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Abstract
We consider a coupled system of delay differential equations for a single-species
tick population dynamics, assuming feeding adult ticks are distributed by their hosts
in a spatially heterogeneous environment consisting of two patches where egg ticks
produced will complete their life cycles with different, normal and diapause, devel-
opmental delays. We show that the mobility of adult tick host and the diapause
developmental delay combined drive a synchronized oscillation in the total tick pop-
ulations around a uniquely defined positive equilibrium, and this synchronization
makes the oscillatory patterns much simpler in comparison with multi-peak oscil-
lations exhibited in the absence of host mobility.

Keywords Patchy models · Delay equations · Synchronized oscillations · Diapause ·
Tick population dynamics · Tick-borne disease dynamics

Mathematics Subject Classification MSC 92D25 · MSC 35D30

1 Introduction

Tick-borne diseases, including tick-borne encephalitis, Lyme disease, anaplasmosis
and Crimean–Congo hemorrhagic fever, have emerged as a global public concern
since the beginning of the century (Dantas-Torres et al. 2012; Dantas-Torres 2015).
In parallel to progress made in the fields of diagnostic and therapeutic technologies
(Bologheanu et al. 2020; Serretiello et al. 2020) and in vaccine design (De la Fuente
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et al. 2017), mathematical models and analyses have also been advanced, using differ-
ential equations to explore the long-term behaviors of tick-borne pathogen spread in
the vector–host interaction (see Wu et al. 2013; Rosà and Pugliese 2007; Zhang and
Wu 2020 and references therein).

Tick-borne diseases are mainly transmitted through the bite of ticks. Ticks, second
only to mosquitoes for vectoring human, have two families: Ixodidae (hard ticks) and
Argasidae (soft ticks) (Hoskins 1991). Approximately 650 Ixodidae species have been
reported worldwide (Boulanger et al. 2019). Ticks in the family of Ixodidae distribute
widely in natural ecosystems and take major responsibilities for transmitting a variety
of tick-borne diseases. Most ticks go through four life stages: egg, larva, nymph and
adult. Thedevelopment in eachpost-egg stage involves a process of questing, attaching,
feeding and engorging (Marquardt 2005), with female adult ticks laying thousands
of eggs and dying shortly to complete the life cycle. Due to global warming, tick
populations expand their spatial habitats and temporal activity season into winter
months (Sagurova et al. 2019). For a better estimation of the tick-borne disease spread,
understanding the tick population dynamics is in priority.

An important mechanism for potentially complex tick population dynamics is the
developmental heterogeneity due to diapause, an important physiological process for
ticks to respond to variable environmental conditions, such as changes in temperature,
photoperiod, rainfall and host availability. Tick diapause was described for the first
time by Beinarowitch (1907). There are two basic types of tick diapause: behavioral
and developmental diapause, which delay host-questing following the transformation
ofmolt and suspenddevelopment fromone stage to the next, respectively (Dobson et al.
2001; Ogden et al. 2004). Korotkov (2015) estimated the duration of tick development
cycle that can reach3 ∼ 6years. Shu et al. (2020) proposed adelaydifferential equation
for tick population dynamicswithmultiple delays and discussed globalHopf branches.
Hoch et al. (2010) assumed that all engorged ticks experience diapause and develop
until the second spring of next year and investigated the dynamics of tick population
with temperature changes. Despite these efforts, quantifying impact of diapause on
tick population dynamics remains a challenge partially because the diapause is linked
to the experience of ticks in different habitats and environments during their entire life
cycle.

Natural habitats have been increasingly separated into many smaller patches by
human activities, such as road construction, mining, deforestation and aggressive agri-
cultural cultivation. Although it is unlikely for ticks tomove over a long distance, hosts
carrying feeding ticks can freely move among different patches. Since the blood meal
of hard ticks such as Ixodes ricinus lasts several days (Gray 1981), ticks can be car-
ried over by their hosts and move from one patch to another during the period of
blood feeding. Hence, it is highly possible that the patch where a tick quested and
attached to a host is different from the patch where the tick drops after blood feed-
ing and engorgement, and hence, the development delays are highly relevant to the
patches and their ambient conditions. This calls for patch model formulation of the
tick population dynamics.

Some earlier studies have proposed multi-patch population dynamics models, see
Arino et al. (2019) and references therein. Guiver et al. (2017) gave an explanation
of the effects of dispersal-induced coupling on population persistence across discrete
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patches. Wei and Wang (2020) described a single-species population model between
two patches (the natural reserved and naturally environmental) and revealed the sen-
sitivity of fluctuation intensity and migration rate on the population persistence and
extinction. Smith et al. (2014) analyzed the long-term behavior of a structured two-
patch metapopulation model and used the perturbation theory to discover an Allee
effect for a two-patch model .

