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Abstract
Network-basedmodels of epidemic spread have become increasingly popular in recent
decades. Despite a rich foundation of such models, few low-dimensional systems for
modeling SIS-type diseases have been proposed that manage to capture the complex
dynamics induced by the network structure.We analyze one recently introducedmodel
and derive important epidemiological quantities for the system.Wederive the epidemic
threshold and analyze the bifurcation that occurs, and we use asymptotic techniques
to derive an approximation for the endemic equilibrium when it exists. We consider
the sensitivity of this approximation to network parameters, and the implications for
disease control measures are found to be in line with the results of existing studies.

Keywords SIS epidemic · Pairwise model · Epidemic threshold · Endemic
equilibrium

1 Introduction

In the past few decades, network-based models of epidemic spread have become a
central topic (Kiss et al. 2017; Pastor-Satorras et al. 2015) in epidemiology. Their
ability to capture mathematically the complex structure of transmission interactions
makes them an invaluable theoretical paradigm.Mathematically, a network is modeled
as a graph consisting of a set of nodes that are connected by a set of links (called
edges). In the context of epidemiology, typically nodes represent individuals, and
edges represent interactions that can transmit the infection. Used in conjunction with
compartment models, the disease natural history determines the number of possible
states an individual node might be in at any point in time. When disease spread is
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modeled as a continuous time Markov chain, the network size and disease natural
history can lead to high dimensional state spaces. For example, in a network with N
nodes where individual nodes can be in m possible states, the size of the state space
for the network is mN . Efforts to describe this process with a system of ordinary
differential equations are similarly hampered by size—the Kolmogorov equations
governing this system are exact, but prohibitively large. Thus, an important goal in
network-based modeling has been to find a (relatively) low-dimensional system that
accurately approximates the underlying high-dimensional system.

Manyapproaches (Pastor-Satorras andVespignani 2001; Pastor-Satorras et al. 2015;
Miller et al. 2012; Barnard et al. 2019; Karrer and Newman 2010) in recent years have
sought to introducemodels with systems of amanageable size. Pairwisemodels (Keel-
ing 1999; Eames and Keeling 2002; House and Keeling 2011) have been a popular
and fruitful approach to this question. Derived from the Kolmogorov equations and
exact in their unclosed form (Taylor et al. 2012), pairwise models consider the evo-
lution of not just the expected number of nodes in a given state, but also pairs and
triples of nodes. The dynamical variables are of the form [A] (the expected num-
ber of nodes in state A), [AB] (the expected number of pairs in state A − B), and
[ABC] (the expected number of triples in state A − B − C). Higher-order groupings
of nodes are also considered but rarely written, as dimension-reduction efforts often
focus on approximating the expected number of triples in terms of pairs and individ-
ual nodes. Pairwise models have been successful with a variety of different network
types, with models developed for networks with heterogeneous degree (Eames and
Keeling 2002), weighted networks (Rattana et al. 2013), directed networks (Sharkey
et al. 2006), and networks with motifs (House et al. 2009; Keeling et al. 2016) to
name a few. Moreover, pairwise models have been developed for a variety of disease
natural histories, with particular focus on SIR (susceptible-infectious-recovered) and
SIS (susceptible-infectious-susceptible) models.

In this paper, we consider an SIS pairwise model for networks with heterogeneous
degree. SIS dynamics are used to model diseases where no long-term immunity is
conferred upon recovery, leading to their frequent application to sexually transmit-
ted infections such as chlamydia or gonorrhea (Eames and Keeling 2002). Contact
networks for diseases of this type frequently involve heterogeneity in the number
of contacts for individuals, and thus node degree becomes an essential concept. The
degree of a node in a network is the number of edges to which the node is connected,
and thus the number of potential infectious contacts. In this way, heterogeneous net-
works can capture complex disease dynamics. An essential tool when working with
such networks is the degree distribution, defined by pk which is the probability a ran-
domly selected node has degree k. The degree distribution has played an important
role in dimension reduction approximations for pairwise models.

For the SIR-type diseases, accurate low-dimensional models have been derived
from the pairwise family using probability generating functions (Miller et al. 2012),
complete with conditions for finding the final size of the epidemic. Despite the suc-
cesses of the SIR case, the dimension reduction techniques in Miller et al. (2012) do
not apply to the SIS case. Instead, the development of low-dimensional models of
SIS-type disease spread on networks has relied on moment closure approximations.
Under the assumption of a heterogeneous network with no clustering, House and
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Keeling (2011) introduced an approximation reducing the system size from O(N 2)

to O(N ), where N is the number of nodes in the network. Termed the compact pair-
wise model (CPW), it has shown good agreement with stochastic simulations despite
its considerably smaller size. However, the number of model equations still grows
as the maximum degree of the network, making its application challenging for large
networks with significant degree heterogeneity. Perhaps the most successful model
in reducing the number of equations of the CPW for SIS-type diseases is the super
compact pairwise model (SCPW) (Simon and Kiss 2016). The system consists of only
four equations, with network structure being encoded to the model through the first
three moments of the degree distribution. While Simon and Kiss demonstrated excel-
lent agreement between the CPW and the SCPW, bifurcation analysis of the model
and an explicit formula for the endemic steady state remains to be done.

This paper sets out on that analysis of the SCPW model. A common point of
investigation amongmodels of SIS-type diseases is the disease-free equilibrium (DFE)
that loses stability as a relevant parameter passes a critical value known as the epidemic
threshold (Pastor-Satorras and Vespignani 2001, 2002; Boguñá and Pastor-Satorras
2002). The epidemic threshold serves as a dividing point between two qualitatively
different types of outbreaks. Below the epidemic threshold, any outbreak will die
out; above the epidemic threshold, the system converges asymptotically to a stable
equilibriumwhere the disease remains endemic in the population.Many studies follow
the “next generation matrix” approach for the basic reproduction number R0 (van den
Driessche and Watmough 2002) to characterize the epidemic threshold. We follow
a more conventional bifurcation analysis to derive the epidemic threshold and offer
a proof that the system undergoes a transcritical bifurcation, as one might expect.
Perhaps more importantly, the SCPW’s small fixed number of equations presents
an excellent opportunity to investigate the endemic equilibrium for SIS models on
heterogeneous networks, which has been heretofore inhibited by large system size.
We present a novel asymptotic approach to approximating the endemic equilibrium,
leveraging the low-dimensionality of the model. The results presented further our
understanding of the SCPW model specifically and suggest potential new avenues
in the challenging problem of analytically determining the nontrivial steady state of
pairwise models of SIS-type diseases.

