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Abstract
Mosquito-borne diseases, such as dengue fever and Zika, have posed a serious threat to
human health around the world. Controlling vector mosquitoes is an effective method
to prevent these diseases. Spraying pesticides has been the main approach of reducing
mosquito population, but it is not a sustainable solution due to the growing insecticide
resistance. One promising complementarymethod is the release ofWolbachia-infected
mosquitoes into wild mosquito populations, which has been proven to be a novel
and environment-friendly way for mosquito control. In this paper, we incorporate
consideration of releasing infected sterile mosquitoes and spraying pesticides to aim
to reduce wild mosquito populations based on the population replacement model.
We present the estimations for the number of wild mosquitoes or infection density
in a normal environment and then discuss how to offset the effect of the heatwave,
which can cause infected mosquitoes to lose Wolbachia infection. Finally, we give
the waiting time to suppress wild mosquito population to a given threshold size by
numerical simulations.
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1 Introduction

Mosquito-borne diseases, such as dengue fever and Zika, have posed a serious threat
to the health of human beings around the world and bring a great financial burden to
the governments in the tropic and sub-tropic areas (Kyle and Harris 2008; Rasmussen
et al. 2016). Since there are no efficient vaccines available, controlling the vector pop-
ulation is the most effective measure of preventing mosquito-borne diseases. For a
long time, vector control methods have mainly relied on the extensive use of insec-
ticides. Although the utilization of insecticides reduces the mosquito population size
greatly, it causes environmental pollution and offers only a short-term solution due to
the mosquito resistance to insecticides (Kyle and Harris 2008; Ooi et al. 2006). An
innovative and environmentally friendly strategy for the control of mosquito-borne
diseases is to employ the maternally inherited endosymbiotic bacterium Wolbachia,
whose infection in Aedesmosquitoes can reduce their transmission potential to spread
viruses (Bian et al. 2010; Dutra et al. 2016). In addition,Wolbachia induces cytoplas-
mic incompatibility (CI) that causes early embryonic death whenWolbachia-infected
males mate with uninfected females (Laven 1956), resulting in the decrease of the
proportion of uninfected mosquitoes. Therefore, we can release infected mosquitoes
to invade and replace the wild population (population replacement) or suppress wild
mosquito population to reduce mosquito bites (population suppression). There has
been an increasing interest toward the spreading dynamics ofWolbachia; see (Farkas
and Hinow 2010; Hu et al. 2019; Keeling et al. 2003; Shi and Yu 2020; Yu and Zheng
2019) for the theoretical works on population replacement and (Huang et al. 2018,
2020; Yu 2018; Zhang et al. 2020) on population suppression. By releasing infected
mosquitoes twice a week, our team, led by Xi, eradicated more than 90% of Aedes
albopictus in an island in South Guangzhou (Zheng et al. 2019), which verifies the
feasibility of mosquito suppression in the field. On the other hand, it is reported in
Nature News that releasing Wolbachia-infected mosquitoes in Yogyakarta reduces
77% of dengue cases compared with areas that did not receive infected mosquitoes
(Callaway 2020). The regression model in Ryan et al. (2019) also showed a 96%
reduction in dengue incidence in Wolbachia-treated populations. These trials proved
that population replacement based on Wolbachia may greatly block the transmission
of mosquito-borne diseases.

Suggested by the empirical data (McMeniman et al. 2009; Walker et al. 2011; Yeap
et al. 2011), we give three basic assumptions: perfect maternal transmission, complete
CI, and equal sex determination. Motivated by the work in Yu (2018), let bI and
bU be the total numbers of offspring per unit of time, per infected and uninfected
mosquitoes, respectively. Let δI and δU denote the density-independent decay rates
of infected and uninfected mosquitoes, and dI and dU the density-dependent decay
rates of infected and uninfected mosquitoes, respectively. Denote by x(t) and y(t)
the numbers of infected and uninfected mosquitoes, respectively. Then we obtain the
following differential equation model to characterize the dynamics of infected and
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uninfected mosquitoes,

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI )x − dI x(x + y),

dy

dt
= bU y

y

x + y
− δU y − dU y(x + y).

(1)

The term y/(x+ y) represents is the probability of matingwith wildmosquitoes. Since
the infected or uninfected mosquitoes don’t die out naturally in the wild, we assume

bI > dI + δI , bU > dU + δU . (2)

In general, Wolbachia infections bring fitness cost to their hosts such as reduced
fecundity or longevity (McMeniman et al. 2009;Walker et al. 2011;Weeks et al. 2002).
Herewe consider these differences and ignore the diversity of density-dependent death
rates between infected and uninfected mosquitoes based on Zhang et al. (2015). Then
we assume that

bU ≥ bI , δI ≥ δU and dI = dU = d. (3)

Most of the existing literatures discuss population replacement or population repres-
sion separately. In this work, we consider subsequent release of infected sterile
mosquitoes and spraying insecticides based on the population replacement model
(1). Let R(t) be the release abundance of infected mosquitoes at time t . Let φI (t) and
φU (t) denote the excess death rates caused by pesticides for infected and uninfected
mosquitoes, respectively. Then we obtain the following model by combining the use
of pesticides and the release of infected mosquitoes:

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI − φI (t))x − dx(x + y),

dy

dt
= bU y

y

x + y + R(t)
− (δU + φU (t))y − dy(x + y).

(4)

Recently, scientists found that infected mosquitoes may lose Wolbachia at egg and
larvae stages due to the strike of heatwaves (Ross et al. 2020, 2017). This leakage
situation has been discussed in (Farkas and Hinow 2010; Keeling et al. 2003; Zheng
et al. 2018). Let μ denote the fraction of uninfected offspring produced by infected
mosquitoes. By reconsidering the numbers of new born offspring of both uninfected
and infected mosquitoes based on (4), we obtain an improved model in Sect. 3.