Here, taking into consideration of diapause development during some physiological
stages of ticks in some specific patches the ticks stay in their life cycle, we propose a
tick population dynamics patch model with delay. We incorporate both normal devel-
opmental delay and diapause delay in two different environments/patches between
which ticks move because of the mobility of respective hosts. We show how tick pop-
ulations are redistributed between questing and engorgement phases by the mobility
patterns of the hosts, and we model the heterogeneity of tick development delays due
to their distribution between these two patches, those with normal development and
those with diapause delay. For such a coupled system of delay differential equations
with multiple delays, we establish the existence and uniqueness of a positive equilib-
rium and obtain conditions for the local stability. We then conduct some numerical
simulations to see how the host mobility and diapause development delay combined
synchronize the coupled system to a synchronized mode of oscillation, and how this
simplifies the pattern of oscillations in comparison with the situations when the two
patches are not connected by host mobility.

2 TheModel

2.1 Spatial Dynamics of Mobile Hosts

Consider a tick species for which the hosts of feeding ticks in different stages move
between two geological patches, dispersing the engorged ticks among these patches
characterized by differential development delays between consecutive stages.

For a given host population under consideration, we denote the number of respec-
tive host individuals in each of these two locations by HR(t) and HD(t) at time
t , respectively, where we use sup-index R for patch facilitating regular development
delay and sup-index D for patch facilitating diapause development delay of the ticks in
a given developmental stage (larval, nymphal and adult). Ignoring all other population
dynamics, the spatial dynamics of the hosts is given by

dH R(t)

dt
= mh2H

D(t) − mh1H
R(t),

dHD(t)

dt
= mh1H

R(t) − mh2H
D(t),

with mh1 and mh2 for the mobility rates of the hosts from patch R to patch D, and
from patch D to patch R, respectively. It follows that
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(
HR(t)
HD(t)

)
= eTmh (t−s)

(
HR(s)
HD(s)

)
, Tmh =

(−mh1 mh2
mh1 −mh2

)
.

Based on themethod for calculating basic solutionmatrix of linear ordinary differential
equations (Sina and Ali 2003), we have

eTmh (t−s) = 1

mh1 + mh2

[ (
mh2 mh2
mh1 mh1

)
+ e−(mh1+mh2)(t−s)

(
mh1 −mh2

−mh1 mh2

) ]
,

which describes the redistribution dynamics of host individuals (and hence the respec-
tive engorged ticks) as follows:

HR(t) = 1

mh1 + mh2
[mh2(H

R(s) + HD(s)) + e−(mh1+mh2)(t−s)(mh1H
R(s)

− mh2H
D(s))],

HD(t) = 1

mh1 + mh2
[mh1(H

R(s) + HD(s)) − e−(mh1+mh2)(t−s)(mh1H
R(s)

− mh2H
D(s))].

2.2 Tick Population Dynamics with Feeding Tick’s Mobility Driven by Hosts

We now consider a tick species in a region with two distinct patches where the envi-
ronmental conditions are suitable for a regular development delay (normally one year)
in patch R and a diapause delay (normally two years) in patch D for ticks in each
development stage from larva to nymph, and from nymph to adult. We ignore the
mobility of ticks during their engorged and questing activity stages, but ticks feeding
on hosts move along the hosts which we assume move between the two patches with
appropriate mobility rates ml , mn and ma that will further be stratified in terms of the
movement from patch R to D or from patch D to R. The flowchart of the evolution of
tick population between the two patches with mobility driven by the host migration is
given in Fig. 1.

Let τ R
el and τ D

el (τ R
el < τ D

el ) be the durations which eggs hatch into questing larval
ticks and then become feeding larval ticks for the first blood meal on the patch R and
patch D, respectively. ρR

ef l and ρD
ef l are corresponding probabilities of survivability

from eggs to feeding larval ticks in the patchR and patchD, respectively. The dynamics
of feeding larval ticks takes the following form

(
LR

f (t)
LD

f (t)

)
=

(
ρR
ef l 0
0 ρD

ef l

) (
ER(t − τ R

el )

ED(t − τ D
el )

)
. (1)

Since blood feeding usually takes several days, larval ticks are able to be carried over
by their hosts during this period. Let τ f l be the feeding time of larval ticks and ml be
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Fig. 1 A schematic illustration of tick population dynamics with mobility driven by host migration between
patch R and patch D: female producing adult ticks after breeding on a host drop to the ground to lay eggs,
and then, eggs hatch into the larval ticks. Larvae (Lq ) start to quest their first host for an initial blood
meal. After feeding, larval ticks (L f ) become engorged larval ticks (Le) and molt into nymphs. Nymphs
experience the same procedure, questing (Nq ), feeding (N f ) and engorged (Ne), for a second blood meal,
and eventually molt into adult ticks. The adult ticks (Aq ) then hunt a larger host, such as deer, where they are
able to feed (A f ) and become engorged (Ae), and finally drop from host for the reproduction (Ap). There
are three mobility patterns, characterized by the randommovements of host for feeding larvae, nymphs and
adult ticks with migration rates ml , mn and ma , respectively

the migration probability of host population between the two patches, then we have

(
LR
e (t)

LD
e (t)

)
= eTml ·τ f l

(
LR

f (t − τ f l)

LD
f (t − τ f l)

)
, Tml =

(−ml1 ml2
ml1 −ml2

)
.

