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Abstract
The Allee effect describes populations that deviate from logistic growth models and
arises in applications including ecology and cell biology. A common justification for
incorporating Allee effects into population models is that the population in question
has altered growthmechanisms at some critical density, often referred to as a threshold
effect. Despite the ubiquitous nature of threshold effects arising in various biological
applications, the explicit link between local threshold effects and global Allee effects
has not been considered. In this work, we examine a continuum population model
that incorporates threshold effects in the local growth mechanisms. We show that this
model gives rise to a diverse family of Allee effects, and we provide a comprehensive
analysis of which choices of local growth mechanisms give rise to specific Allee
effects. Calibrating this model to a recent set of experimental data describing the
growth of a population of cancer cells provides an interpretation of the threshold
population density and growth mechanisms associated with the population.

Keywords Logistic growth · Per-capita growth rate · Population dynamics ·
Population models

1 Introduction

Mathematical models of population dynamics often include an Allee effect to account
for dynamics that deviate from logistic growth (Stephens et al. 1999; Allee and Bowen
1932; Courchamp et al. 1999; Taylor and Hastings 2005; Courchamp et al. 2008). The
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logistic growth model (Table 1, Fig. 1) describes the growth rate, dC(t)/dt , as a
quadratic function of density, C(t), at time t ≥ 0. The logistic growth model has two
equilibria: C∗ = 0 and C∗ = K , where an equilibrium is any value C∗ such that
dC(t)/dt = 0 when C(t) ≡ C∗. Since densities near C(t) ≡ K will approach K ,
while densities near C(t) ≡ 0 diverge away from zero (Fig. 1), we say that C∗ = K
is a stable equilibrium, while C∗ = 0 is an unstable equilibrium. This means that
the logistic growth model implicitly assumes that all densities, no matter how small,
eventually thrive.

Mathematical models that include an Allee effect relax the assumption that all
population densities will thrive and survive, which is inherent in logistic growth mod-
els (Murray 2003; Edelstein-Keshet 2005; Stephens et al. 1999; Taylor and Hastings
2005; Courchamp et al. 2008). Consequently, populations described using Allee effect
models exhibit more complicated and nuanced dynamics, including reduced growth
at low densities (Neufeld et al. 2017; Johnson et al. 2006; Gerlee 2013) and extinc-
tion below a critical density threshold (Courchamp et al. 1999; Allee and Bowen
1932; Taylor and Hastings 2005; Courchamp et al. 2008). The phrase Allee effect can
have many different interpretations in different parts of the literature. For instance,
the Weak Allee effect (Table 1, Fig. 1) is used to describe density growth rates that
deviate from logistic growth, but do not include additional equilibria (Murray 2003;
Edelstein-Keshet 2005; Taylor and Hastings 2005; Stephens et al. 1999). A common
mathematical description of the Weak Allee effect is shown in Table 1, where the
factor 1 + C(t)/A represents the deviation from the classical logistic growth model.
Despite the similarity between logistic growth and the Weak Allee effect, it is not
possible to write down an explicit solution for Weak Allee effect in terms of C(t), like
we can for logistic growth. Despite this, we are still able to examine the equilibria of
the Weak Allee effect to understand its salient features. Since A > 0, the Weak Allee
effect does not incorporate any additional equilibria other than C∗ = 0 and C∗ = K .
Noting that the main feature of an Allee effect is a deviation from logistic growth, the
cubic representation of the growth rate shown in Table 1 is employed predominantly
for simplicity rather than explicit biological significance (Taylor and Hastings 2005;
Stefan et al. 2012; Stephens et al. 1999). Therefore, in this work, we refer to the Weak
Allee effect as any population density growth rate that deviates from logistic growth
without incorporating additional equilibria.

Another common type of Allee effect is the Strong Allee effect (Table 1, Fig. 1), in
which an additional unstable intermediate equilibrium, C∗ = B, with 0 < B < K ,

Table 1 Typical mathematical descriptions of logistic growth, the Weak Allee effect, and the Strong Allee
effect

Effect Typical mathematical description Notes

Logistic growth dC(t)
dt = rC(t)

(
1 − C(t)

K

)
r > 0, K > 0

Weak Allee dC(t)
dt = rC(t)

(
1 − C(t)

K

) (
1 + C(t)

A

)
r > 0, A > 0, K > 0

Strong Allee dC(t)
dt = rC(t)

(
1 − C(t)