Some mosquito-borne diseases occur periodically and are triggered by imported
patients, for example the dengue fever in Guangzhou. It requires emergency mea-
sures when the dengue cases in the neighboring areas are large. The empirical data in
Guangzhou show that thewildmosquito populationmust be reduced to a low level such
that the Breteau index is less that 5 to prevent dengue fever (Duan et al. 2009). Then
we can estimate a safe threshold number S of wild mosquitoes as suppression goal.
In Hu et al. (2015), Hu et al. (2019), we discussed the sufficient conditions for Wol-
bachia fixation in deterministic or stochastic environment. In this study, we continue
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to investigate the detailed dynamical behavior of the wild mosquitoes and estimate the
time required (waiting time) to reduce wild mosquitoes to a level below S. With the
help of numerical simulations, we see that the combination of population replacement
and suppression can greatly improve the control speed of wild mosquitoes.

In this work, we start in Sect. 2 with an ordinary differential equation model for
mosquito population replacement.By introducing suppressionmeasures,we can accel-
erate the reduction speed of wild population and we present estimations of the wild
mosquito abundance or infection density defined by p(t) = x(t)/(x(t)+y(t)). In Sect.
3, we consider a special environmental condition in which the infected mosquitoes
may lay uninfected eggs due to the heatwaves. We discuss how to offset this negative
effect by releasing infected sterile mosquitoes or spraying pesticides. Finally, we dis-
cuss the waiting time to reduce wild mosquitoes to a level below a given threshold
in Sect. 4, and shows the requirement for release abundance or spraying density of
pesticides for given parameters and initial state.

2 Mosquito Control in Normal Environment

In this part, we introduce two control measures and their combination based
on population replacement model (1). According to the assumptions (2) and
(3), system (1) admits three equilibria (See Fig. 1): two locally stable equilibria

E1

(
0, bU−δU

d

)
, E2

(
bI−δI

d , 0
)

, and a saddle point

E3

(
(bU − δU − bI + δI )(bI − δI )

bUd
,
(δU + bI − δI )(bI − δI )

bUd

)

.

The dynamic behaviors of (1) are similar to the cases in (Farkas andHinow 2010; Keel-
ing et al. 2003; Zheng et al. 2014). E1 and E2 are local stable and stay on the y-axis and
x-axis, respectively. E3 is a saddle point in the first quadrant. There exists a separatrix
H : y = h(x) in the first quadrant below which the number of Wolbachia-infected
mosquitoes declines to zero and above which the Wolbachia-infected mosquitoes
spread to the whole population.

Define the infection density by p(t) = x(t)/(x(t) + y(t)). The infection density is
easier to monitor than the detailed wild mosquito abundance. Many works discussed
the existence of the threshold p∗ (Caspari and Watson 1959; Hu et al. 2015; Zheng
et al. 2014): the initial infection frequency p0 > p∗ leads toWolbachia fixation, while
p0 < p∗ leads toWolbachia extinction. It follows from (1) that

dp(t)

dt
= x ′y − xy′

(x + y)2

= xy

(x + y)2

(

bI − δI + δU − bU
y

x + y

)

= p(t)(1 − p(t))

(

bI − δI + δU − bU (1 − p)

)
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Fig. 1 The vector field direction of system (1). Let bI = 0.45, bU = 0.55, δI = 0.05, δU = 0.048,
d = 0.001. System (1) admits three equilibria: E1 and E2 are local stable, and they stay on the y-axis and
x-axis, respectively; E3 is a saddle point in the first quadrant

= bU p(t)(1 − p(t))

(

p(t) −
(

1 − bI − δI + δU

bU

))

. (5)

Clearly, p(t) increases in t and approaches 1 if 1 − bI−δI+δU
bU

< p(0) < 1, decreases

in t and approaches 0 if 0 < p(0) < 1− bI−δI+δU
bU

. Thus 1− bI−δI+δU
bU

is a threshold
value for the initial infection density above which the Wolbachia will invade to the
mosquito population successfully, and below whichWolbachia frequency declines to
zero. Note that p(t) = 1 − (bI − δI + δU )/bU implies y(t)/x(t) = (bI + δU −
δI )/(bU − bI + δI − δU ). Then

H : y = h(x) = bI + δU − δI

bU − bI + δI − δU
x (6)

is the separatrix which divides the first quadrant into two parts, the upper one is the
basin of attraction of E1 and the lower one is the basin of attraction of E2. Providing
that the initial release ensures successful invasion ofWolbachia-infected mosquitoes,
we focus on how to reduce wild mosquitoes to a safe level within a given time.

2.1 Repeated Release of Infected Sterile Mosquitoes.

Here we consider repeated release of infected sterile mosquitoes based on population
replacement model (1). Then (4) is reduced to

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI )x − dx(x + y),

dy

dt
= bU y

y

x + y + R(t)
− δU y − dy(x + y).

(7)
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We first consider the ratio of released mosquito abundance to wild mosquito abun-
dance. Define the release ratio

K(t) := R(t)/(x(t) + y(t)).

K(t) = 0 corresponding to the case R(t) = 0. As it is difficult to fix the release ratio
to a constant, we let K1 and K2 be the lower and upper bound of K(t), respectively,
i.e.,

K1 < K(t) < K2. (8)

Since y
x+y+R(t) = 1

1+K(t) · y
x+y , we rewrite (7) as

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI )x − dx(x + y),

dy

dt
= bU y · 1

1 + K(t)
· y

x + y
− δU y − dy(x + y).

(9)

Define

b̄U = bU/(1 + K2) and b̂U = bU/(1 + K1). (10)

It follows from (8) that b̄U < bU/(1+K(t)) < b̂U . We next compare system (9) with
the following two systems:

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI )x − dx(x + y),

dy

dt
= b̄U y

y

x + y
− δU y − dy(x + y).

(11)

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI )x − dx(x + y),

dy

dt
= b̂U y

y

x + y
− δU y − dy(x + y).