After the engorged larval ticks fall to the ground, they develop into nymphs with the
survival probabilities ρR

ef n and ρD
ef n , respectively. The corresponding developmental

delays are τ R
en and τ D

en (τ R
en < τ D

en) on each patch. The evolution can be described as
follows

(
N R

f (t)
ND

f (t)

)
=

(
ρR
ef n 0
0 ρD

ef n

) (
LR
e (t − τ R

en)

LD
e (t − τ D

en)

)
.

Similarly, let mn and ma be the migration probabilities of host population which can
carry feeding nymphal ticks and feeding adult ticks and redistribute them in patch R
and patch D when feeding ticks become engorged and drop off from the hosts and
τ f n and τ f a be the feeding durations of nymphal ticks and adult ticks, respectively.
Let ρR

ef a and ρD
ef a be survival probabilities of adult ticks developing from engorged

nymphs and τ R
ea and τ D

ea be the corresponding development time delays. Then, we
yield

(
N R
e (t)

ND
e (t)

)
= eTmn ·τ f n

(
N R

f (t − τ f n)

ND
f (t − τ f n)

)
,

(
AR

f (t)
AD

f (t)

)
=

(
ρR
ef a 0
0 ρD

ef a

)(
N R
e (t − τ R

ea)

ND
e (t − τ D

ea)

)
,
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and

(
AR
e (t)

AD
e (t)

)
= eTma ·τ f a

(
AR

f (t − τ f a)

AD
f (t − τ f a)

)
,

where Tmn =
(−mn1 mn2

mn1 −mn2

)
and Tma =

(−ma1 ma2
ma1 −ma2

)
.

Following engorgement, adult ticks leave from host and start to be ready for their
reproduction. Here, let ρR

epa and ρD
epa be development rates from engorged adults to

egg-producing adults, and the corresponding development time delays are τ R
epa and

τ D
epa , respectively. We describe this process by

(
AR
p (t)

AD
p (t)

)
=

(
ρR
epa 0
0 ρD

epa

)(
AR
e (t − τ R

epa)

AD
e (t − τ D

epa)

)
. (2)

Finally, these egg-producing adult ticks will reproduce by laying eggs and die shortly
after that. The dynamics of eggs can be written as

d

dt

(
ER(t)
ED(t)

)
=

(
f R(AR

p (t))
f D(AD

p (t))

)
−

(
μRE R(t)
μDED(t)

)
, (3)

where f R and f D are reproduction functions on patch R and patch D and both use
with Ricker functions, that is,

f R(x) = pRxe−sR x , x ≥ 0,

f D(x) = pDxe−sDx , x ≥ 0,

where pR and pD are maximal numbers of eggs that an egg-producing female adult
tick can lay per unit time, sR and sD represent the strengths of density dependence,
and μR and μD are exit rates of eggs including mortality rate and developmental rate
from egg to larval stage.

From Eqs. (1)–(2), we have

(
AR
p (t)

AD
p (t)

)
= Q

(
ER(t − τ R)

ED(t − τ D)

)
,

where Q =
(
q11 q12
q21 q22

)
=

(
ρR
epa 0
0 ρD

epa

)
·eTma τ fa ·

(
ρR
ef a 0
0 ρD

ef a

)
·eTmn τ fn ·

(
ρR
ef n 0
0 ρD

ef n

)
·

eTml τ fl ·
(

ρR
ef l 0
0 ρD

ef l

)
,

τ R = τ R
epa + τ f a + τ R

ea + τ f n + τ R
en + τ f l + τ R

el ,

τ D = τ D
epa + τ f a + τ D

ea + τ f n + τ D
en + τ f l + τ D

el ,
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and then, system (3) can be rewritten in following form

(
Ė R(t)
Ė D(t)

)
=

(
f R(q11ER(t − τ R) + q12ED(t − τ D)) − μRE R(t)
f D(q21ER(t − τ R) + q22ED(t − τ D)) − μDED(t)

)
. (4)

3 The Case of Distinct Mobility of Hosts for Feeding Adult Ticks

An important case is when regular development takes place in patch R, while diapause
development occurs in patch D. Let the corresponding time delays be τ R and τ D for
the entire life cycle, respectively. This naturally leads to our standing assumption in
this study: τ D = 2τ R . Using τ = τ R , we have τ D = 2τ . Since the survival probability
in patch D is smaller comparing with that in patch R, we write