K

) (
C(t)
B − 1

)
r > 0, 0 < B < K
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Fig. 1 Comparison of typical logistic growth, Weak Allee, and Strong Allee models. The mathematical
descriptions of the three models are shown in Table 1

is incorporated (Murray 2003; Edelstein-Keshet 2005; Taylor and Hastings 2005;
Stephens et al. 1999; Courchamp et al. 1999). In a similar fashion to the Weak Allee
effect, the cubic form of the Strong Allee effect (Table 1) is chosen predominantly
for simplicity (Taylor and Hastings 2005; Stefan et al. 2012; Stephens et al. 1999).
Therefore, we will refer to any growth rate with two stable equilibria, C∗ = 0 and
C∗ = K , and an additional intermediate unstable equilibrium as the Strong Allee
effect. Throughout this work, we refer to growth rates that deviate from logistic growth
as an Allee effect, whereas specific Allee effects (e.g. the Weak Allee effect and the
Strong Allee effect) are referred to using more specific terminologies.
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While Allee effects were originally used to describe population dynamics arising
in ecology (Taylor and Hastings 2005; Tu et al. 2019; Courchamp et al. 1999; Johnson
et al. 2006; Simberloff et al. 2013; Seebens et al. 2017; Drake 2004; Courchamp et al.
2008), there has been increasing interest in examining the potential for Allee effects in
population dynamics relating to cell biology (Neufeld et al. 2017; Böttger et al. 2015;
Gerlee 2013; Sarapata and de Pillis 2014; Jenner et al. 2018, 2019; Bobadilla et al.
2019; Johnston et al. 2017; Jin et al. 2017; Johnson et al. 2019; de Pillis et al. 2005;
de Pillis and Radunskaya 2003). In both cell biology and ecological applications,
the Allee effect provides a suitable modelling framework to describe the dynamics
of well-mixed populations that exhibit non-logistic features. However, because stan-
dard models incorporating Allee effects are continuum models that describe global,
population-level features of the population dynamics, the interpretation ofAllee effects
at the individual scale remains less clear (Johnston et al. 2017; Böttger et al. 2015).

Understanding how local, stochastic growth mechanisms give rise to global Allee
effects in a population is important, since these individual-level mechanisms can ulti-
mately determinewhether a populationwill survive or be driven to extinction (Johnston
et al. 2017; Scott et al. 2014; Colon et al. 2015; Böttger et al. 2015). Certain individual-
level biological features are ubiquitous among populations displaying Allee effects,
providing a unifying feature in both cell biology and ecological applications. One of
these phenomena is a threshold effect (Frankham 1995; Rossignol et al. 1999;Metzger
and Décamps 1997), which we also refer to as a binary switch. We define a binary
switch as a local feature of a population that behaves differently when a particular bio-
logical mechanism is present or absent. Some examples of binary switches include: the
go-or-grow hypothesis in cell biology (Hatzikirou et al. 2012; Vittadello et al. 2020),
phenotypic plasticity (Friedl and Alexander 2011; Böttger et al. 2015), tree mast-
ing (Koenig and Knops 2005), external harvesting pressure (Courchamp et al. 1999;
Kuparinen et al. 2014), density-dependent clustering (Martínez-García et al. 2015),
and resource depletion (Hopf and Hopf 1985). For all of these examples, Allee effects
have been proposed to potentially explain more complicated and nuanced population
dynamics than are possible in a logistic growth framework. However, the link between
the details of such a local binary switch and the resulting population-level Allee effect
is unclear. Given that local binary switches are thought to be widely important in biol-
ogy and ecology, we ask two questions: (i) how does the incorporation of a local binary
switch in proliferation and death rates affect the global dynamics of a population? and
(ii) how does this local binary switch relate to different forms of Allee effects?

In this work, we show that incorporating local-level binary switches in a contin-
uum, population-level mathematical modelling framework gives rise to a surprisingly
diverse family of Allee effects. Some switches in proliferation and death rates give
rise to established Allee effects, whereas other binary switches lead to more gener-
alised Allee effects that have not been previously reported.We show that incorporating
local-level binary switches in proliferation and death rates leads to a diverse family
of Allee effects with only a few model parameters. This model, which we refer to as
the Binary Switch Model, captures key biological features, but continues to exhibit
the same qualitative features as various Allee effects. We conclude by applying the
Binary Switch Model to a recent cell biology data set. Interpreting this data with our
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Fig. 2 Schematic for the Binary Switch Model. Individuals in a population a can sense nearby individuals,
providing a simple measure of local density. Individuals who sense higher than a threshold density, M ,
are shown in blue, while more isolated individuals are shown in red. This threshold density determines the
constant rates at which individuals proliferate and die. b, c The binary switch shown here occurs when
individuals can sense more than M = 2 neighbours

modelling framework suggests that the observed growth is non-logistic and that the
phenomena are best explained by a binary switch at low density.

2 The Binary SwitchModel

We consider an individual-based model framework that incorporates individual-level
growth mechanisms varying with local population density to describe the temporal
evolution of the global population density. One framework incorporating these afore-
mentioned features is the stochastic agent-based model framework that we proposed
in Fadai et al. (2020), in which individuals of the same size move, die, and proliferate
on a two-dimensional hexagonal lattice. This discrete model incorporates exclusion
(crowding) effects, allowing the population density to saturate at a finite capacity, as
well as proliferation and death rates that vary with the local population density. While
local population density can be measured in many different ways, Fadai et al. (2020)
take the simplest approach and use the number of nearest neighbours as a measure of
local density (Fig. 2).