The paper is structured as follows: in Sect. 2, we nondimensionalize the model and
reduce the number of equations to 3 to facilitate computations. In Sect. 3, we derive
the epidemic threshold and show that the system undergoes a forward transcritical
bifurcation. In Sect. 4, we tackle the endemic steady state that emerges through the
bifurcation.We use asymptotic methods to approximate the size of the endemic steady
state under two regimes—the system near the epidemic threshold and the system
far away from the epidemic threshold—and give examples of the efficacy of these
approximations on prototypical networks. Finally, we examine the implications of
these two approximations. In line with existing studies (Eames and Keeling 2002),
we find that control measures for reducing the prevalence at the endemic equilibrium
may require different tactics depending on the regime.
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2 Model

Pairwise models of SIS-type diseases provide a network-based analog of the classical
SISmodel (Diekmann andHeesterbeek 2000).The essential characteristics of pairwise
models of SIS epidemics are dynamical equations for not just the expected number of
nodes in each state, but also pairs and triples of nodes. At the node level, [S] and [I ] are
the expected number of susceptible and infectious nodes, respectively.At the pair level,
[SI ] is the expected number of connected pairs of susceptible and infectious nodes,
while [SS] and [I I ] are the expected numbers of connected susceptible-susceptible and
infectious-infectious pairs, respectively. The full pairwise model (Eames and Keeling
2002) further requires equations for the expected number of triples ([SSI ] and [I S I ])
and higher motifs as well:

˙[S] = γ [I ] − τ [SI ],
˙[I ] = τ [SI ] − γ [I ],
˙[SI ] = γ ([I I ] − [SI ]) + τ([SSI ] − [I S I ] − [SI ]),
˙[SS] = 2γ [SI ] − 2τ [SSI ],
˙[I I ] = −2γ [I I ] + 2τ([I S I ] + [SI ]).

The CPW closes the system by approximating the expected number of triples as

[ASI ] ≈ [AS][SI ] S2 − S1
S21

,

where S1 and S2 are the first and second moments of the distribution of susceptible
nodes; that is

S1 =
∑

k

k[Sk] = [SS] + [SI ], S2 =
∑

k

k2[Sk],

where [Sk] is the expected number of susceptible nodes with degree k. Unfortunately,
S2 cannot be expressed exactly in terms of [S], [I ], [SI ], [SS], and [I I ] only, so the
SCPW model offers an approximation that depends on these variables and moments
of the degree distribution.

The SCPW model derived in Simon and Kiss (2016) is given as

˙[S] = γ [I ] − τ [SI ], (1)

˙[I ] = τ [SI ] − γ [I ] (2)

˙[SI ] = γ ([I I ] − [SI ]) − τ [SI ] + τ [SI ]([SS] − [SI ])Q, (3)

˙[SS] = 2γ [SI ] − 2τ [SI ][SS]Q, (4)

˙[I I ] = −2γ [I I ] + 2τ [SI ] + 2τ [SI ]2Q, (5)
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where

Q = 1

nS[S]
( 〈k2〉(〈k2〉 − 〈k〉nS) + 〈k3〉(nS − 〈k〉)

nS(〈k2〉 − 〈k〉2) − 1

)
, nS = [SI ] + [SS]

[S] ,

〈kn〉 is the nth moment of the degree distribution, τ is the transmission rate, and γ is
the recovery rate. Here, the quantity Q serves as an approximation of (S2 − S1)/S21 .
As well, the quantities [S], [I ], [SI ], [SS], [I I ] satisfy conservation equations

[S] + [I ] = N , (6)

2[SI ] + [SS] + [I I ] = 〈k〉N . (7)

With the goal of performing bifurcation and asymptotic analyses in mind, nondi-
mensionalizing the SCPWmodel is a natural first step. To do so, we will rearrange the
Eqs. (3)–(5) so that the network parameters 〈k〉, 〈k2〉, 〈k3〉 are consolidated into more
workable constants. First, we rewrite Q as

Q = α[S]
([SI ] + [SS])2 + β

[SI ] + [SS] , (8)

where

α = 〈k2〉2 − 〈k〉〈k3〉
〈k2〉 − 〈k〉2 , β = 〈k3〉 − 〈k2〉〈k〉

〈k2〉 − 〈k〉2 − 1. (9)

A natural nondimensionalization of this system is to scale the number of nodes and
links in each state to the proportion of nodes and pairs in each state: v = [S]/N , w =
[I ]/N , x = [SI ]/(〈k〉N ), y = [SS]/(〈k〉N ), z = [I I ]/(〈k〉N ). As well, a natural
rescaling of time is T = t/γ,which prompts the defining of the transmission-recovery
rate ratio δ = τ/γ. The introduction of δ consolidates the two epidemiological param-
eters τ and γ into a single nondimensional parameter, so any changes to epidemiology
of the disease will be captured in δ alone. With these substitutions, the system (1)–(5)
becomes

v̇ = w − 〈k〉δx, (10)

ẇ = 〈k〉δx − w, (11)

ẋ = z − (δ + 1) x + αδ

〈k〉 · vx(y − x)

(x + y)2
+ βδ · x(y − x)

x + y
, (12)

ẏ = 2x − 2αδ

〈k〉 · vxy

(x + y)2
− 2βδ · xy

x + y
, (13)

ż = −2z + 2δx + 2αδ

〈k〉 · vx2

(x + y)2
+ 2βδ · x2

x + y
, (14)
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where the dot notation represents the derivative with respect to the nondimensional
time variable d

dT . The conservation Eqs. (6) and (7) become

v + w = 1, (15)

2x + y + z = 1, (16)

respectively.
At this point, the conservation equations can be used to reduce the system to a mere

3 equations. However, the elimination of different equations for different analyses
will be convenient. For characterizing the bifurcation undergone by the disease-free
equilibrium (DFE), it is convenient to work with variables that are 0 at the DFE. For
approximating the endemic steady state using asymptotic methods, the most parsi-
monious equations will make the algebraic manipulation required easier. Thus, we
will work with slightly different (but equivalent) characterizations of (10)–(14) in the
sections that follow.