ρD
ef l = κlρ

R
ef l , ρD

ef n = κnρ
R
ef n, ρD

ef a = κaρ
R
ef a, ρD

epa = κpρ
R
epa, (5)

with κl , κn, κa, κp ∈ (0, 1). We assume two patches do not have any distinction for
the birth characteristics (the maximum reproduction numbers of eggs, the exit rates
from the egg stage and the strengths of density dependence), leading to

μR = μD, pR = pD, sR = sD. (6)

We do not focus on the case of insignificant mobilities of hosts for larval and nymphal
ticks, but assume there is a preference of hosts for feeding adult ticks moving from
patch R to patch D. Therefore, we have

ml1 = ml2 = 0, mn1 = mn2 = 0,

ma1 = m̄a(1 + δ), ma2 = m̄a(1 − δ),

where m̄a is the average mobility rate of the hosts for feeding adult ticks between the
two patches and 0 < δ < 1. We can now drop all the subscripts of the parameters in
(5) and (6), and we can also calculate all entries in matrix Q as follows:

q11 = ρ

(
1

2
− δ

2
+ 1 + δ

2
e−Δ

)
,

q12 = kaknklρ

(
1

2
− δ

2
− 1 − δ

2
e−Δ

)
,

q21 = kpρ

(
1

2
+ δ

2
− 1 + δ

2
e−Δ

)
,

q22 = kpkaknklρ

(
1

2
+ δ

2
+ 1 − δ

2
e−Δ

)
,

where

ρ = ρR
epaρ

R
ef aρ

R
ef nρ

R
ef l , Δ = 2m̄aτ f a .
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3.1 Equilibrium Analyses

The equilibria of model (4) are determined by the following nonlinear equations

p(q11E
R + q12E

D)e−s(q11ER+q12ED) = μER,

p(q21E
R + q22E

D)e−s(q21ER+q22ED) = μED.
(7)

Clearly, model (4) always has a trivial equilibrium (0, 0).
Let

y1 = q11E
R + q12E

D,

y2 = q21E
R + q22E

D,
(8)

namely,

ER = u11y1 + u12y2,

ED = u21y1 + u22y2,
(9)

where

u11 = 1 + δ + (1 − δ)e−Δ

2ρe−Δ
,

u12 = − (1 − δ)(1 − e−Δ)

2kpρe−Δ
,

u21 = − (1 + δ)(1 − e−Δ)

2kaknklρe−Δ
,

u22 = 1 − δ + (1 + δ)e−Δ

2kpkaknklρe−Δ
.

Substituting (8) into equilibrium equation (7), we have

py1e
−sy1 = μ(u11y1 + u12y2),

py2e
−sy2 = μ(u21y1 + u22y2),

(10)

namely

y1 = u−1
21 (pμ−1y2e

−sy2 − u22y2) = J (y2),

y2 = u−1
12 (pμ−1y1e

−sy1 − u11y1) = R(y1).
(11)

From the expression of the function R(y1), we can get

R′(y1) = μ−1u−1
12 p

[
g(y1) − μu11

p

]
,

123



Mobility and Diapause Combined Induce Simple Synchronized Oscillations Page 9 of 20 61

Fig. 2 A schematic illustration
of the function g(y1)

and

R′′(y1) = −μ−1u−1
12 pse−sy1 [2 − sy1],

where g(y1) = e−sy1(1 − sy1). Figure 2 gives a schematic diagram of the function
g(y1). The maximum value of g(y1) is 1 at y1 = 0 and minimum −e−2 at y1 = 2/s.
g(y1) is a decreasing function of y1 ∈ [0, 2/s] and then increasing in the interval
(2/s,+∞) with the limiting value lim

y1→+∞ g(y1) = 0.

Thus, we obtain the following important properties of R(y1):

(i) if
μu11
p

> 1, then g(y1) − μu11
p

< 0. From the expression of (9), it is clear that

u12 < 0, so R′(y1) > 0 for any y1 > 0, i.e., R(y1) is a monotone increasing

function in (0,+∞). Note that R(0) = 0, lim
y1→+∞ R′(y1) = −u−1

12 u11 and
s

2
is

an inflection point. The description of R(y1) is displayed in Fig. 3a.

(ii) if 0 <
μu11
p

≤ 1, there exists only one zero solution ỹ1(< 1/s) such that

R′(ỹ1) = 0. Clearly, R(0) = 0 and lim
y1→+∞ R′(y1) = −u−1

12 u11.