As the individual dynamics of the stochastic agent-based model are difficult to
analyse mathematically, we examine the continuum limit per-capita growth rate as
a means of representing the average dynamics of the spatially uniform population,
noting that there is good agreement between these two modelling approaches (Fig. 3).
Full details of the discrete–continuum comparison are summarised in the Supplemen-
tary Information. Since the average population dynamics obtained from the discrete
stochastic individual-based model agree well with its continuum description (Fig. 3),
we will only consider the features of the continuum description of the model, whose
per-capita growth rate is given by
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1

C(t)

dC(t)

dt
= (1 − C(t))

5∑
n=0

γn

(
5

n

)
C(t)n (1 − C(t))5−n − γ6C(t)6, (1)

where

γn =
{
pn − 6dn

6−n , n = 0, . . . , 5,

d6, n = 6.
(2)

Here,C(t) is the population density at time t , while pn and dn are the proliferation and
death rates that vary with the number of nearest neighbours, n (Fadai et al. 2020). The
parameter grouping γn can be interpreted as the net growth mechanism for a particular
local population density. Noting that C(t) ≡ 1 represents the maximum packing
density, we have C(t) ∈ [0, 1]. Equation (1) has a thirteen-dimensional parameter
space: namely, Θ = (p0, . . . , p5, d0, . . . , d6).
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Fig. 3 a When no binary switch is present, (1) reduces to logistic growth. b, c When a binary switch is
incorporated in proliferation and death rates (M = 2), the continuum limit is no longer logistic. In all of
these parameter regimes, the average density data determined from discrete model simulations, shown in
red dashed curves in the middle column (Supplementary Information), agrees well with the continuum limit
predictions (4), shown in black solid curves. Density growth rates in the right-most column show that (a)
is logistic, while (b, c) are not
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We incorporate a binary switch into (1) by choosing

pn =
{
r , n = 0, . . . , M,

R, n = M + 1, . . . , 6,
dn =

{
rα, n = 0, . . . , M,

Rβ, n = M + 1, . . . , 6.
(3)

This choice of parameters means that we have the proliferation rate pn = r when the
local density is at or below the critical density M , or pn = R when the local density is
above M . We refer to M ∈ {0, 1, 2, 3, 4, 5} as the threshold density. For simplicity, we
assume that the death rates are a particular fraction of the proliferation rates: α ∈ [0, 1]
and β ∈ [0, 1]. It is useful to note that (1)–(3) relaxes to the classical logistic growth
model, for any choice of M ∈ {0, 1, 2, 3, 4, 5} by setting r = R and α = β (Fig. 3a).

By substituting (3) into (1), we obtain the Binary Switch Model,

1

C(t)

dC(t)

dt
= r

M∑
j=0

(
5

j

)
C(t) j (1 − C(t))6− j

[
1 − 6α

6 − j

]
− RβC(t)6

+ 1(M ≤ 4) · R
5∑

j=M+1

(
5

j

)
C(t) j (1 − C(t))6− j

[
1 − 6β

6 − j

]
,

(4)
where

1(M ≤ 4) =
{
1, M ≤ 4,

0, M = 5,
(5)

is an indicator function. The Binary Switch Model shows, for the first time, how a
local binary switch in individual-level proliferation and death rates leads to a particular
global density growth rate. A summary of parameters and their particular biological
interpretation is shown in Table 2. In particular, we note that the Binary Switch Model
reduces the thirteen-dimensional parameter space in (1) to a five-dimensional param-
eter space: Θ = (r , R, α, β, M). This reduced parameter space means that the Binary
Switch Model can be used with less risk of over-fitting than (1) (Warne et al. 2019).
We will discuss further merits of this reduced parameter space when calibrating the
Binary Switch Model to experimental data in Sect. 3.

In Fig. 3, we show how the Binary Switch Model gives rise to non-logistic growth
mechanisms. When no binary switch is present (Fig. 3a), the growth mechanisms