3 Epidemic Threshold

To derive the epidemic threshold, we consider the stability of the DFE in terms of
the epidemiological parameter δ. We will show that as δ increases through a critical
value δc, theDFE loses stability. Typically as theDFE loses stability, an asymptotically
stable endemic equilibriumemerges.TheSCPWisno exception, andherewederive the
epidemic threshold, with a proof that the system undergoes a transcritical bifurcation
(and thus an endemic equilibrium emerges) when δ = δc included in Appendix A.

First, we use the conservation Eqs. (15) and (16) to eliminate Eqs. (10) and (13).
The resulting system is

ẇ = 〈k〉δx − w, (17)

ẋ = z − (δ + 1) x + αδ

〈k〉 · (1 − w)x(1 − 3x − z)

(1 − x − z)2
+ βδ · x(1 − 3x − z)

1 − x − z
, (18)

ż = −2z + 2δx + 2αδ

〈k〉 · (1 − w)x2

(1 − x − z)2
+ 2βδ · x2

1 − x − z
. (19)

Though ostensibly a messier choice of equation reduction, we note that at the DFE,
[I ] = [SI ] = [I I ] = 0, so w = x = z = 0. The notation

ẋ =
⎡

⎣
ẇ

ẋ
ż

⎤

⎦ =
⎡

⎣
F1(w, x, z)
F2(w, x, z)
F3(w, x, z)

⎤

⎦ = F(x) (20)
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will be convenient moving forward. To determine the stability of the DFE, we compute
the Jacobian at x = 0 :

DF =

⎡

⎢⎢⎣

−1 〈k〉δ 0

0

(
α

〈k〉 + β

)
δ − (δ + 1) 1

0 2δ −2

⎤

⎥⎥⎦ . (21)

A straightforward computation shows that

α

〈k〉 + β = 〈k2〉 − 〈k〉
〈k〉 = k̄. (22)

We can write DF as a block triangular matrix as

DF =
[−1 A
0 B

]
,

where the dimensions A and B, respectively, are 1 × 2 and 2 × 2. The properties
of determinants of block matrices tell us that the eigenvalues of DF are −1 and the
eigenvalues of B, which will determine the stability of the DFE.

We appeal here to the trace-determinant theorem, which tells us the eigenvalues ξ

of the 2 × 2 matrix B are given by

ξ = Tr(B)

2
±

√
(Tr(B))2 − 4Det(B)

2
.

First, we observe that these eigenvalues are real, as

Tr(B)2 − 4Det(B) = (δ(k̄ − 1) + 1)2 + 8δ, (23)

which is clearly positive. As a consequence, for the DFE to be stable we must have
Tr(B) < 0 and Det(B) > 0. The determinant can be written

Det(B) = 2(1 − δk̄) (24)

and is thus positive if and only if δ < 1/k̄. Moreover, if δ < 1/k̄, then

Tr(B) < (k̄ − 1)/k̄ − 3 = −2 − 1/k̄ < 0.

Therefore, we conclude that the DFE is stable for δ < 1/k̄ and unstable for δ > 1/k̄.
Thus, the epidemic threshold is the critical value of the bifurcation parameter δ :

δc = 〈k〉
〈k2〉 − 〈k〉 . (25)
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Notably, this threshold value is identical to that of the CPW as shown in Kiss et al.
(2017). However, it remains to be shown that a bifurcation actually does occur here,
and that an asymptotically stable endemic steady state emerges. To prove this, we
apply a theorem of Castillo-Chavez and Song (2004) in Appendix A. We note that
both the CPW and SCPW models are approximations to the true SIS dynamics on a
network, so while (25) is a good approximation of the true epidemic threshold, it may
not be appropriate in some cases. For instance, (25) is greater than zero for networks
with a power law degree distribution (pk ∼ k−d ) with d > 3 in the large network
limit (N → ∞). However, exact results show that the true epidemic threshold is zero
in the large network limit (Chatterjee and Durrett 2009).

4 The Endemic Equilibrium

With the existence of an endemic steady state established, we turn to the question of
finding an approximate analytic expression for it. In general, this is a difficult propo-
sition with epidemic models on networks owing to the frequently high-dimensional
nature of the dynamical systems. An exact closed-form expression for the endemic
equilibrium of the SCPW model requires solving a system of polynomial equations
in multiple variables, which we do not attempt here. However, with asymptotic tech-
niques, a workable approximation can be derived for two cases of δ: near the epidemic
threshold (δ ≈ δc), and far away from it (δ >> δc). We do not have a good approxi-
mation in the intermediate case. Two challenges are apparent. First, how to eliminate
equations to facilitate asymptotic expansions of the equilibrium and second, the choice
of small nondimensional parameter in each case.

Unlike in Sect. 3, the most parsimonious characterization of (10)–(14) is desirable.
So we eliminate (11) and (14) with the conservation equations. To promote the finding
of a small nondimensional parameter, we rewrite the resulting system using δ =
δc · δ

δc
and incorporate the constants σ = 〈k〉δc, λ = αδc/〈k〉, μ = βδc. With these

alterations, the system becomes

v̇ = 1 − v − σ
δ

δc
x, (26)

ẋ = 1 − y −
(
3 + δc

δ

δc

)
x + λ

δ

δc

vx(y − x)

(x + y)2
+ μ

δ

δc

x(y − x)

x + y
, (27)

ẏ = 2x − 2λ
δ

δc

vxy

(x + y)2
− 2μ

δ

δc

xy

x + y
. (28)

At the endemic equilibrium, v̇ = ẋ = ẏ = 0. We can solve (26) for v and substitute
into (27) and (28). With some rearrangement of terms and a little algebra (and adding
(28) to (27)), we arrive at the system of polynomial equations that determines the
endemic steady state:
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0 =
(

δc

δ

)2

(1 − y − 2x)(x + y)2 − δc

δ

(
δcx(x + y)2 + λx2 + μx(x + y)

)

+ λσ x3 = P(x, y), (29)

0 =
(

δc

δ

)2

(x + y)2 − δc

δ
(λy + μy(x + y)) + λσ xy = Q(x, y). (30)

Note that in (30), we have dropped a factor of x that corresponds to the DFE. For the
endemic steady state, we are interested in knowing the prevalence when the system is
at equilibrium: w∗. We use the following procedure to approximate the solution.

1. Express δc/δ in terms of a small parameter.
2. Use the Implicit Function Theorem to linearize P(x, y) = 0 as

y ≈ ỹ − Px (x̃, ỹ)

Py(x̃, ỹ)
(x − x̃)

around a point (x̃, ỹ) that is mathematically and/or biologically justified for the
given regime.