Table 1describes properties of the curves of R(y1), R′(y1) and R′′(y1).Accordingly,
we have:

� if 0 <
μu11
p

< e−2, then R(
2

s
) < 0 (see Fig. 3b);

� if e−2 ≤ μu11
p

≤ 1, then R(
2

s
) ≥ 0 (see Fig. 3c).

Similarly, for J (y2), we get

J ′(y2) = μ−1u−1
21 p

[
g(y2) − μu22

p

]
,

J ′′(y2) = −μ−1u−1
21 pse−sy2 [2 − sy2].

123



61 Page 10 of 20 X. Zhang, J. Wu

Table 1 Properties of R(y1), R′(y1) and R′′(y1)

y1 (0, ỹ1) ỹ1 (ỹ1,
2

s
)

2

s
(
2

s
, +∞)

R(y1) decreasing & minimum increasing & inflection increasing &

concave upward value concave upward point concave downward

R′(y1) − 0 + + +
R′′(y1) + + + 0 −

Fig. 3 A schematic illustration of the function R(y1)

Therefore,

J ′(+∞) = −u−1
21 u22 = 1 − δ + (1 + δ)e−Δ

kp(1 + δ)(1 − e−Δ)
.

Comparing with

R′(+∞) = −u−1
12 u11 = kp

1 + δ + (1 − δ)e−Δ

(1 − δ)(1 − e−Δ)
,

it follows

R′(+∞)J ′(+∞) > 1.

Thus, there exists a unique positive equilibrium (y∗
1 , y∗

2 ) for (10). Based on the analysis
for J (y2) and R(y1),wehave the following conclusions about the locationof the unique
positive equilibrium (y∗

1 , y
∗
2 ):

(iii) if min{μu11
p

,
μu22
p

} > 1, Fig. 4a plots the graphs of J (y2) and R(y1). if 0 <

max{μu11
p

,
μu22
p

} ≤ 1, Fig. 4b describes the schematic diagram of J (y2) and

R(y1).
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Fig. 4 The scenarios of relative locations and interactions of the functions R(y1) and J (y2)

(iv) if 0 < min{μu11
p

,
μu22
p

} < 1 < max{μu11
p

,
μu22
p

}, without loss of generality,
we may assume that u22 < u11. Figure 4c describes the schematic diagram of
J (y2) and R(y1).

In summary, we have the following result:

Theorem 1 There exists a unique positive equilibrium (ER∗ , ED∗ ) for model (4).

3.2 Stability

The linearized system (4) at the tick-free equilibrium P0 = (0, 0) is given by

(
Ė R(t)
Ė D(t)

)
=

(
pq11ER(t − τ) + pq12ED(t − 2τ) − μER(t)
pq21ER(t − τ) + pq22ED(t − 2τ) − μED(t)

)
. (12)

This gives a linear system of delay differential equations with positive feedback as the
coefficient matrix

p

(
q11 q12
q21 q22

)
> 0.

Therefore, the stability of the zero solution of (12) is equivalent to the stability of the
zero solution for the corresponding linear ordinary differential equation

(
Ė R(t)
Ė D(t)

)
=

(
pq11ER(t) + pq12ED(t) − μER(t)
pq21ER(t) + pq22ED(t) − μED(t)

)
. (13)

The characteristic equation of model (13) at the zero equilibrium is

(λ + μ)2 − pρζ(λ + μ) + kpkaknkl p
2ρ2e−Δ = 0,

where

ζ = 1

2
[(1 − δ + (1 + δ)e−Δ) + kpkaknkl(1 + δ + (1 − δ)e−Δ)].
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Moreover, we have

ζ 2 − 4kpkaknkle
−Δ

= 1

4
[(1 − δ + (1 + δ)e−Δ)2 + k2pk

2
ak

2
nk

2
l (1 + δ + (1 − δ)e−Δ)2]

+ 2kpkaknkl

(
1 − δ2

4
+ 1 + δ2

2
e−Δ + 1 − δ2

4
e−2Δ

)

− 4kpkaknkle
−Δ

≥ 1

4
[(1 − δ + (1 + δ)e−Δ) − kpkaknkl(1 + δ + (1 − δ)e−Δ)]2 ≥ 0.

Then, the two eigenvalues of (13) are

λ = −μ + 1

2
pρζ ± 1

2
pρ

√
ζ 2 − 4kpkaknkle−Δ.

Clearly, the two eigenvalues are both negative if the following condition is satisfied

μ2 − pρζμ + p2ρ2kpkaknkle
−Δ > 0. (14)

Thus, we have established the following result:

Theorem 2 Assume (14) holds. Then the trivial equilibrium (0, 0) of model (4) is
locally asymptotically stable.