Table 2 Summary of parameters used in the Binary Switch Model

Parameter Biological interpretation

r ∈ [0, ∞) Low-density proliferation rate

R ∈ [0, ∞) High-density proliferation rate

α ∈ [0, 1] Ratio of low-density death rate to low-density proliferation rate

β ∈ [0, 1] Ratio of high-density death rate to high-density proliferation rate

M ∈ {0, 1, 2, 3, 4, 5} Threshold density
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are independent of local density and assume a single proliferation and death rate,
resulting in logistic growth. However, when a binary switch is incorporated into the
proliferation and death rates (Fig. 3b, c), the population dynamics described by (4)
deviates from the classical logistic growth model. Consequently, we now wish to
examine the various kinds of Allee effects the Binary Switch Model can give rise to.
The main qualitative differences between logistic growth and various Allee effects are
based on the number of equilibria and their stability; therefore, we now examine the
roots of (4) for various parameter values. In all parameter regimes considered in the
work, the zero equilibrium, C∗ = 0, will always be present. Additional equilibria, if
present, will be denoted as C∗ = Ci ∈ (0, 1], where i = 1, 2, ... and are ordered such
that Ci < Ci+1 for all i . Since the right-hand side of (4) is a sixth-degree polynomial,
a maximum of six equilibria can be present in (0, 1], but explicit expressions for the
solutions of the polynomial cannot be determined in general. We will show that in
the Binary Switch Model, a maximum of three equilibria can be present in (0, 1].
Setting r = 0 and R > 0 (Case 1) or R = 0 and r > 0 (Case 2), we will show
that fewer equilibria are present in (0, 1]. In Case 3, corresponding to r > 0 and
R > 0, certain combinations of parameter values produce equilibria with additional
qualitative features, such as double-root and triple-root equilibria. For these special
equilibria, we will designate particular symbols to Ci , which appear as required.

2.1 Case 1: r = 0 and R > 0

This case corresponds to situations where individuals below the threshold density M
do not proliferate or die. We will now show that in Case 1, either no equilibria are
present in (0, 1], or we have one equilibrium C1 ∈ (0, 1], depending on the choice of
β and M . In this regime, (4) simplifies to

1

RC(t)

dC(t)

dt
= S(C(t);β, M)

:= −βC(t)6

+ 1(M ≤ 4) ·
5∑

j=M+1

(
5

j

)
C(t) j (1 − C(t))6− j

[
1 − 6β

6 − j

]
.

(6)

Since β appears as a linear coefficient in (6), it is easier to solve S(C1, β, M) = 0 for
β than for C1. The resulting relationship between C1 and β depends on the integer
value of M ∈ {0, 1, 2, 3, 4, 5}; however, a general solution in terms of arbitrary M is
difficult to obtain. Instead, we define the family of functions, fM (C1), for a particular
value of M , such that

β = fM (C1) ⇐⇒ S(C1, fM (C1), M) = 0. (7)

Using fM (C1), we determine the unique value of β that solves S(C1, β, M) = 0 for
a given value of C1 ∈ (0, 1], shown in Table 3. Plotting β = fM (C1) for all M ∈
{0, 1, 2, 3, 4, 5} and C1 ∈ (0, 1] indicates that fM (C1) is one-to-one on C1 ∈ (0, 1].
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Table 3 Relationships between the nonzero equilibrium of the Binary Switch Model, C1, to β and M for
Case 1 when r = 0 (6)

M β = fM (C1) Range of β : C1 ∈ (0, 1]

0
C5
1−6C4

1+15C3
1−20C2

1+15C1−5

C5
1−6C4

1+15C3
1−20C2

1+15C1−6
β ∈ [0, 5/6)

1
4C4

1−19C3
1+35C2

1−30C1+10

5C4
1−24C3

1+45C2
1−40C1+15

β ∈ [0, 2/3)

2
−6C3

1+21C2
1−25C1+10

−10C3
1+36C2

1−45C1+20
β ∈ [0, 1/2)

3
4C2

1−9C1+5

10C2
1−24C1+15

β ∈ [0, 1/3)

4 −C1+1
−5C1+6 β ∈ [0, 1/6)

5 0 ∅

Therefore, the inverse function C1 = f −1
M (β) also has one solution, provided that

β ∈ [0, (5− M)/6). This range of β is obtained by mapping the C1 interval (0, 1] via
the functions fM (C1). The functions fM (C1) in Table 3 provide a link between β and
C1: if C1 is known, β = fM (C1) provides the parameter value to input in the model
to obtain such an equilibrium. Conversely, if β is known, Table 3 indicates whether
or not C1 ∈ (0, 1]. Finally, we note that when β ≥ (5 − M)/6, or when M = 5, only
the zero equilibrium, C∗ = 0, is present.

To determine the stability of the equilibria, we consider the cases when β ∈
[0, (5− M)/6) and when β ≥ (5− M)/6 separately. When β ∈ [0, (5− M)/6), two
distinct equilibria are present: C∗ = 0 and C∗ = C1 ∈ (0, 1]. Based on the sign of
∂S(C; fM (C∗), M)/∂C at these equilibria, C∗ = 0 is always unstable and C∗ = C1
is always stable. These features are consistent with the Weak Allee effect, whereby
the density growth rate deviates from logistic growth without incorporating additional
equilibria. When β ≥ (5−M)/6, or when M = 5,C∗ = 0 is the only equilibrium and
it is always stable, corresponding to the qualitative features of an extinction density
growth rate, where limt→∞ C(t) = 0 for all C(0). Both qualitative features in this
parameter regime are shown in the bifurcation diagram in Fig. 4. We conclude that in
Case 1, either zero or one equilibria is present in the interval (0, 1], corresponding to
extinction and Weak Allee parameter regimes, respectively.