(12)

Theorem 1 Let (x0, y0) be an initial state with which the solution of (1) approaches
E2. Assume b̄U < b̂U . Let (X(t),Y (t)), (X1(t),Y1(t)) and (X2(t),Y2(t)) denote the
solutions of (7), (11) and (12) initiating from (x0, y0), respectively. Then Y (t) → 0
as t → ∞ and Y1(t) ≤ Y (t) ≤ Y2(t) for all t ≥ 0.

Proof Let p(t), p1(t) and p2(t) denote the infection densities of systems (7), (11) and
(12) at the initial state (x0, y0), respectively. We first show that p1(t) ≤ p(t) ≤ p2(t).
By (5) we have

dp1(t)

dt
= p1(t)(1 − p1(t))

(
bI − δI + δU − b̄U (1 − p1)

)
,

dp2(t)

dt
= p2(t)(1 − p2(t))

(
bI − δI + δU − b̂U (1 − p2)

)
.
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Fig. 2 The declines of wild mosquito abundance under different release strategies. Let bI = 0.45, bU =
0.55, δI = 0.05, δU = 0.048, d = 0.001. Set the initial state (x0, y0) = (500, 800). Panel a shows the
number of wild mosquitoes changes with time t in different release ratios. Panel b shows the number of
wild mosquitoes decreases with time t in different constant release amounts (Color figure online)

Then both p1(t) and p2(t) increase in t from the initial infection density x0/(x0+ y0).
Since b̄U < b̂U , we find that dp1(t)

dt |(x0,y0) >
dp2(t)
dt |(x0,y0), and there exists t1 > 0

such that p1(t) > p2(t) for 0 ≤ t ≤ t1. If p1(t) < p2(t) for some t > t1, we
set t2 = inf{t |p1(t) < p2(t)}. Then p1(t2) = p2(t2) and dp1(t)

dt ≤ dp2(t)
dt at the

intersection. However, by the expressions of dp1
dt and dp2

dt we get that dp1(t)
dt >

dp2(t)
dt

at any point in the first quadrant, which gives a contradiction. Thus p1(t) > p2(t) for
all t > 0. By using the same idea to compare p(t) with p1(t) and p2(t), respectively,
we can derive that p1(t) ≥ p(t) ≥ p2(t) for t > 0.

Nowwe prove Y1(t) ≤ Y2(t) for t ≥ 0. By (11) and (12) we see that dY1(t)dt <
dY2(t)
dt

at the initial state (x0, y0). Then there exists t3 such that Y1(t) < Y2(t) for 0 ≤ t ≤ t3.
If Y1(t) > Y2(t) for some t > t3, we set t4 = inf{t |Y1(t) > Y2(t)}. Then Y1(t4) =
Y2(t4) and

dY1(t)
dt >

dY2(t)
dt at the intersection. It follows from p1(t4) ≥ p2(t4) and

Y1(t4) = Y2(t4) that X1(t4) ≥ X2(t4). Then by the expressions of
dY1
dt and dY2

dt in (11)

and (12), we derive dY1(t4)
dt <

dY2(t4)
dt , which contradicts the assumption Y1(t) > Y2(t)

for some t > t3. Thus Y1(t) < Y2(t). By comparing Y (t) with Y1(t) and Y2(t),
respectively, we obtain that Y1(t) ≤ Y (t) ≤ Y2(t) for all t ≥ 0. Since Y1(t) → 0 and
Y2(t) → 0 as t → ∞, we have Y (t) → 0 as t → ∞ �	

Figure2a shows that if the release ratio 2 < K(t) < 4, then the curve for wild
mosquito abundance lies in the very narrowarea sandwichedby the red andblue curves.
Another common release strategy is to release infected mosquitoes by a compensation
policy such that the loss of infected mosquitoes is compensated by new releasing, then
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we assume R(t) = C is a constant function for t > 0 Yu (2018). In this case, we have

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI )x − dx(x + y),

dy

dt
= bU y

y

x + y + C
− δU y − dy(x + y).

(13)

The discussions in Theorem 1 are applicable for system (13). Figure2B shows the
number of wild mosquitoes decreases with t under different constant release amount.
If 200 < C < 400, the curve of wild mosquito abundance lies in the narrow area
sandwiched by the blue and red curves.

2.2 Spray Pesticides

Here we consider the use of pesticides based on population replacement model (1).
Then model (4) is reduced to

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI − φI (t))x − dx(x + y),

dy

dt
= bU y

y

x + y
− (δU + φU (t))y − dy(x + y).

(14)

It is natural to assume thatφI (t) andφU (t) increase or decrease simultaneously.Define

a(t) = bI − δI − φI (t) + δU + φU (t). (15)

Then the infection density can be expressed by

dp(t)

dt
= p(t)(1 − p(t)) (a(t) − bU (1 − p)) . (16)

By (16), we obtain that p(t) increases in t if the initial infection density p0 = x0
x0+y0

satisfies

min{a(t)} > bU (1 − p0), or equivalently, p0 > 1 − min{a(t)}
bU

. (17)

Assume that φU (t) − φI (t) takes the maximum value and the minimum value at time
t∗1 and t∗2 , respectively. Then

max{a(t)} = a(t∗1 ) and min{a(t)} = a(t∗2 ). (18)

Define

φ̂U = φU (t∗1 ), φ̄U = φU (t∗2 ), φ̂I = φI (t
∗
1 ) and φ̄I = φI (t

∗
2 ). (19)

123



Mosquito Control Based on Pesticides... Page 9 of 24 58

Construct the following systems

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI − φ̄I )x − dx(x + y),

dy

dt
= bU y

y

x + y
− (δU + φ̄U )y − dy(x + y).

(20)

⎧
⎪⎨

⎪⎩

dx

dt
= (bI − δI − φ̂I )x − dx(x + y),

dy

dt
= bU y

y

x + y
− (δU + φ̂U )y − dy(x + y).

(21)

Remark 2.1 Suppose that (17) hold. Let p(t), p1(t) and p2(t) denote the infection
densities of (7), (20) and (21) at the initial state (x0, y0), respectively. As spraying
pesticides only affects the term a(t) in (16), the density infection of system (7) with
the measure of spraying pesticides satisfies p1(t) < p(t) < p2(t) for all t ≥ 0.