3. Expand x, y, and other relevant quantities in terms of the small parameter.
4. Substitute the expansions into Q(x, y) = 0 and obtain a regular perturbation prob-

lemandfind an asymptotic solution for the equilibriumvalue x ,which approximates
x∗.

5. Apply the relation w∗ = (δc/δ)
−1σ x∗ to obtain an asymptotic series for the preva-

lence at the endemic equilibrium.

We describe the results of this procedure for each case in the remainder of this section–
the details of the computations are included in Appendix B.

4.1 Case 1: Near the Epidemic Threshold (ı ≈ ıc)

For δ ≈ δc, we choose η = 1 − δc/δ as a small parameter. In terms of this small
parameter, (29) and (30) become:

0 = (1 − η)2(1 − y − 2x)(x + y)2

− (1 − η)
(
δcx(x + y)2 + λx2 + μx2(x + y)

)
+ λσ x3, (31)

0 = (1 − η)2(x + y)2 − (1 − η) (λy + μy(x + y)) + λσ xy. (32)

When δ ≈ δc, an endemic steady state has just emerged, so we can view this equilib-
rium as a small perturbation to the steady state x = 0, y = 1.Linearizing P(x, y) = 0
about this point gives

y ≈ 1 −
(
2 + δc

1 − η

)
x . (33)
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Expanding

2 + δc

1 − η
= 2 + δc

(
1 + η + η2 + O

(
η3

))
, (34)

x∗ = x0 + x1η + x2η
2 + O

(
η3

)
, (35)

we have

y ≈ (1 − (2 + δc)x0) − (δcx0 + (2 + δc)x1)η

− (δcx0 + (2 + δc)x2 + δcx1)η
2 + O

(
η3

)
. (36)

Substituting into (32) and equating coefficients to 0, we find an η-order expansion of
the approximate equilibrium value x∗ as

x∗ ≈ 1

λσ + μδc + μ − δc
η + O

(
η2

)
. (37)

Using the relation w∗ = σ
1−η

x∗ = σ x∗ + O(η), we have

w∗ ≈ σ

λσ + μδc + μ − δc
η + O

(
η2

)
. (38)

To demonstrate the efficacy of this approximation, we compare the approximation
(38) to the actual endemic equilibriumusing bifurcation diagrams (Fig. 1).We consider
two example configuration model random networks (Molloy and Reed 1995) with
N = 10, 000. In Fig. 1a, a bimodal network is considered with 5000 degree 3 nodes
and 5000 degree 5 nodes. In Fig. 1b, a network with a Poisson degree distribution
(with average degree 〈k〉 = 10) is considered. As is clear in both examples, the
agreement between the actual and approximate endemic equilibrium is quite good
near the epidemic threshold. Interestingly, the approximate value ofw∗ is greater than
the exact value for the bimodal network and less than the exact value for the Poisson
network. We suspect that this is due to network structure and higher order terms in the
asymptotic expansion, which we have not computed. An analogous situation is found
in the δ >> δc case.

4.2 Case 2: Far Away from the Epidemic Threshold (ı >> ıc)

For δ >> δc, our small parameter of choice is ε = δc/δ. We can rewrite (29) and (30)
in terms of this parameter:

0 = ε2(1 − y − 2x)(x + y)2

− ε
(
δcx(x + y)2 + λx2 + μx2(x + y)

)
+ λσ x3, (39)

0 = ε2(x + y)2 − ε (λy + μy(x + y)) + λσ xy. (40)
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(a)

(b)

Fig. 1 Exact and approximate endemic equilibrium prevalence in the δ ≈ δc regime for a a bimodal
network with 5000 degree 3 nodes and 5000 degree 5 nodes and b a configuration-model network with a
Poisson degree distribution with 10,000 nodes and 〈k〉 = 10. Moments of the degree distribution for the
bimodal network a are 〈k〉 = 4, 〈k2〉 = 17, 〈k3〉 = 76, with δc = 0.31, and higher moments of the degree
distribution for the Poisson network b are 〈k2〉 ≈ 110, 〈k3〉 ≈ 1309, with δc = 0.1. Solid lines denote
stable equilibria, while dashed lines denote unstable. The equilibrium with w∗ = 0 is the DFE

When δ >> δc, the transmission rate τ is large relative to the recovery rate γ. Thus,
we expect the disease to affect much of the population, and consequently there will
be very few remaining [SS] links, and therefore y ≈ 0.

Solving P(φ, 0) = 0 for φ yields

φ(ε) = ε2 − λε

2ε2 + (δc + μ)ε − λσ
, (41)
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and slope of the linearization is then

ψ(ε) = − Px (φ, 0)

Py(φ, 0)
= − (ε − λ)

(
2ε2 + (δc + μ)ε − λσ

)

ε(ε2 − (μ + 5λ)ε − λ(2δc + μ − 2σ))
, (42)

so

y ≈ ψ(x − φ). (43)

Next, we seek to expand y in terms of ε only. The relevant expansions for φ,ψ, and
x are:

φ(ε) = 1

σ
ε + δc + μ − σ

λσ 2 ε2 + O
(
ε3

)
, (44)

ψ(ε) = λσ

2δc + μ − 2σ
ε−1 − 2δ2c + 3δcμ + σ(5λ + 2σ) + μ2

(2δc + μ − 2σ)2
+ O(ε), (45)

x(ε) = x0 + x1ε + x2ε
2 + O

(
ε2

)
. (46)

To ease the writing of coefficients, we let φα and ψα refer to the coefficients on εα

for the respective series. From this, it follows that

y ≈ (ψ−1x0)ε
−1 + (ψ−1x1 + ψ0x0 − ψ−1φ1)

+ (ψ−1x2 + ψ1x0 + ψ0x1 − ψ−1φ2 − ψ0φ1)ε + O
(
ε2

)
. (47)

Substituting into (40), and equating the coefficients to 0, we find that we need the
coefficients up to order ε4 in order to find a ε2 order expansion of the approximate
equilibrium value of x∗. The result is

x∗ ≈ 1

σ
ε + δc + μ − σ

λσ 2 ε2 + O
(
ε3

)
. (48)

Finally, as w∗ = σε−1x∗, we arrive at an ε−order approximation for size of the
endemic steady state as

w∗ ≈ 1 + δc + μ − σ

λσ
ε + O

(
ε2

)
. (49)