2.2 Case 2: r > 0 and R = 0

This case corresponds to when individuals above M do not proliferate or die. When
R = 0, we have

1

rC(t)

dC(t)

dt
= T (C(t);α, M)

:= (1 − C(t))
M∑
j=0

(
5

j

)
C(t) j (1 − C(t))5− j

[
1 − 6α

6 − j

]
,

(8)
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Fig. 4 Bifurcation diagram of the Binary Switch Model, shown in (6), for Case 1 when r = 0. Varying β

produces different qualitative features in terms of equilibria and their stability. The resulting density growth
rates, dC/dt , are shown as a function of C , where a stable equilibrium is represented with a black circle
and an unstable equilibrium with a white circle

which is independent of β. In a similar fashion to Case 1, we consider the equilibria
for various choices of α and M , noting that C∗ = 0 and C∗ = 1 are always equilibria
in this case. However, we will show that in Case 2, we have the possibility of a third
equilibrium in (0, 1). When this additional equilibria is present, then C2 = 1 and
C1 ∈ (0, 1); otherwise, C1 = 1. To determine if C∗ = 1 is the first or second nonzero
equilibrium, we define

α = gM (C1) ⇐⇒ T (C1, gM (C1), M) = 0, (9)

and determine the value of α that solves T (C1, α, M) = 0 for a given value of
C1 ∈ (0, 1), shown in Table 4. Like Case 1, the family of functions α = gM (C1)

provide an explicit relationship between α and C1. Since α = gM (C1) is one-to-one
on C1 ∈ (0, 1), the inverse function C1 = g−1

M (α) also has one solution, C1 ∈ (0, 1),
provided α ∈ ((6 − M)/6, 1). This value of C1 ∈ (0, 1) provides a third equilibrium
of (8); conversely, when α ≤ (6− M)/6, or when M = 0, the only two equilibria are
C∗ = 0 and C1 = 1.

In the casewhereC1 ∈ (0, 1), examining the sign of ∂S(C; fM (C∗), M)/∂C shows
that C∗ = 0 and C∗ = 1 are unstable, whereas C∗ = C1 is stable. This combination
of equilibria has the opposite stability properties of the Strong Allee effect (Table 1),
and so we refer to density growth rates with these stability properties as the Reverse
Allee effect. In the case where α ≤ (6 − M)/6, or when M = 0, stability analysis
shows that C1 = 1 is stable and C∗ = 0 is unstable, which is consistent with the
qualitative features of theWeak Allee effect. Finally, when α = 1, we return to having
only two equilibria, C∗ = 0 and C∗ = 1, but the stability is the opposite of the usual
Weak Allee effect. Therefore, when α = 1, limt→∞ C(t) = 0 for C(0) < 1. All these
qualitative features in this parameter regime are shown in the bifurcation diagram in
Fig. 5. We conclude that in Case 2, either one or two equilibria are present in (0, 1],
with the Extinction regime occurring when α = 1. For α < 1, a new kind of Allee
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Table 4 Relation between nonzero equilibrium, 0 < C1 < 1, to α and M for Case 2 when R = 0 (8)

M α = gM (C1) Range of α : C1 ∈ (0, 1)

0 1 ∅

1 4C1+1
5C1+1 α ∈ (5/6, 1)

2
6C2

1+3C1+1

10C2
1+4C1+1

α ∈ (2/3, 1)

3
4C3

1+3C2
1+2C1+1

10C3
1+6C2

1+3C1+1
α ∈ (1/2, 1)

4
C4
1+C3

1+C2
1+C1+1

5C4
1+4C3

1+3C2
1+2C1+1

α ∈ (1/3, 1)

5 1
C5
1+C4

1+C3
1+C2

1+C1+1
α ∈ (1/6, 1)

0 1

Weak Allee Effect

C

dC
dt

6-M
6

Reverse Allee EffectdC
dt

C

ExtinctiondC
dt

C

Stable Equilibrium Unstable Equilibrium

Fig. 5 Bifurcation diagram of the Binary Switch Model, shown in (8), for Case 2 when R = 0. Varying α

produces different qualitative features in terms of equilibria and their stability. The resulting density growth
rates, dC/dt , are shown as a function of C , where a stable equilibrium is represented with a black circle
and an unstable equilibrium with a white circle

effect, which we call the Reverse Allee effect, occurs if two equilibria are present in
(0, 1]; otherwise, we retrieve the Weak Allee effect.