From (5), we see that p(t) is not affected by the use of insecticides if φI (t) ≡ φU (t).

Remark 2.2 Suppose that (17) hold and φI (t) ≡ φU (t). Redefine φ̄I = min{φI (t)},
φ̄U = min{φU (t)} in (20) and φ̂I = max{φI (t)}, φ̂U = max{φU (t)} in (21). Let
(X(t),Y (t)), (X1(t),Y1(t)) and (X2(t),Y2(t)) denote the solutions of (7), (20) and
(21) initiating from (x0, y0), respectively. Then we have Y (t) → 0 as t → ∞ and
Y1(t) ≤ Y (t) ≤ Y2(t) for all t ≥ 0 by the same method in Theorem 1.

When φI (t) = φU (t) = φ(t), we use an example to show the estimations of φ(t) and
its effect on mosquito control. Assume that pesticides are sprayed every 7 days and
the residual effects last for T1 days with 3 < T1 < 4. Assume that φ(t) is sandwiched
by y = y1(t) and y = y2(t) with

y1 =
{− 0.3

4 (t − 4), nT < t < nT + 4,
0, nT + 4 < t < (n + 1)T ,

y2 =
{− 0.2

3 (t − 3), nT < t < nT + 3,
0, nT + 3 < t < (n + 1)T ,

n = 0, 1, 2, · · · (See Fig. 3A). Let bI = 0.45, bU = 0.55, δI = 0.05, δU = 0.048,
d = 0.001 and T = 7. The actual curve of wild mosquito abundance under the
measure of spraying pesticides is sandwiched by the blue and red curves in Fig. 3B,
which represent the cases that φ(t) = y1(t) and φ(t) = y1(t), respectively.

Remark 2.3 When φI (t) �≡ φU (t), the relation among Y (t), Y1(t) and Y2(t) is uncer-
tain. Although the use of pesticides increases the death rate of wild mosquitoes, it may
slow down the decline of the wild mosquito population if the damage of insecticides
to infected mosquitoes is greater than that to uninfected mosquitoes (See Fig. 4).

2.3 Combine the Release of Infected Sterile Mosquitoes and Spraying Pesticides.

In this part, we discuss model (4). Recalling the definitions of a(t) and bU (t) in (10),
(15) and (18), we have

dp(t)

dt
= p(t)(1 − p(t)) (a(t) − bU (t)(1 − p)) , (22)
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Fig. 3 Estimations of φ(t) and its effect on mosquito control. a Let T = 7. The black curve shows that
φ(t) decreases with time after each spraying. The blue segments and red segments are the upper and lower
bounds of φ(t), respectively. b Let (x0, y0) = (500, 1200) and the parameters be the same as in Fig. 2. The
black curve shows the number of wild mosquitoes decreases without spraying pesticides, and the blue and
red curves show the numbers of wild mosquitoes decrease with time when φ(t) = y1(t) and φ(t) = y2(t),
respectively. The actual curve of wild mosquito abundance is sandwiched by the blue curve and red curve
(Color figure online)
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Fig. 4 Pesticides may slow down the decline of the wild mosquito abundance. Let bI = 0.45, bU = 0.55,
δI = 0.05, δU = 0.048, d = 0.001 and (x0, y0) = (200, 100). The black curve shows the number of
wild mosquitoes changes with time t without spraying pesticides. If φI = φU = 0.1, the blue curve shows
wild mosquitoes decreases faster than the previous case. If we keep φU = 0.1 and increase φI to 0.2, the
green curve shows the abundance of wild mosquitoes decreases faster than no-pesticide case at first, but it
decreases slower after a while. If we continue to increase φI to 0.37 without changing φU , the red curve
shows the wild mosquitoes cannot be eradicated (Color figure online)
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where ā = a(t∗1 ) ≤ a(t) ≤ a(t∗2 ) = â and b̄U ≤ bU (t) ≤ b̂U . Construct the following
systems

d p̄(t)

dt
= p̄(t)(1 − p̄(t))

(
ā − b̂U (1 − p̄(t))

)
,

d p̂(t)

dt
= p̂(t)(1 − p̂(t))

(
â − b̄U (1 − p̂(t))

)
.

(23)

Remark 2.4 Let the initial state (x0, y0) satisfies p(0) = x0/(x0 + y0) > 1− ā/b̂. By
the similar comparison method in Theorem 1 we can obtain p̄(t) ≤ p(t) ≤ p̂(t).

Nowwe consider the case that to release infectedmosquitoes and to spray pesticides
separately, and the release ratio and spraying density are fixed. Let t0, t1, t2, · · · be
the switch times between the two stages. Then the durations in all stages are [t0, t1),
[t1, t2), [t2, t3), · · · . In viewof the discussion inRemark2.3,we assumeφI (t) < φU (t).
Redefine b̂U = bU and â = bI − δI − φI (t) + δU + φU (t) in spraying stage, and
b̄U = bU/(1 + K(t)) and ā = bI − δI + δU in releasing stage. Then ā < â and
b̄U < b̂U . Construct systems

dp1(t)

dt
= p1(t)(1 − p1(t))

(
â − b̂U (1 − p1(t))

)
, (24)

dp2(t)

dt
= p2(t)(1 − p2(t))

(
ā − b̄U (1 − p2(t))

)
. (25)

Let p(t) denote theWolbachia infection density of systems (22). Define

β1 = 1 − â/b̂U , β2 = 1 − ā/b̄U , p∗
1 = min{β1, β2}, p∗

2 = max{β1, β2}.(26)

Then we have the following estimations for p(t).