As with the δ ≈ δc case, we compare the approximation (49) to the actual endemic
equilibrium in Fig. 2 for the same networks as previously described. Again, the agree-
ment is quite good, even for relatively small values of δ. In this case, the approximation
for the endemic equilibrium also provides an approximation to the epidemic threshold.
Whether this approximation is an overestimate or underestimate of the exact threshold
depends on network structure. If 〈k2〉 ≥ 〈k〉2 + 〈k〉, the approximation is an overesti-
mate. On the other hand, if 〈k2〉 < 〈k〉2+〈k〉, the approximation being an overestimate
or underestimate depends on the relationship between 〈k3〉 and the other twomoments.
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(a)

(b)

Fig. 2 Exact and approximate endemic equilibrium prevalence in the δ >> δc regime for a a bimodal
network with 5000 degree 3 nodes and 5000 degree 5 nodes and b a configuration-model network with a
Poisson degree distribution with 10,000 nodes and 〈k〉 = 10. Moments of the degree distribution for the
bimodal network a are 〈k〉 = 4, 〈k2〉 = 17, 〈k3〉 = 76, with δc = 0.31, and higher moments of the degree
distribution for the Poisson network b are 〈k2〉 ≈ 110, 〈k3〉 ≈ 1309, with δc = 0.1. Solid lines denote
stable equilibria, while dashed lines denote unstable. The equilibrium with w∗ = 0 is the DFE

4.3 Sensitivity Analysis

With any model of infectious disease, its implications in preventing or mitigating
spread should be considered. For network models, some pharmaceutical and non-
pharmaceutical interventions can alter the contact network structure in the effort to
contain or mitigate outbreaks (Salathé and Jones 2010). For an SIS-type disease, par-
ticularly when containment is impossible, one such goal may be to decrease the size
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Table 1 Partial derivatives for
δ ≈ δc

∂w∗
∂〈k〉

∣∣∣∣
δ=δc

= − 〈k2〉
〈k〉 − 2〈k2〉 + 〈k3〉

∂w∗
∂〈k2〉

∣∣∣∣
δ=δc

=
〈k〉

〈k〉 − 2〈k2〉 + 〈k3〉
∂w∗
∂〈k3〉

∣∣∣∣
δ=δc

= 0

Table 2 Partial derivatives for
δ >> δc ∂w∗

∂〈k〉 =
〈k3〉2 + 3〈k〉2〈k2〉2 − 2

(
〈k〉3〈k3〉 + 〈k2〉3

)

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

∂w∗
∂〈k2〉 = −

2
(
〈k〉2 − 〈k2〉

) (
〈k〉〈k2〉 − 〈k3〉

)

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

∂w∗
∂〈k3〉 =

(
〈k〉2 − 〈k2〉

)2

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

of the endemic equilibrium. To that end, we examine the sensitivity of our approx-
imations of w∗ to network parameters in the SCPW model. One benefit of explicit
asymptotic expressions for the endemic equilibrium is that sensitivity analyses are
straightforward to implement.

For a fixed δ, we have a three-dimensional parameter space. To visualize these
parameter combinations, we use two-dimensional heat maps taken at slices of the
third network parameter. In this case, we have decided to look at several fixed values
of 〈k3〉 and draw sensitivity heatmaps in the variables (〈k〉, 〈k2〉).Further complicating
matters is the fact that moments of a distribution are subject tomany inequalities which
restrict the domain of the sensitivity heat maps. Two natural restrictions to include are
the results of Jensen’s Inequality and the Cauchy–Schwarz Inequality, respectively:

〈k2〉 ≥ 〈k〉2,
〈k2〉2 ≤ 〈k3〉〈k〉.

For a fixed value of 〈k3〉, these restrictions give a wedge-shaped feasible region of
(〈k〉, 〈k2〉). We plot the sensitivities for 〈k3〉 = 20, 100, and 400 to display a range of
possible parameter combinations.

In the δ ≈ δc case, calculating the partial derivatives is straightforward. To compute
the sensitivities, we evaluate the partial derivatives at the epidemic threshold: δ = δc.
Table 1 shows the expressions for these sensitivities, and Fig. 3 shows corresponding
plots. Clearly ∂w∗

∂〈k〉 ≤ 0 and ∂w∗
∂〈k2〉 ≥ 0, with more extreme values near the upper-right

corner of the feasible region.
For the δ >> δc case, the partial derivatives (Table 2) all depend on a factor of 1/δ,

so the choice of δ for computing sensitivities does not affect the relative magnitudes
of the partial derivatives. For convenience, we select δ = 1.5. The sensitivity plots in
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(a)

(b)

Fig. 3 Sensitivitiesa ∂w∗
∂〈k〉 and b

∂w∗
∂〈k2〉 for the δ ≈ δc approximation.White denotes regions of the (〈k〉, 〈k2〉)

plane outside of the feasible region. Sensitivities are evaluated at δ = δc

Fig. 4 show that ∂w∗
∂〈k〉 ≥ 0, ∂w∗

∂〈k2〉 ≤ 0, and ∂w∗
∂〈k3〉 ≥ 0, with the greatest sensitivity near

the curve 〈k2〉2 = 〈k3〉〈k〉, though the large magnitude appears to be due to the partial
derivatives being undefined there.

A significant observation from these sensitivities is that ∂w∗
∂〈k〉 and

∂w∗
∂〈k2〉 change signs

depending on the regime considered. If the goal of an intervention is to reduce the size
of the endemic equilibrium, near the epidemic threshold, this can be accomplished in
principle by increasing 〈k〉 or decreasing 〈k2〉,which will in effect increase δc as well.
This is intuitive, as an effort to push the system below the epidemic threshold would
also decrease the endemic equilibrium for a fixed δ. However, in the δ >> δc regime,
the system is far from the epidemic threshold, and reducing the size of the endemic
equilibrium can be accomplished by decreasing 〈k〉 or increasing 〈k2〉. This suggests
that containment and mitigation strategies that depend on altering the structure of the
contact network may require different goals in terms of the moments of the degree
distribution.
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(a)

(b)

(c)

Fig. 4 Sensitivities a ∂w∗
∂〈k〉 , b

∂w∗
∂〈k2〉 , and c ∂w∗

∂〈k3〉 for the δ >> δc approximation. White denotes regions of

the (〈k〉, 〈k2〉) plane outside of the feasible region. Sensitivities are evaluated at δ = 5δc

5 Conclusion

In this paper, we have analyzed the super compact pairwise model presented in Simon
and Kiss (2016). A non-dimensional version of the model was considered, and a
bifurcation analysis was performed, demonstrating that the SCPW and CPW models
share an epidemic threshold. Moreover, we derived approximate formulas for the
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endemic equilibrium in two regimes: when the transmission/recovery ratio is near the
epidemic threshold, and far away from it. While the asymptotic techniques used here
are ad hoc, similar techniques may prove fruitful in other low-dimensional models of
infectious disease spread on networks. However, an exact expression for the endemic
equilibrium remains elusive.