2.3 Case 3: r > 0 and R > 0

In the most general case, the proliferation and death rates of individuals change at the
threshold density M , but remain nonzero on either side of the threshold density. As a
result, (4) can be written as
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1

rC(t)

dC(t)

dt
= − R

r
βC(t)6 +

M∑
j=0

(
5

j

)
C(t) j (1 − C(t))6− j

[
1 − 6α

6 − j

]

+ 1(M ≤ 4) · R
r

5∑
j=M+1

(
5

j

)
C(t) j (1 − C(t))6− j

[
1 − 6β

6 − j

]
.

(10)
Without loss of generality, we assume that r = 1, since other nonzero values or r
can be rescaled to unity by changing the timescale in (4), which does not affect its
equilibria. Consequently, with some rearranging, we have

1

C(t)

dC(t)

dt
= V(C(t); R, α, β, M)

:= 1 − C(t) − α(1 − C(t)6) − RβC(t)6

+ 1(M ≤ 4) ·
5∑

j=M+1

(
5

j

)
C(t) j (1 − C(t))6− j

[
R − 1 + 6(α − βR)

6 − j

]
.

(11)
We will show that in Case 3, there can be between zero and three equilibria in (0, 1],
noting that C∗ = 1 is an equilibrium of (11) if and only if β = 0. When we have
three distinct equilibria in (0, 1], we obtain a new type of Allee effect, referred to
here as the Hyper-Allee effect (Fadai et al. 2020), in which the zero equilibrium is
unstable, and an intermediate unstable equilibrium is contained between two positive,
stable equilibria. However, in order for the parameter space to continuously transition
from the Weak Allee effect, as in Cases 1 and 2, to the Hyper-Allee effect, there must
exist a critical set of model parameters at which a double-root equilibrium occurs.
Therefore, to determine what regions of (R, α, β, M) parameter space exhibit Hyper-
Allee effects instead of the Weak Allee effect, we focus on determining the boundary
of these effects in terms of model parameters and equilibria. This boundary, defined
as the Tangential Manifold, will be the focus of our analysis in this section.

In addition to determining the boundary between Weak Allee and Hyper-Allee
parameter spaces, we will also show that even more Allee effects are present when
α = 1. In particular, we show that inCase 3, the Extinction parameter regime continues
to exist, along with the Strong Allee effect, when α = 1.We also determine an explicit
relationship between R, β, and M for when the Extinction regime becomes the Strong
Allee effect, which is linked to the Tangential Manifold. We now focus our attention
on determining additional equilibria Ci ∈ (0, 1].

Numerical observations indicate that certain combinations of (R, α, β, M) can pro-
duce up to three distinct values of Ci ∈ (0, 1] satisfying V = 0. Furthermore, in
parameter regimes where three distinct equilibria are present in (0, 1], stability anal-
ysis about these equilibria reveals that C∗ = 0 and C∗ = C2 are unstable equilibria,
whereas C∗ = C1 and C∗ = C3 are stable equilibria. These qualitative features are
consistent with the aforementioned Hyper-Allee effect, which is a higher-order effect
that is very different to the usual Weak Allee and Strong Allee effects (Fig. 6).
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Fig. 6 Bifurcation diagram of the Binary Switch Model for Case 3, shown in (11), with β = 0.06, r =
1, R > 0, andM = 4. Pairs of (α, R) parameters produce different qualitative features, in terms of equilibria
and their stability. The resulting density growth rates, dC/dt , are shown as a function of C , where a stable
equilibrium is represented with a black circle, an unstable equilibrium with a white circle, and a semi-stable
equilibrium with a half-filled circle

For solutions to continuously transition from one equilibrium in (0, 1], like the
Weak Allee effect in Cases 1 and 2, to three equilibria in (0, 1], such as the Hyper-
Allee effect, we must have certain values of (R, α, β, M) that produce a double root
for Ci . We denote this special case of a double root equilibrium as Ĉ , which can occur
in either the C1 or C2 equilibrium position. In addition to satisfying V = 0, the double
root equilibrium, C∗ = Ĉ , must also satisfy

V(Ĉ; R, α, β, M) = ∂

∂C
V(C; R, α, β, M)

∣∣∣∣
C=Ĉ

= 0. (12)

The set of parameters satisfying (12) is referred to as the Tangential Manifold, where
the double root equilibrium, Ĉ , is a semi-stable equilibrium of (11) (Strogatz 2018).
A semi-stable equilibrium C∗ = Ĉ has the properties that populations slightly larger
than C(t) ≡ Ĉ remain close to Ĉ , but populations slightly smaller than C(t) ≡ Ĉ
diverge away from Ĉ , or vice-versa. Since we have two equations with four unknowns,
we parametrise the Tangential Manifold as (R, α) = (FM (Ĉ, β),GM (Ĉ, β)), for par-
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Table 5 Relation between the semi-stable equilibrium, Ĉ , to α, β, R, and M for Case 3. Parameter values
satisfying R = FM (Ĉ, β) and α = GM (Ĉ, β) are members of the Tangential Manifold. If Ĉ < C, then
Ĉ is a member of the Positive Tangential Manifold; if C < Ĉ < C̃, then Ĉ is a member of the Negative
Tangential Manifold. The Triple Point, C, is defined implicitly via β = HM (C), while the Junction Point,
C̃, is defined implicitly via β = JM (C̃)