Theorem 2 Suppose that p(0) > p∗
2 , b̄U < b̂U and ā < â. Let system (22) switches

between systems (24) and (25) and the staying times in the two systems are T1 and T2,
respectively. If T1 and T2 satisfy 0 < T̄1 < T1 < T̂1 < ∞ and 0 < T̄2 < T2 < T̂2 <

∞, then we have the following result:

(1) If p(0) ≥ β3 = 1− (â − ā)/(b̂U − b̄U ), then p2(t) ≤ p(t) ≤ p1(t) for all t > 0.
(2) If 0 < p(0) < β3, then there exists a t∗ > 0 such that p1(t) < p2(t) when

0 < t < t∗, and p1(t) > p2(t) when t > t∗. Denote by D1 the area enclosed by
p1(t) and p2(t) for t > t∗. Then p = p(t) enters D1 for sufficiently large t and
stays in this area thereafter.

Proof (1) Since p1(0) = p2(0) = p(0) > p∗
2 , all the three functions p, p1, and p2

increase in t > 0. Define

g0(p) = â − b̂U + b̂U p − (ā − b̄U + b̄U p). (27)
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It can be easily verified that

p > β3 if and only if g0(p) > 0. (28)

Hence at t = 0, it holds that

p′
1(0) − p′

2(0) = p(0)(1 − p(0))g0(p(0)) > 0. (29)

Therefore, p1(t) > p2(t) for small t > 0. Indeed, this relation remains valid for all
t > 0; otherwise, there would be some τ > 0 such that p1(t) > p2(t) for 0 < t < τ ,
but p1(τ ) = p2(τ ). Hence p′

1(τ ) ≤ p′
2(τ ), which contradicts the fact that (29) is still

valid if p(0) is replaced with p1(τ ). It follows that p1(t) > p2(t) for all t > 0. Define

r(t) = ln
p(t)

1 − p(t)
. (30)

To confirm the relation of p(t) with p1(t) and p2(t), we denote by r1(t) and r2(t) the
corresponding forms of r(t) defined in (30) where p is replaced by p1 or p2. Due to
the monotonic dependance of r(t) on p(t), p(t) ≤ p1(t) is equivalent to r(t) ≤ r1(t).
Suppose for contradiction that r(t) > r1(t) at some t . Then

t̂ = inf{t |r(t) > r1(t)} (31)

is finite. We claim that p(t) is governed by system (25) at time t̂ . If this is not true,
then there exists an ε > 0 such that the system stays in System (24) for t ∈ [t̂, t̂ + ε),
and therefore, r(t) = r1(t) in this interval, which contradicts the definition of t̂ . We
now show that the system does not stay in System (25) at time t̂ either. If it does, then
by (31) and r1(0) = r(0) we find that r1(t̂) = r(t̂) and so the right-hand derivative of
r(t) must not be less than that of r1(t) at t̂ , i.e., r ′+(t̂) ≥ r ′

1+(t̂). In addition, by taking
derivatives of r1(t) and r2(t), we find

r ′
1(t) = â − b̂U + b̂U p1(t) and r ′

2(t) = ā − b̄U + b̄U p2(t).

It then follows that

r ′
1+(t̂) − r ′+(t̂) = â − b̂U + b̂U p1(t̂) − (ā − b̄U + b̄U p1(t̂)) = g0(t̂) > 0,

which gives a contradiction. Thus

r(t) ≤ r1(t) and p(t) ≤ p1(t)

for all t > 0. The same reasoning shows that p(t) ≥ p2(t).
(2) Define

s(t) = r1(t) − r2(t). (32)
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Clearly, s(0) = 0. Since p(0) < β3, we have

s′(0) = â − b̂U + b̂U p(0) − (ā − b̄U + b̄U p(0)) = g0(0) < 0.

Hence s(t) < 0, or equivalently, p1(t) < p2(t), for all small t > 0. In addition, since
both p1(t) and p2(t) approach 1 as t → ∞, we have

lim
t→∞ s′(t) = lim

t→∞
(
â − b̂U + b̂U p1(t) − (ā − b̄U + b̄U p2(t))

)
= â − ā > 0.

Thus s(t) → ∞ as t → ∞, and p1(t) > p2(t) for all t sufficiently large. It follows
that p1(t) and p2(t) must coincide at some t > 0. Let t∗ > 0 be the least time at
which p1(t) = p2(t), or equivalently, s(t) = 0. Then

s′(t∗) = â − b̂U + b̂U p1(t
∗) − (ā − b̄U + b̄U p1(t

∗)) = g0(p1(t
∗)) ≥ 0.

By (28), we see that p1(t∗) = p2(t∗) ≥ β3 > p∗
2 . As both p1 and p2 increase for

t > 0, we have p1(t) > β3 and p2(t) > β3 for t > t∗. Hence p1 and p2 cannot meet
at another time after t = t∗ since at any possible intersection point it follows from
(28) that s′ > 0. Note that p1(t∗) = p2(t∗) ≥ max{β1, β2, β3}. By using the same
argument in the proof of Part (1), we can show that if p2(t1) ≤ p(t1) ≤ p1(t1) at
any t1 > t∗, then this ordering will be maintained for all t > t1. In other words, if
p = p(t) enters the area D1 at any t > t∗, then it will stay in this area thereafter. We
now show that p = p(t) enters the area D1 when t is sufficiently large. Without loss
of generality, we assume that

p(t∗) < p1(t
∗) = p2(t

∗).

Define

s1(t) = r(t) − r2(t). (33)

Then s1(t∗) < 0. It remains to show that s1 becomes positive at some t > t∗. Due to
the monotonicity of g0(p) in p, and g0(p) = 0 when p = β3, there is an ε > 0 such
that g0(p) > ε when p > (1 + β3)/2. Let

β4 = max

{
1 + β3

2
, 1 − ε

2b̄U
, 1 − εT̄1

4T̂2b̄U

}

.

Then β3 < β4 < 1. Since p(t) increases and approaches 1 as t → ∞, there is a
unique t4 > 0 such that min{p(t4), p1(t4), p2(t4)} = β4.