Before explaining the advantages of our approach, we acknowledge two limitations
of our approximation. First, approximations of the endemic equilibrium for diseases
between the two regimes are lacking. Second, while the examples of simulated net-
works show good agreement between the exact and approximate prevalence, we have
not quantified the approximation error generally. As such, there may be types of net-
works for which our approximation of the endemic equilibrium is less accurate or
inappropriate.

Our approximation of the endemic equilibrium is very useful in providing a more
detailed look into the interactions of the moments of the degree distribution as they
relate to the size of an outbreak. This has implications for disease control measures,
particularly those that work by altering the contact network structure. Our results
suggest that for SIS-type diseases, strategies to contain (near the epidemic threshold)
or mitigate (far away from the epidemic threshold) an outbreak may require different
goals. In the mitigation scenario where the prevalence is high, measures might be
employed that decrease the first moment 〈k〉 of the degree distribution. In effect, this
may mean initiatives aimed at reducing the number of contacts of individuals alone.
On the other hand, in the containment scenario where the prevalence is low, decreasing
the second moment 〈k2〉 may be efficient. When couched in degree distribution terms
this goal is hard to conceptualize, but using probability generating functions (Newman
et al. 2001) one can show that 〈k2〉 is the average number of first and second neighbors
of nodes in the network. Thus,measures that reduce both the contacts of individuals and
their partners are effective in this scenario. This suggests the importance of contact
tracing. We note that the sensitivities also suggest that increasing 〈k2〉 in the high
prevalence case and increasing 〈k〉 in the low prevalence case may lead to a reduction
in the size of the endemic equilibrium, though it is not clear why from a biological
perspective.

Our results complement the findings of Eames and Keeling (2002), who observed
that the effectiveness of two common control measures, screening and contact trac-
ing, depend on the prevalence at the endemic equilibrium. Screening, which targets
and treats individuals, is efficient when the prevalence is high. Contact tracing, which
targets and treats individuals and their partners, if efficient when the prevalence is low.
Unlike this paper, Eames and Keeling implement these measures through epidemio-
logical parameters (rather than through changing network structure). In this way, our
results can be viewed as a network-structure analog for their conclusions and confirm
that control measures appropriate in a network setting can be found. Further work in
this area may include investigating this phenomenon with alternative models of SIS
diseases on networks.
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Appendix A Bifurcation and Endemic Steady State

We begin with Theorem 4.1 from Castillo-Chavez and Song (2004), referring to the
specific conditions that will be relevant for this analysis. Consider a system of ODEs
with a parameter φ :

dx

dt
= F(x, φ), F : Rn × R → R

n and F ∈ C2 (
R
n × R

)
. (A.1)

Assume that 0 is an equilibrium for all values of φ. Assume further that Dx f (0, 0) =(
∂Fi
∂x j

(0, 0)
)
is the linearization matrix of (A.1) around the equilibrium 0 and with

φ = 0, and zero is a simple eigenvalue of this matrix with all other eigenvalues
having negative real parts. Assume as well that this matrix has a nonnegative right
eigenvector w and left eigenvector v corresponding to the zero eigenvalue. Let Fk be
the kth component of f and

a =
n∑

k,i, j=1

vkwiw j
∂2Fk

∂xi∂x j
(0, 0), (A.2)

b =
n∑

k,i=1

vkwi
∂2Fk
∂xi∂φ

(0, 0). (A.3)

If a < 0 and b > 0, then when φ changes from negative to positive, 0 changes its
stability from stable to unstable. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

We apply this theorem to (17)–(19), where the equilibrium occurs at w = x = z =
0. Moreover, we define a bifurcation parameter φ = δ − δc, so φ = 0 corresponds to
δ = δc, and ∂

∂φ
= ∂

∂δ
. For consistency with previously established notation, we will

treat δ as our parameter, with φ increasing through 0 as δ increases through δc. The
Jacobian given in (21) when w = 0, x = 0, z = 0, and δ = δc is

J =
⎡

⎣
−1 〈k〉δc 0
0 −δc 1
0 2δc −2

⎤

⎦ . (A.4)
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and the characteristic polynomial is given by

0 = ξ(ξ + 1)(ξ − (−2 − δc)). (A.5)

The left and right eigenvectors (v andw, respectively) corresponding to the eigenvalue
ξ = 0 are

v = [
0 2 1

]
,w = [〈k〉 δ−1

c 1
]T

. (A.6)

To compute a and b, it is convenient to express (A.2) and (A.3) in matrix-vector form:

a = wT (2H2 + H3)w, (A.7)

b = v
∂ J

∂δ
(0, δc)w, (A.8)

where H2 and H3 are the Hessians of F2 and F3, respectively, at 0. These Hessians
are

H2 =

⎡

⎢⎢⎢⎢⎢⎣

0 −αδc

〈k〉 0

−αδc

〈k〉 −2 − 2βδc
αδc

〈k〉
0

αδc

〈k〉 0

⎤

⎥⎥⎥⎥⎥⎦
, H3 =

⎡

⎣
0 0 0
0 4 0
0 0 0

⎤

⎦ . (A.9)

Thus,

a = [〈k〉 δ−1
c 1

]

⎡

⎢⎢⎢⎢⎢⎣

0 −2αδc

〈k〉 0

−2αδc

〈k〉 −4βδc
2αδc

〈k〉
0

2αδc

〈k〉 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎣
〈k〉
δ−1
c
1

⎤

⎦

= [〈k〉 δ−1
c 1

]

⎡

⎢⎢⎢⎢⎢⎣

− 2α

〈k〉
−2αδc − 4β + 2αδc

〈k〉
2α

〈k〉

⎤

⎥⎥⎥⎥⎥⎦

= −2α − 2α − 4β/δc + 2
α

〈k〉 + 2
α

〈k〉
= −4

(
α

(
1

〈k〉 + 1

)
+ β

( 〈k2〉
〈k〉 + 1

))