M R = FM (Ĉ, β) β = HM (C)

0 0 ∅

1 (Ĉ−1)6

Ĉ(Ĉ5−6Ĉ4+15Ĉ3−20Ĉ2−10Ĉ−30β+20)
2(1−C)

3

2 (Ĉ−1)5(6Ĉ2+8Ĉ+1)
Ĉ2(6Ĉ5−22Ĉ4+21Ĉ3+15Ĉ2+10Ĉ+60β−30)

(1−C)(1+2C)
3C+2

3 (Ĉ−1)4(6Ĉ4+16Ĉ3+21Ĉ2+6Ĉ+1)
Ĉ3(6Ĉ5−8Ĉ4−7Ĉ3−6Ĉ2−5Ĉ−60β+20)

(1−C)(1+2C+2C2)
3C2+4C+3

4 (Ĉ−1)3(Ĉ6+4Ĉ5+10Ĉ4+20Ĉ3+10Ĉ2+4Ĉ+1)
Ĉ4(Ĉ5+Ĉ4+Ĉ3+Ĉ2+Ĉ+30β−5)

(1−C2)(2C2+C+2)
3(C3+2C2+3C+4)

5 0 ∅

M α = GM (Ĉ, β) β = JM (C̃)

0 1 ∅

1 β(Ĉ5−6Ĉ4+15Ĉ3−20Ĉ2+15Ĉ−30)−20(Ĉ−1)
Ĉ5−6Ĉ4+15Ĉ3−20Ĉ2−10Ĉ−30β+20

(C̃−1)(C̃3−5C̃2+10C̃−10)
C̃4−6C̃3+15C̃2−20C̃+15

2 β(6Ĉ5−22Ĉ4+21Ĉ3+15Ĉ2−40Ĉ+60)+30(Ĉ−1)
6Ĉ5−22Ĉ4+21Ĉ3+15Ĉ2+10Ĉ+60β−30

(C̃−1)(6C̃3−16C̃2+5C̃+20)
6C̃4−22C̃3+21C̃2+15C̃−40

3 β(6Ĉ5−8Ĉ4−7Ĉ3−6Ĉ2+45Ĉ−60)−20(Ĉ−1)
6Ĉ5−8Ĉ4−7Ĉ3−6Ĉ2−5Ĉ−60β+20

(C̃−1)(6C̃3−2C̃2−9C̃−15)
6C̃4−8C̃3−7C̃2−6C̃+45

4 β(Ĉ5+Ĉ4+Ĉ3+Ĉ2−24Ĉ+30)+5(Ĉ−1)
Ĉ5+Ĉ4+Ĉ3+Ĉ2+Ĉ+30β−5

(C̃−1)(C̃3+2C̃2+3C̃+4)
C̃4+C̃3+C̃2+C̃−24

5 1/6 ∅

ticular values of Ĉ and β (Fig. 6). The functions FM (Ĉ, β) and GM (Ĉ, β) describing
the Tangential Manifold are shown in Table 5.

While the Tangential Manifold can be determined explicitly by solving (12), we
observe that two forms of a semi-stable equilibrium can occur (Fig. 6). If the double
root Ĉ is below some critical value,C, then this semi-stable equilibriumoccurs between
C∗ = 0, which is unstable, and some larger equilibrium C∗ = C2, which is stable. If
Ĉ > C, then this semi-stable equilibrium is larger than both C∗ = 0 and C∗ = C1,
which remain unstable and stable, respectively.We refer to the branch of the Tangential
Manifold where Ĉ < C as the Positive Tangential Manifold, based on the sign of the
density growth rate between Ĉ and C2 (Fig. 6). In a similar fashion, we refer to the
branch of the Tangential Manifold where Ĉ > C as the Negative Tangential Manifold.
When Ĉ = C, the double root becomes a stable triple root and C satisfies

∂2

∂C2V (C; FM (C, β),GM (C, β), β, M)

∣∣∣∣
C=C

= 0, (13)

where R = FM (C, β) and α = GM (C, β) are chosen to ensure we remain on the
TangentialManifold. Equation (13) provides an additional constraint on the Tangential
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Table 6 Summary of qualitative features seen in theBinary SwitchModel. The stability of each equilibrium,
listed in increasing order of magnitude, can be stable (S), unstable (U ), or semi-stable (SS)

Effect name Equilibria Stability Notes

Extinction {0} {S}
Logistic growth {0,C1} {U , S} r = R, α = β

Weak Allee/Triple Point {0,C1} {U , S} Triple: C1 = C
Junction Point {0,C1} {S, SS} C1 = C̃
Strong Allee {0,C1,C2} {S,U , S}
Reverse Allee {0,C1,C2} {U , S,U } C2 = 1