If the system stays in System (24) at t > t4, then

p2(t) − p(t) < 1 −
(

1 − ε

2b̄U

)

= ε

2b̄U
,
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and therefore

s′
1(t) = â − b̂U + b̂U p − (ā − b̄U + b̄U p2)

> â − b̂U + b̂U p −
(

ā − b̄U + b̄U

(

p + ε

2b̄U

))

= g0(p) − ε

2
>

ε

2
. (34)

If the system stays in System (25) at t > t4, then

s′
1(t) = ā − b̄U + b̄U p − (ā − b̄U + b̄U p2) > −b̄U

εT̄1

4T̂2b̄U
= −εT̄1

4T̂2
. (35)

Suppose that [t∗0 , t∗0 + T1) is a spraying stage and [t∗0 + T1, t∗0 + T1 + T2) is a releasing
stage with t∗0 > t4. Note that

s1(t
∗
0 + T1 + T2) = s1(t

∗
0 + T1 + T2) − s1(t

∗
0 ) + s1(t

∗
0 )

≥ ε

2
T1 − εT̄1

4T̂2
T2 + s1(t

∗
0 )

≥ ε

4
T1 + s1(t

∗
0 ).

It is then clear that s1(t) → ∞ as t → ∞, and so s1(t) becomes positive for large t .
The proof is completed. �	

3 Mosquito Control Under the Effect of Heatwave

In high-temperature condition, mosquitoes may lose Wolbachia according to (Ross
et al. 2020, 2017). Let μ (0 < μ < 1) denote the imperfect transmission rate. By
making minor changes in (1), we obtain the system

⎧
⎪⎨

⎪⎩

dx

dt
= bI (1 − μ)x − δI x − dx(x + y),

dy

dt
= bIμx + bU y

y

x + y
− δU y − dy(x + y).

(36)

If bI (1 − μ) − δI − d ≤ 0, the infected mosquitoes will die out naturally and the
mosquito population replacement is going to fail. So we assume

bI (1 − μ) − δI − d > 0 (37)
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in the following discussion. Clearly, E1 = (0, (bU − δU )/d) is an infection-free
equilibrium and its local stability is determined by the Jacobian of (36),

DF(x, y) =
(
bI (1 − μ) − δI − 2dx − dy −dx

bIμ − bU y2

(x+y)2
− dy bU y(2x+y)

(x+y)2
− δU − dx − 2dy

)

. (38)

At the infection-free equilibrium point, we have

DF

(

0,
bU − δU

d

)

=
(
bI (1 − μ) − δI − bU + δU 0

bIμ − 2bU + δU δU − bU

)

. (39)

This matrix has the eigenvalues (bI − bU ) + (δU − δI ) − bIμ and δU − bU . From (2)
and (3), we see that both eigenvalues are negative, and so E1 is locally asymptotically
stable. To obtain the positive equilibrium in the first quadrant, we solve equations

{
bI (1 − μ)x − δI x − dx(x + y) = 0,

bIμx + bU y
y

x + y
− δU y − dy(x + y) = 0.

The first equation gives

x + y = (bI (1 − μ) − δI )/d := κ1. (40)

Substituting (40) into the second equation yields

Ay2 − By + C = 0, (41)

where

A = bU/κ1, B = δU + dκ1 + bIμ and C = bIμκ1. (42)

The discriminant of (41)

	 = B2 − 4AC = (bIμ + dκ1 + δU )2 − 4bI bUμ

= (bIμ + bI (1 − μ) − δI + δU )2 − 4bI bUμ = (bI − δI + δU )2 − 4bI bUμ.

Define

μ∗ = (bI − δI + δU )2/4bI bU . (43)

It follows from (2) and (3) that (bI − δI + δU )2 < 4bI bU , implying 0 < μ∗ < 1.
If we regard 	 as a function of μ, then 	(μ) decreases in μ and 	(μ∗) = 0. When
μ > μ∗, there is no positive equilibrium in the first quadrant and E1 is the only stable
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Fig. 5 The vector field direction of system (36). Let bI = 0.45, μ = 0.11, bU = 0.55, δI = 0.05,
δU = 0.048,d = 0.001. Panel a shows that system (36) has equilibria E1, E2 and E3.Comparedwith system
(1), E2 becomes an interior equilibrium. Let μ increase to 0.25 without changing the other parameters.
Panel b shows that system (36) only admits an equilibria E1

equilibrium. In this case Wolbachia frequency declines to zero. When μ < μ∗, (41)
has the solutions

y1 = B − √
	

2A
and y2 = B + √

	

2A
, (44)

and both the solutions are nonnegative since 	 < B2. By (40), we obtain the two
equilibria

(x1, y1) =
(

κ1 − B − √
	

2A
,
B − √

	

2A

)

, (x2, y2) =
(

κ1 − B + √
	

2A
,
B + √

	

2A

)

.

(45)

It follows from

y2 = bI − δI + δU + √
(bI − δI + δU )2 − 4bI bUμ

2 bU
κ1

= bI (1 − μ) − δI

2bUd

(
bI − δI + δU +

√
(bI − δI + δU )2 − 4bI bUμ

)
(46)

that y2 decreases in μ. Then E2(x1, y1) and E3(x2, y2) stay in the first quadrant when
μ < μ∗. As in Farkas and Hinow (2010), we give numerical examples to show the
vector field (See Fig. 5).

To offset the negative effect of heatwave on mosquito control, we employ the
measures of releasing infected sterile mosquitoes and spraying pesticides to control
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wild mosquitoes as in the previous Section. By taking into account the first measure,
we have

⎧
⎪⎨

⎪⎩

dx

dt
= bI (1 − μ)x − δI x − dx(x + y),

dy

dt
= bIμx + bU y

y

x + y + R(t)
− δU y − dy(x + y).

(47)

Theorem 3 Assume that (37) holds and R(t) ≡ R. Then the size of wild mosquito
population can be suppressed to a level below S from any positive initial states if the
release abundance satisfies the following three conditions:

(i) R >
4CbU
B2 − κ1;

(i i) R > min{ bU κ21
κ1B−C − κ1,

2bU κ1
B − κ1};

(i i i) R >
bUS2

BS−C − κ1 or R <
2SbU
B − κ1,

where κ1 = (bI (1 − μ) − δI )/d, B and C are defined in (42).

