑
i, j∈Inf(p j − pi ) = 0, we

obtain

n2(n − 1)

2

d

dt
〈p〉 = − h1β(n − k)〈pI 〉

∑

i∈Sus
p2i + h2(n − k)

∑

i∈Sus
(1 − pi )(1 − β pi 〈pI 〉)

− h1βk〈pS〉
∑

i∈Inf
p2i + h2k

∑

i∈Inf
(1 − pi )(1 − β pi 〈pS〉),

i.e.

n2(n − 1)

2

d

dt
〈p〉 = −h1βk(n − k)(〈pI 〉〈p2S〉 + 〈p2I 〉〈pS〉)

+ h2k(n − k)(2 − 2β〈pS〉〈pI 〉 − 〈pS〉 − 〈pI 〉 + β〈p2S〉〈pI 〉 + β〈pS〉〈p2I 〉).
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Dividing by n2 gives

n − 1

2

d

dt
〈p〉 =(h2 − h1)βS(1 − S)

(
〈pI 〉〈p2S〉 + 〈p2I 〉〈pS〉

)

+ h2S(1 − S)
(
2 − 2β〈pS〉〈pI 〉 − 〈pS〉 − 〈pI 〉

)
,

and after rearranging and rescaling t we get Eq. (10).

The SIS model with a single agent affort

Let us note that after an interaction the value of of S can remain the same or change
by an amount of ± 1

N . The transition S −→ S + 1
N happens when an infected agent is

cured, and occurs with probability

Prob
(
S → S + 1

N

)
=

∑

i∈Inf

γ

N
= γ (1 − S).

On the other hand the transition S −→ S − 1
N happens when a susceptible agent

becomes infected upon contact with an infected one, and this occurs with the following
probablities:

– when the contagion depends on the level of effort of the susceptible agent,

Prob
(
S → S − 1

N

)
=

∑

i∈Sus

∑

j∈Inf

2

n(n − 1)
piβ = 2k(n − k)

n(n − 1)
β〈pS〉

�2βS(1 − S)〈pS〉;

– when the contagion depends on the level of effort of the infected agent,

Prob
(
S → S − 1

N

)
=

∑

i∈Sus

∑

j∈Inf

2

n(n − 1)
p jβ = 2k(n − k)

n(n − 1)
β〈pI 〉

�2βS(1 − S)〈pI 〉;

– when the contagion depends on the levels of effort of both agents,

Prob
(
S → S − 1

N

)
=

∑

i∈Sus

∑

j∈Inf

2

n(n − 1)
pi p jβ = 2k(n − k)

n(n − 1)
β〈pS〉〈pI 〉

�2βS(1 − S)〈pS〉〈pI 〉.

We deduce the equation for the variation of S for the first case:

d

dt
S = 1

N
(1 − S)(γ − 2βS〈pS〉),
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and in the other two the factor 〈pS〉 changes to 〈pI 〉 and 〈pS〉〈pI 〉 respectively.
Rescaling time to absorb the factor 1/N so that N interactions are done in one

time unit (which is asymptotically the time rescaling we did in the final step of the
derivation of the equation for 〈p〉), yields

d

dt
S = (1 − S)(γ − 2βS〈pS〉),

and the corresponding ones in the other two cases.
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