In what follows, we consider the stability of the positive equilibrium P∗ of model
(4). Translating the positive equilibrium into the origin through introducing x1(t) =
ER(t) − ER∗ and x2(t) = ED(t) − ED∗ in model (4) and linearizing it, we have

(
ẋ1(t)
ẋ2(t)

)
=

(
γ1q11 γ1q12
γ2q21 γ2q22

) (
x1(t − τ)

x2(t − 2τ)

)
− μ

(
x1(t)
x2(t)

)
, (15)

where

γ1 = pe−s(q11ER∗ +q12ED∗ ) − sμER∗ , γ2 = pe−s(q21ER∗ +q22ED∗ ) − sμED∗ .

We can further compute

γ1 = μER∗
q11ER∗ + q12ED∗

− sμER∗ =
(

1

q11ER∗ + q12ED∗
− s

)
μER∗ ,

γ2 = μER∗
q21ER∗ + q22ED∗

− sμED∗ =
(

1

q21ER∗ + q22ED∗
− s

)
μED∗ .
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It is clear that (15) is a positive feedback system if the following condition is satisfied

⎧⎪⎨
⎪⎩
q11ER∗ + q12ED∗ <

1

s
,

q21ER∗ + q22ED∗ <
1

s
.

(16)

From (8) and (11), the condition (16) can be guaranteed if

J (s−1) > s−1, R(s−1) > s−1,

which are equivalent to

⎧⎪⎪⎨
⎪⎪⎩

p

μe
<

kp((1 + δ)eΔ + 1 − δ) − (1 − δ)(eΔ − 1)

2kpρ
,

p

μe
<

(1 − δ)eΔ + (1 + δ) − kp(1 + δ)(eΔ − 1)

2kpkaknklρ
.

(17)

Then, the stability of the positive equilibrium (ER∗ , ED∗ ) can be determined by the
stability of the zero solution to the following linear system of ODE equations:

(
ẋ1(t)
ẋ2(t)

)
=

(
γ1q11 γ1q12
γ2q21 γ2q22

)(
x1(t)
x2(t)

)
− μ

(
x1(t)
x2(t)

)
. (18)

The characteristic equation of (18) is

(λ − γ1q11 + μ)(λ − γ2q22 + μ) − γ1γ2q12q21 = 0.

Its roots are

λ1,2 = −μ + γ1q11 + γ2q22
2

±
√

(γ1q11 − γ2q22)2

4
+ γ1γ2q12q21.

Since (17) implies γ1 and γ2 are both positive, the stability of the positive equilibrium
(ER∗ , ED∗ ) depends on whether

− μ + γ1q11 + γ2q22
2

+
√

(γ1q11 − γ2q22)2

4
+ γ1γ2q12q21 < 0. (19)

(19) can be rewritten as

μ2 + γ1γ2(q11q22 − q12q21) − μ(γ1q11 + γ2q22) > 0,
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which is equivalent to

1 − ρ

[(
1

q11ER∗ + q12ED∗
− s

)
ER∗

(
1 − δ

2
+ 1 + δ

2
e−Δ

)

+
(

1

q21ER∗ + q22ED∗
− s

)
kpkaknkl E

D∗
(
1 + δ

2
+ 1 − δ

2
e−Δ

)]

+
(

1

q11ER∗ + q12ED∗
− s

) (
1

q21ER∗ + q22ED∗
− s

)
kpkaknkl E

R∗ ED∗ ρ2e−Δ > 0.

(20)

It is easy to see that (20) is satisfied if the following condition holds

1 − ρ[(q11ER∗ + q12E
D∗ − s)ER∗ + (q21E

R∗ + q22E
D∗ − s)kpkaknkl E

D∗ ] > 0.(21)

Therefore, we have

Theorem 3 Assume that (17)and (21)hold. Then, the positive equilibrium P∗(ER∗ , ED∗ )

is locally stable.

We now consider the case when the condition of a positive feedback system is not
satisfied. The characterization equation of (15) is

(λ + μ − γ1q11e
−λτ )(λ + μ − γ2q22e

−2λτ ) − γ1γ2q12q21e
−3λτ = 0. (22)

From the analysis above, we can see that when τ = 0, the positive equilibrium P∗ is
locally asymptotically stable if (21) is satisfied. In the absence of a positive feedback
at the non-trivial equilibrium, Hopf bifurcation can take place when the characteristic
equation has a pair of purely imaginary zeros. We now discuss whether (22) has a pair
of purely imaginary roots.

Assume that a purely imaginary solution with the form λ = iω where ω > 0 exists
in Eq. (22). Substituting the purely imaginary solution into Eq. (22) and separating
the real and imaginary parts, we can obtain
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ω2 + μ2 − [μ(γ1q11 cosωτ + γ2q22 cos 2ωτ) + ω(γ1q11 sinωτ + γ2q22 sin 2ωτ)]
+ γ1γ2(q11q22 − q12q21) cos 3ωτ = 0,

2ωμ − [ω(γ1q11 cosωτ + γ2q22 cos 2ωτ) − μ(γ1q11 sinωτ + γ2q22 sin 2ωτ)]
− γ1γ2(q11q22 − q12q21) sin 3ωτ = 0.