= −4

( 〈k3〉
〈k〉 − 1

)
. (A.10)
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As 〈k3〉 > 〈k〉, it follows that a < 0.
The computation for b is simpler. We note that

∂ J

∂δ
(0, δc) =

⎡

⎣
0 〈k〉 0
0 δ−1

c − 1 0
0 2 0

⎤

⎦ . (A.11)

Thus,

b = [
0 2 1

]
⎡

⎣
0 〈k〉 0
0 δ−1

c − 1 0
0 2 0

⎤

⎦

⎡

⎣
〈k〉
δ−1
c
1

⎤

⎦

= [
0 2 1

]
⎡

⎣
0 〈k〉δ−1

c 0
0 δ−1

c (δ−1
c − 1) 0

0 2δ−1
c 0

⎤

⎦

= 2δ−1
c (δ−1

c − 1) + 2δ−1
c = 2δ−2

c > 0. (A.12)

Finally, as a < 0 and b > 0, we conclude that as δ increases through δc, a positive,
asymptotically stable equilibrium emerges, which is the endemic equilibrium.

Appendix B Asymptotic Approximations of the Endemic Equilibrium

The full derivations of the approximations (38) and (49) are presented in this appendix.

Near the Epidemic Threshold (ı ≈ ıc)

We begin with (31) and (32) and seek the linear approximation of P(x, y) = 0 at
(0, 1). We compute

∂P

∂x
= 2(1 − η)2

(
(1 − y − 2x)(x + y) − (x + y)2

)

− (1 − η) (δc(x + y)(3x + y) + 2λx + μx(3x + 2y)) + 3λσ x2, (B.1)

∂P

∂ y
= (1 − η)

(
−2δcx(x + y) − μx2 + (1 − η)(x + y)(2 − 5x − 3y)

)
. (B.2)

The slope of the linear approximation is then

−∂P/∂x

∂P/∂ y

∣∣∣∣
(0,1)

= −−2(1 − η)2 − δc(1 − η)

−(1 − η)2
= −2 − δc

1 − η
, (B.3)

and thus we approximate

y ≈ 1 +
(

−2 − δc

1 − η

)
x . (B.4)
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We now expand x as x = x0 + x1η + · · · and δc
1−η

= δc(1 + η + η2 + · · · ) as a
geometric series. Incorporating these with (B.4), we get the approximate expansion
of y as

y ≈ 1 −
(
2 + δc(1 + η + η2 + · · · )

)
(x0 + x1η + x2η

2 . . .)

= 1 − (2 + δc)x0 − (δcx0 + (2 + δc)x1)η

− (δcx0 + δcx1 + (2 + δc)x2)η
2 + · · · (B.5)

For easier bookkeeping, define yα to be the coefficient of ηα in (B.5). As well, the
following expansions will prove useful:

x2 = x20 + 2x0x1η + (x21 + 2x0x2)η
2 + · · · , (B.6)

y2 = y20 + 2y0y1η + (y21 + 2y0y2)η
2 + · · · , (B.7)

xy = x0y0 + (x0y1 + x1y0)η + (x0y2 + x1y1 + x2y0)η
2 + · · · (B.8)

Now, we apply (B.5)–(B.8) to (32) yielding

0 = (1 − 2η + η2)
(
x20 + 2x0y0 + y20 + 2(x0x1 + x0y1 + x1y0 + y0y1)η + · · ·

)

− (1 − η) (λy0 + μy0(x0 + y0) + (λy1 + μ(x0y1 + x1y0 + 2y0y1))η + · · · )
+ λσ (x0y0 + (x0y1 + x1y0)η + · · · ) . (B.9)

Equating the O(1) terms to zero, we have

0 = x20 + 2x0y0 + y20 − λy0 − μy0(x0 + y0) + λσ x0y0

= (1 − (1 + δc)x0)
2 − λ(1 − (2 + δc)x0)

− μ(1 − (2 + δc)x0)(1 − (1 − δc)x0)

+ λσ x0(1 − (2 + δc)x0)

= 1 − 2(1 + δc)x0 + x20 − λ + λ(2 + δc)x0 − μ(1 − (3 + 2δc)x0)

− μ(1 + δc)(2 + δc)x
2
0 + λσ x0 − λσ(2 + δc)x

2
0

= (1 − λ − μ) + (λσ + λ(2 + δc) + μ(3 + 2δc) − 2(1 + δc)) x0

+ (1 − μ(1 + δc)(2 + δc) − λσ(2 + δc)) x
2
0

= x0 [λσ + λ(2 + δc) + μ(3 + 2δc) − 2(1 + δc)

+ (1 − μ(1 + δc)(2 + δc) − λσ(2 + δc)) x0] . (B.10)

where we avail ourselves of (22) for the last equality. For the solution were interested,
we have x0 = 0 and y0 = 1.

We rewrite (B.9) as

0 =
(
1 − 2η + η2

)
(1 + (x1 + 2y1)η + · · · )
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− (1 − η) (λ + μ + (λy1 + μ(x1 + 2y1))η + · · · )
+ λσ (x1η + · · · ) . (B.11)

Equating the coefficients of the O(η) terms to zero gives

0 = −2 + 2x1 + 2y1 + (λ + μ) − (λy1 + μ(x1 + 2y1)) + λσ x1
= −2 + 2x1 − 2(2 + δc)x1 + 1 + λ(2 + δc)x1

− μ(x1 − 2(2 + δc)x1) + λσ x1
= −1 + x1 (2 − 2(2 + δc) + λ(2 + δc) − μ(1 − 2(2 + δc)) + λσ)

= −1 + x1 (λσ + μδc + μ − δc) . (B.12)

Thus,

x1 = 1

λσ + μδc + μ − δc
. (B.13)

Now that we have a first-order approximation of x, we obtain an first-order approxi-
mation of the endemic equilibrium:

w∗ = σ

1 − η
x∗

= σ
(
1 + η + η2 + · · ·

)
(x0 + x1η + · · · )

= σ x1η + O
(
η2

)
. (B.14)

and thus

w∗ ≈ σ

λσ + μδc + μ − δc
η + O

(
η2

)
. (B.15)

Far Away from the Epidemic Threshold (ı >> ıc)

We begin with (39) and (40) and seek the linear approximation of P(x, y) = 0 at
(φ, 0) where φ is given by (41). We compute

∂P

∂x
= −2ε2(x + y)(3x + 2y − 1)

− ε
(
δc

(
3x2 + 4xy + y2

)
+ 2λx + μx(3x + 2y)