Proof Similar to the discussion of system (36), the interior equilibrium (x, y) of system
(47) is the solution to equations x + y = κ1 and

AR y
2 − By + C = 0, (48)

where AR = bU
κ1+R , B = δU + dκ1 + bIμ and C = bIμκ1. The discriminant of (48)

is

	R = B2 − 4ARC = (δU + dκ1 + bIμ)2 − 4
bU

κ1 + R
bIμκ1. (49)

It is easy to verify that 	R increases in R, and 	R > 0 when condition (i) holds. In
this case, (48) has two solutions

y1 = B − √
	R

2AR
and y2 = B + √

	R

2AR
,

and both the solutions are nonnegative. From the facts

y1 = B − √
B2 − 4ARC

2AR
= 2C

B + √
B2 − 4ARC

= 2bIμκ1

δU + dκ1 + bIμ +
√

(δU + dκ1 + bIμ)2 − 4 bU
κ1+R bIμκ1

and

y2 = B + √
B2 − 4ARC

2AR
=

(δU + dκ1 + bIμ) +
√

(δU + dκ1 + bIμ)2 − 4 bU
κ1+R bIμκ1

2bU
κ1+R
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we see that y1 → C
B = bIμκ1

δU+dκ1+bIμ
< κ1 and y2 → ∞ when R → ∞. Then (x1, y1)

stays in the first quadrant and (x2, y2) stays in the second quadrant when y2 > κ1,
which is equivalent to condition (i i). In this case (x1, y1) is globally stable and the
wild mosquitoes can be suppressed to a level below S if y1 < S, which is equivalent
to condition (i i i). �	

Now we consider the measure of spraying pesticides and build the system

⎧
⎪⎨

⎪⎩

dx

dt
= bI (1 − μ)x − (δI + φI )x − dx(x + y),

dy

dt
= bIμx + bU y

y

x + y
− (δU + φU )y − dy(x + y).

(50)

Upon rescaling δI = δI +φI and δU = δU +φU , this model is the same as system (36).
Here we only discuss the case φI = φU and the discussion for φI �= φU is similar. μ∗
defined in (43) is applicable here as φI − φU = 0. If bI (1− μ) − δI − φI − d < 0 or
μ > μ∗, the infected mosquitoes will die out. Spraying pesticides may suppress wild
mosquitoes to a low level, but it takes little use of infected mosquitoes and requires a
great deal of pesticides. We next consider the condition

μ < μ∗ and bI (1 − μ) − δI − φ − d > 0 (51)

Define

A = dbU
bI (1 − μ) − δI − φ

, B = δU + bI − δI , C = bIμ

d
(bI (1 − μ) − δI − φ).

Theorem 4 Let φ be the excess death rate of both infected and uninfected mosquitoes
caused by pesticides. Suppose that (51) holds. Then the size of wild mosquito popu-
lation can be suppressed to a level below S if y(0)/x(0) < y2/x2 and

φ > bI (1 − μ) − δI − max

{
2dbUS

B − √
B2 − 4bI bUμ

,
2dSbU

B

}

where

x2 = bI (1 − μ) − δI − φ

d
− B + √

B2 − 4AC

2A
, y2 = B + √

B2 − 4AC

2A
,

Proof When μ < μ∗, system (50) admits two interior equilibria E2(x1, y1) and
E3(x2, y2) given by (45) if δI and δU are replaced by δI + φ and δU + φ, respec-
tively. As shown in Fig. 5A, E2(x1, y1) is locally stable while E3(x2, y2) is an unstable
saddle point. Then the wild mosquitoes can be suppressed to the below S if the fol-
lowing two conditions hold: (i) E2 stays below y = S; (i i) the initial state lies in
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the basin of attraction of E2. It follows from (44) that condition (i) is equivalent to
B−√

B2−4AC
2A < S, which implies

φ > min

{

bI (1 − μ) − δI − 2dbUS
B − √

B2 − 4bI bUμ
, bI (1 − μ) − δI − 2dSbU

B

}

= bI (1 − μ) − δI − max

{
2dbUS

B − √
B2 − 4bI bUμ

,
2dSbU

B

}

Let p(t) denote the infection density in system (50). Then

dp(t)

dt
= x ′y − xy′

(x + y)2

= xy

(x + y)2

(

bI (1 − μ) − δI − bIμ
x

y
− bU

y

x + y
+ δU

)

= xy

(x + y)2

(

(bI (1 − μ) − δI + δU ) − (bIμ
x

y
+ bU

1

x/y + 1
)

)

(52)

Define

f (r) = bIμr + bU
r + 1

.

Since f ′(r) = bIμ − bU/(1 + r)2, we see that f ′(r) increases in r when r > 0 and

f ′(r∗) = 0 with r∗ =
√

bU
bIμ

− 1. Then f (r) decreases in r when 0 ≤ r ≤ r∗ and

increases in r when r ≥ r∗. In addition, f (0) = bU and f (r) → ∞when r → ∞. On
the other hand, E2(x1, y1) and E3(x2, y2) are two interior equilibria, so r1 = x1/y1
and r2 = x2/y2 are two roots to equation

(bI (1 − μ) − δI + δU ) − f (r) = 0.

It follows from (52) that p(t)decreases in t if x(t)/y(t) < x2/y2 or x(t)/y(t) > x1/y1,
and increases in t if x2/y2 < x(t)/y(t) < x1/y1. Thus y = y2

x2
x is the separatrix of

the basins of attraction of E2 and E3, implying that condition (i i) holds if the initial
state (x(0), y(0)) satisfies y(0)/x(0) < y2/x2. �	

Finally, we consider applying the above two measures together to suppress wild
mosquitoes under the effect of heatwave. The integrated model is given by

⎧
⎪⎨

⎪⎩

dx

dt
= bI (1 − μ)x − (δI + φ)x − dx(x + y),

dy

dt
= bIμx + bU y

y

x + y + R(t)
− (δU + φ)y − dy(x + y).