(23)

Define

f (ω) = μ(γ1q11 cosωτ + γ2q22 cos 2ωτ) + ω(γ1q11 sinωτ + γ2q22 sin 2ωτ),

g(ω) = ω(γ1q11 cosωτ + γ2q22 cos 2ωτ) − μ(γ1q11 sinωτ + γ2q22 sin 2ωτ),

then Eq. (23) can be rewritten into the following form

{ − ω2 + μ2 − f (ω) = −γ1γ2(q11q22 − q12q21) cos 3ωτ,

2ωμ − g(ω) = γ1γ2(q
2
11 − q212) sin 3ωτ.

(24)
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Since γ1 and γ2 are both functions of ER∗ and ED∗ , it is difficult to solve the transcen-
dental equation (24) in closed forms. However, given our proof of the unique positive
equilibrium, all relevant coefficients are specifically given once model parameters are
given. Therefore, we can develop a continuation procedure to locate the minimal value
of τ , for a given mobility δ ∈ [0, 1], where (24) has a solution ω > 0. In particular,
since m̄a = 0 corresponds to the situation when two patches are isolated from each
other, there exists a critical value τ R∗ of delay τ such that the population starts to oscil-
late in patch R if τ > τ R∗ , and there exists a critical value τ D∗ of the delay such that
the population starts to oscillate in patch D if τ > τ D∗ in patch D and if τ > τ ∗

D (see
Zhang and Wu (2019) for these critical values in closed forms). Normally, τ R∗ < τ D∗ .
We will concentrate the case where there is a positive mobility m̄a and the delay is
within [τ R∗ , τ D∗ ], so tick population in patch R alone will converge to the positive
equilibrium, while tick populations in patch D exhibit oscillatory patterns as a local
Hopf bifurcation of periodic solutions takes place near the positive equilibrium.

When m̄a starts to increase from 0, two patches are connected by host mobility
and system (31) becomes a transcendental function involving sin(nωτ) and cos(nωτ)

with n = 1, 2, 3. We look for solutions of (ω, τ) as a continuous function from
(ωD∗ , τ D∗ ) with δ as the varying parameter. However, a combination of the lack of a
close form of the equilibrium as a function of the parameters including the delay and
the mobility rate, the model as a system rather than a scalar equation and the existence
ofmultiple delaysmakes theHopf bifurcation analysis so complicated that the analytic
calculation for the critical value and the Lyapunov coefficient of a Hopf bifurcation of
periodic solution is not feasible. We will design some numerical simulations in next
section based on the estimated critical values of delay andmobility from a continuation
procedure.

4 Numerical Simulation

In this study, we consider the homogeneous situation, so seasonal variations are incor-
porated by taking the unit time as one year to normalize the parameter values taken
from some published literature. We refer to the monograph Zhang and Wu (2020) for
the original sources of the parameter values:

ρR
epa = 0.495; ρR

e f a = 0.435; ρR
e f n = 0.44; ρR

e f l = 0.28;
pR = pD = 2000; sR = sD = 0.01;μR = μD = 1; δ = 0.5; τ f a = 7/365.

We also fix all proportions of development rates from one stage to the next at the same
value κ , i.e.,

κ = κp = κa = κn = κl = 0.55.

Without mobility, themodel (4) has a positive equilibrium E∗(14970, 65090). Con-
sidering the delay τ as the bifurcation parameter, we can calculate the critical value
τ ∗ = 0.69. From Fig. 5a, we observe that the egg density in regular patch ER(t) is
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Fig. 5 Solutions of egg density for the model (4) without host mobility between the two patches R and
D, where blue line denotes the egg density in regular patch and the red line represents the one in diapause
patch: a τ = 0.55; b τ = 0.7; c τ = 4; d τ = 10 (Color figure online)

locally asymptotically stable when τ = 0.55. The qualitative behavior of egg density
ER(t) in model (4) undergoes periodic solution, dual-peak and more complex oscil-
lation with increasing delay τ , which is illustrated in Fig. 5: (b) τ = 0.7; (c) τ = 4;
(d) τ = 10. However, the solutions of egg density in the diapause patch ED(t) do
not change with different delays and remain stable. Note that when we increase the
proportion κ into 0.7, Fig. 6 compared with Fig. 5c and d shows that oscillation of
egg density in the diapause patch starts to emerge. This shows that lower survival
probability can keep egg dynamics in diapause patch to be stable.