)
+ 2λσ x2, (B.16)

∂P

∂ y
= ε

(
−2δcx(x + y) − μx2 − ε(x + y)(5x + 3y − 2)

)
. (B.17)

The slope of the linear approximation is then

−∂P/∂x

∂P/∂ y

∣∣∣∣
(φ,0)

= −2ε2φ(3φ − 1) − 3εδcφ2 + 3λφ + 3μφ2 + 2λσφ2

ε
(−2δcφ2 − μφ2 − εφ(5φ − 2)

)
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= −(ε2 − ελ)φ

φ(−εφ(2δc + μ) − ε2(5φ − 2))

= −(ε − λ)(2ε2 + ε(δc + μ) − λσ)

ε
(
ε2 − ε(μ + 5λ) + 2λσ − λ(2δc + μ)

) = ψ(ε). (B.18)

Thus, the linear approximation at (φ, 0) is

y ≈ ψ(x − φ). (B.19)

We now expand ψ and φ in powers of ε :

ψ(ε) = ψ−1ε
−1 + ψ0 + O(ε)

= λσ

2δc + μ − 2σ
ε−1 − 2δ2c + 3δcμ + σ(5λ + 2σ) + μ2

(2δc + μ − 2σ)2
+ O(ε), (B.20)

φ(ε) = φ1ε + φ2ε + O
(
ε3

)

= 1

σ
ε + δc + μ − σ

λσ 2 ε2 + O
(
ε3

)
. (B.21)

Now, we expand x as well and reorganize to express y as a power series in ε :

y ≈
(
ψ−1ε

−1 + ψ0 + · · ·
) ((

x0 + x1ε1 + x2ε
2 + · · ·

)
−

(
φ1ε + φ2ε

2 + · · ·
))

= ψ−1x0ε
−1 + (ψ−1x1 + ψ0x0 − ψ−1φ1)

+ (ψ−1x2 + ψ0x1 + ψ1x0 − (ψ−1φ2 + ψ0φ1)) ε + O
(
ε2

)
. (B.22)

For easier bookkeeping, we define yα to be the coefficient of εα in (B.22). Again, the
following expansions will prove useful:

x2 = x20 + 2x0x1ε +
(
x21 + 2x0x2

)
ε2 + · · · , (B.23)

y2 = y−1ε
−2 + 2y−1y0ε

−1 +
(
y20 + 2y−1y1

)
+ · · · , (B.24)

xy = x0y−1ε
−1 + (x0y0 + x1y−1) + (x0y1 + x1y0 + x2y−1)ε + · · · . (B.25)

We now apply (B.22)–(B.25) to (40) and multiply by ε, yielding

0 = ε3
(
y2−1ε

−2 + (2y−1y0 + 2x0y−1)ε
−1

+
(
x20 + x0y0 + x1y−1 + y20 + 2y−1y1

)

+2 (x0x1 + x0y1 + x1y0 + x2y−1 + y−1y2 + y0y1) ε + · · · )
− ε2

(
μy2−1ε

−2 + (λy−1 + μ(x0y−1 + 2y−1y0))ε
−1

+ λy0 + μ
(
x0y0 + x1y−1 + y20 + 2y−1y1

)
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+ (λy1 + μ (x0y1 + x1y0 + x2y−1 + 2y−1y2 + 2y0y1))ε

+
(
λy2 + μ

(
x0y2 + x1y1 + x2y0 + x3y−1 + y21 + 2y−1y3 + 2y0y2

))
ε2

+ · · · )
+ ελσ

(
x0y−1ε

−1 + (x0y0 + x1y−1) + (x0y1 + x1y0 + x2y−1)ε

+ (x0y2 + x1y1 + x2y0 + x3y−1)ε
2

+ (x0y3 + x1y2 + x2y1 + x3y0 + x4y−1)ε
3 . . .

)
. (B.26)

Equating the O(1) terms to zero, we have

0 = λσ x0y−1 − μy2−1 = x20 (λσψ−1 − μψ2−1), (B.27)

and thus x0 = y−1 = 0. Equating the O(ε) terms to zero, we have

0 = y2−1 + λy−1 + μ(x0y−1 + 2y−1y0) + λσ(x0y0 + x1y−1), (B.28)

which is seen to be trivially satisfied as a result of (B.27). Therefore, we look to the
O(ε2) terms to determine x1. Equating those coefficients to zero leads to

0 = 2y−1y0 + 2x0y−1 − λy0 − μ(x0y0 + x1y−1 + y20 + 2y−1y1)

+ λσ(x0y1 + x1y0 + x2y−1)

= −λy0 − μy20 + λσ x1y0
= −ψ−1(x1 − φ1)(λ − μψ−1φ1 + (μψ−1 − λσ)x1). (B.29)

Of the two solutions to this equation, we are interested in x1 = φ1 = 1/σ, which in
turn implies that y1 = 0.

Looking now for x2, we equate the O(ε3) coefficients to zero:

0 = x20 + x0y0 + x1y−1 + y20 + 2y−1y1
− λy1 − μ(x0y1 + x1y0 + x2y−1 + 2y−1y2 + 2y0y1)

+ (x0y2 + x1y1 + x2y0 + x3y−1). (B.30)

which is also trivially satisfied as all terms either cancel with another or contain a factor
of x0, y−1, or y0. Thus, we turn to O(ε4) to determine x2. Equating the coefficients
to zero gives

0 = 2(x0x1 + x0y1 + x1y0 + x2y−1 + y−1y2 + y0y1) − λy2

− μ
(
x0y2 + x1y1 + x2y0 + x3y−1 + y21 + 2y−1y3 + 2y0y2

)

+ λσ(x0y3 + x1y2 + x2y1 + x3y0 + x4y−1)

= y1(−μ(x1 + y1) + λσ x2). (B.31)
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The solution we are interested in for x2 comes from y1 = 0, which can be expressed
in terms of x2 as

0 = ψ−1(x2 − φ2), (B.32)

and thus

x2 = φ2 = δc + μ − σ

λσ 2 . (B.33)

At this point, we have a second-order expansion of the approximate equilibrium x∗ :

x∗ ≈ 1

σ
ε + δc + μ − σ

λσ 2 ε2 + O
(
ε3

)
. (B.34)

Now, with the relation w∗ = σ
ε
x∗, we conclude that

w∗ ≈ 1 + δc + μ − σ

λσ
ε + O

(
ε2

)
. (B.35)
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