(53)

By combining Theorem 3 and 4, we obtain the following result.
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Remark 3.1 Let φ be the excess death rate of both infected and uninfected mosquitoes
caused by pesticides and R(t) ≡ R. Suppose that (51) holds. Then the size of wild
mosquito population can be suppressed to a level below the safe threshold S if the
release abundance and pesticide effect satisfy

(i) B2 − 4ARC > 0, (i i)
B + √

B2 − 4ARC

2AR
> κ1 and (i i i)

B − √
B2 − 4ARC

2AR
< S,

where κ1 = bI (1 − μ) − δI − φ

d
, AR = bU

κ1 + R
, B = δU + bI − δI and C = bIμκ1.

The proof follows from Theorem 3 and 4 directly.

4 Discussion

Some mosquito-borne diseases, such as dengue fever, occur periodically and are
triggered by imported patients in some sub-tropical areas. It is essential to take emer-
gency measures when the dengue cases are large. As there is no vaccine or effective
medication available, eliminating the transmission vector has been the most effec-
tive method. The traditional measure uses pesticides, which kills mosquitoes quickly
but cannot suppress mosquitoes for a long time due to insecticide resistance. One
promising complementary method is to use incompatible insect technique (IIT) by
releasing Wolbachia-infected mosquitoes into wild mosquito populations, which has
been proven to be a novel and environmental-friendly way for mosquito control. Many
interestingmodels of difference or differential equations have been developed to inves-
tigate the dynamic behavior of wild mosquito populations based on IIT, see (Hu et al.
2019; Huang et al. 2018; Keeling et al. 2003; Shi and Yu 2020; Yu and Zheng 2019;
Zhang et al. 2020; Zheng et al. 2014) and the references therein. The radiation-based
sterile insect technique (SIT) uses radiation to sterilize male mosquitoes, leading irra-
diated males that are unable to produce offspring after mating with wild females.
Mathematical models for studying the suppression effects on SIT have provided appli-
cable guidance (Cai et al. 2014; Li and Yuan 2015; Yu 2020; Yu and Li 2019, 2020).
Several interesting mathematical models have been developed to deal with mosquito
control via a combination of Wolbachia and insecticides (Li and Liu 2020; Qu et al.
2018; Zheng et al. 2018). In this work, we introduced population suppression mea-
sures, releasing infected sterile mosquitoes and spraying pesticides, into population
replacement model to discuss the mosquito control.

In Sect. 2, we provided the estimations of wild mosquito abundance or infection
density in normal environment under different control measures. Mosquito control
is always affected by environmental conditions. In Hu et al. (2019), we considered
the case that female mosquitoes lay diapause eggs in cold season in a sub-tropical
area. In this work, we consider the opposite extreme case that infected mosquitoes
may lose Wolbachia in a high-temperature season (Ross et al. 2020, 2017). Under
the effect of heatwave, the offspring of infected females lose Wolbachia infection
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Fig. 6 The waiting times to suppress wild mosquito abundance to a level below S. Let bI = 0.45, bU =
0.55, δI = 0.05, δU = 0.048, d = 0.001 and (x0, y0) = (200, 800). Panel a shows the waiting times to
suppress wild mosquito abundance to a level below S under different releasing amounts, and panel b shows
the waiting times under different pesticide effects (Color figure online)
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Fig. 7 The waiting times to suppress wild mosquito abundance to a level below S. Let the parameters and
initial state be the same as in Fig. 6 and set μ = 0.1. Panel a shows the waiting times to suppress wild
mosquito abundance to a level below S under different releasing amounts, and panel b shows the waiting
times under different pesticide effects (Color figure online)

with positive leakage rate μ. We discussed how to offset the effect of the heatwave
in sect. 3. For example, we consider the case where bI = 0.45, bU = 0.55, δI =
0.05, δU = 0.048, d = 0.001 and the initial state (x0, y0) = (200, 800). The wild
mosquitoes can be replaced by infected mosquitoes totally without control measures
in model (1). However, by releasing infectedmosquitoes or spraying pesticides we can
greatly increase the replacement speed. Figure6 shows the waiting times to suppress
wild mosquito abundance to a level below S with the measure of release infected
mosquitoes (Figure6A) or spraying pesticides (Figure6B).
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Let the parameters be the same as in Fig. 6 and set μ = 0.1. Then infected
mosquitoes will die out in competing with wild uninfected mosquitoes in model (36).
In this case, the extra measures must be taken to ensure the successful suppression of
wildmosquitoes. Figure7 shows thewaiting time to suppresswildmosquito abundance
to a level below S under the measures of releasing infected mosquitoes (Fig. 7A) or
spraying pesticides (Fig. 7B).With the help of Figs. 6 and 7, we can choose the strategy
to suppress wild mosquitoes based on the actual conditions and requirement.

Recently, by releasingWolbachia-infected mosquitoes twice a week for three years
(Zheng et al. 2019), our team shows that combining incompatible and sterile insect
techniques (IIT-SIT) enables near elimination of the populations of Aedes albopictus
in Shazai island, Guangzhou. To prevent bites from the female mosquitoes mixed in
the released males, measures should be taken to reduce or even eliminate the number
of females in each release. For the case that all the subsequent released mosquitoes are
male, we can consider sex structure in (4) by changing R(t) to 2R(t), and the related
discussions are nearly the same.We believe that the combination of spraying pesticides
and releasingWolbachia-infected mosquitoes can play an important role in mosquito
control. In this work, we studied the mosquito replacement in a normal environmental
condition and high temperature condition with heatwaves, respectively. However, the
actual habitat conditions are changeable and difficult to be described by two simple
stable conditions. Furthermore, the mosquito population can be also affected by many
other factors, such as migration (Schmidt and Barton 2017) and urbanization process
(Li and Kamara 2014). The specific effects of insecticides are also complicated. In the
future work, we will explore more information of mosquito growth and make good
use of the advantages of the two measures to formulate mathematical models to study
mosquito control.
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