When the host movement is considered between patch R and patch D, and using the
mobility m̄a = 146 as an illustration, we show that feeding adult ticks will be carried
over between the two patches and the positive equilibrium becomes (37,550, 11,620).
Therefore, first of all, the host mobility sustains the persistence of tick population in
the both patches, though the regular patch is the preferred habitat. This is illustrated
in Fig. 7a and b.

With the same value of delays as in Fig. 5, we describe the dynamics of model (4).
From Fig. 7b, it is clear that the egg density is stable when τ = 0.7 and the critical
value of time delay of model (4) with host movement is getting larger, τ ∗∗ = 2.12.
With increasing value of the time delay, the behaviors of egg densities in both patches
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Fig. 6 Compared with Fig. 5c and d, solutions of egg density for the model (4) for κ = 0.7. Clearly,
increasing κ will contribute the oscillation phenomenon for egg density in the diapause patch

Fig. 7 Solutions of egg density for the model (4) with host mobility between the two patches R and D,
where blue line denotes the egg density in regular patch and the red line represents the one in diapause patch.
We still choose the same time delays as those in Fig. 5: a τ = 0.55; b τ = 0.7; c τ = 4; d τ = 10 (Color
figure online)
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Fig. 8 Solutions of engorged nymph densities for the model (4) with host mobility between the two patches
R and D for τ = 4, where blue line denotes the nymph density in regular patch and the red line represents
the one in diapause patch; other parameters are the same as those in Fig. 7 (Color figure online)

become periodic, as shown in Fig. 7c and d. We also plot, when τ = 4, the engorged
nymph densities in Fig. 8. We also compare Fig. 7b–d with Fig. 5b–d, and we note
that egg densities in the regular patch are asymptotically constant with host mobilities
when τ = 0.7 and exhibit much simpler single-peak oscillatory pattern when τ = 4
and τ = 10 in comparison with dual-peak oscillations and complex oscillation in Fig.
5b–d. Hence, host mobility not only synchronizes but also simplifies the collective
behaviors.

In order to better understand the parameter values listed above, we normalize the

model (4) with Ẽ R(t) = ER(
t

365
) and Ẽ D(t) = ED(

t

365
) and obtain

( ˙̃ER(t)
˙̃ED(t)

)
=

⎛
⎜⎝

1

365
[ f R(q11 Ẽ R(t − τ̃ R) + q12 Ẽ D(t − τ̃ D)) − μR Ẽ R(t)]

1

365
[ f D(q21 Ẽ R(t − τ̃ R) + q22 Ẽ D(t − τ̃ D)) − μD Ẽ D(t)]

⎞
⎟⎠ ,

where τ̃ R = 365τ R and τ̃ D = 365τ D; Ẽ R and Ẽ D represent the total numbers of
eggs to be hatched within one day. Based on the process of normalization, it means
that tick population will take 365τ R or 365τ D days in each patch to complete their
life cycle from the view of biology. For instance, τ = 0.55 in Fig. 5a is equivalent
to τ̃ = 0.55 × 365 = 200.75, which implies that the life cycle of tick population in
regular patch is 200.75 days.

5 Discussion

It is commonly known that delay, if increased passing a critical value, in a negative
feedback system destabilizes the system and generates nonlinear oscillations through
the Hopf bifurcationmechanism. It is also known that increasing the delay further may
lead to complicated oscillatory patterns including multi-peaks with a single period.
Multiple and large delays may appear in tick population dynamics due to the so-
called diapause development, when ticks suspend their development in response to
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unfavorable conditions. It was established in Shu et al. (2020) and Zhang and Wu
(2019) that in single spatial location, when a portion of ticks undergo diapause during
their life cycle, nonlinear oscillations can take place.

Here, we consider a landscape consisting of two patches (patch R and patch D)
where ticks in different patches will experience regular (in patch R) and diapause (in
patch D) development. When these are in isolation in terms of population dynamics
of a particular tick species, we may observe patterns of stabilization to a positive
equilibrium in one patch and oscillation in another patch with potentially multi-peaks
within a given period. We then show the mobility of hosts on which the adult ticks
feed for development can redistribute engorged adult ticks in two patches, creating two
cohorts of ticks developing in two different habitats until they feed on hosts during the
questing activities in the adult stage. The tick population dynamics is then described
by a couple system of delay differential equations with two delays, the normal and
diapause development delays. We show that the model system may have a unique
positive equilibrium and its stability may change due to the mobility of the hosts
and the diapause delay in combination. This will tend to synchronize the system to
periodic oscillations with single peak within a given period. This synchronization to a
simple-looking periodic solution seems to be new and may offer another angle to view
tick population dynamics in the natural environment. It remains for further studies
to see how seasonal variation of the habitat conditions coupled with the diapause
delay can impact the tick population dynamics (this requires a periodic system of
delay differential equations with time-dependent delays) and influence the patterns of
tick-borne disease spread.
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