Positive Tangential Manifold {0,C1,C2} {U , SS, S} C1 = Ĉ

Negative Tangential Manifold {0,C1,C2} {U , S, SS} C2 = Ĉ

Hyper-Allee {0,C1,C2,C3} {U , S,U , S}

Manifold, implying that we can relate C to a unique value of β. We denote β = HM (C)

if (13) is satisfied, with C denoting the Triple Point of (11) (Table 5).
Additionally, fromFig. 6, we note that whenα = 1, the equilibria and their resulting

stability change, compared toα < 1.Whenα = 1, theNegativeTangentialManifold is
valid for a unique pair of (β, R) parameters, for a particular equilibriumvalue,C∗ = C̃.
We define this critical equilibrium value as the Junction Point, which satisfies

GM (C̃, β) = 1. (14)

We denote β = JM (C̃) if (14) is satisfied (Table 5); furthermore, we determine the
corresponding value of R at the Junction Point by evaluating R = FM (C̃, JM (C̃)).
Whenα = 1 and R < R, the only equilibrium value of (11) isC∗ = 0, which is stable.
This implies that all population densities go extinct in this parameter regime. When
α = 1 and R > R, (11) has three solutions: C∗ = 0, which is stable, an intermediate-
valued unstable equilibriumC∗ = C1, and a larger-valued stable equilibriumC∗ = C2
(Fig. 6). Thus, the stability features of this density growth rate are the same as theStrong
Allee effect. When R = R, the Junction Point, C∗ = C̃, is semi-stable, while C∗ = 0
remains stable. A summary of this diverse family of Allee effects, in terms of the
number and stability of the equilibria, is shown in Table 6.

From Table 5, we note some key features of the Tangential Manifold. Firstly, when
β = 0, we note that the Triple Point is C = 1 for 1 ≤ M ≤ 4. Since the Negative
Tangential Manifold must have Ĉ > C, we conclude that the Negative Tangential
Manifold does not exist when β = 0, which is also observed in Fig. 7. When β =
(5− M)/6 and 1 ≤ M ≤ 4, the Triple Point and the Junction Point are both C = C̃ =
0, implying that no points are contained in the Tangential Manifold. Consequently,
parameter pairs (α, R) that result in qualitative features other than the Extinction
regime or the Weak Allee effect can only occur when α < 1 and β ∈ [0, (5− M)/6),
as shown in Fig. 7. Finally, we note that when M = 0 or M = 5, the Tangential
Manifold does not exist, since the solution of (12) requires R = 0. Therefore, the
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Fig. 7 Bifurcation diagram of the Binary SwitchModel for Case 3, shown in (11), with M = 4, r = 1, R >

0, and varying β. The qualitative forms of various effects are shown in the legend, described in further
detail in Fig. 6. The parameter space exhibiting Hyper-Allee features vanishes as β → 1/6
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Fig. 8 Population density of U87 glioblastoma cells compared to the calibrated Binary Switch Model. U87
glioblastoma cells, with initial densities of c1(0) = 0.02, c2(0) = 0.06, and c3(0) = 0.2, are observed
over the span of 120h (black circles) (Neufeld et al. 2017). The Binary Switch Model (solid curves) is fit
to minimise the combined least-square error (15), Σχ2, of three experimental data sets shown in Neufeld
et al. (2017). The estimates of the optimal model parameter set, for each value of M , are shown in Table 7.
b A semi-log plot makes it easier to visually compare the quality of match between the data and the model

qualitative features of (11) in the entire (α, R) parameter space are those seen in the
Weak Allee effect when α < 1 and the Extinction regime when α = 1.

To summarise, we determine that in Case 3 when M ∈ {1, 2, 3, 4}, and β ∈ [0, (5−
M)/6), a diverse family of Allee effects can be found. Among these Allee effects are:
theWeakAllee effect, theExtinction regime, the StrongAllee effect, and aHyper-Allee
effect parameter regime with three distinct equilibria in (0, 1]. Additional Allee effects
can be observed at the boundaries of the aforementioned Allee effects, including the
Tangential Manifold and Junction Point with semi-stable equilibria, as well as the
Triple Point with a single stable equilibria in (0, 1]. In all of these cases, there are
between zero and three equilibria in the interval (0, 1].

3 Interpreting Experimental Data Using the Binary SwitchModel

Todemonstrate how theBinarySwitchModel can be used to provide biological insight,
we consider population-level data sets describing the growth of populations of cancer
cells. Neufeld et al. (2017) perform three experiments with U87 glioblastoma cells.
Uniform monolayers of cells are grown from three different initial densities, with
the data shown in Fig. 8. Here, we see that all three experiments lead to increasing
population densities with time. The two experiments with the smallest initial densities
lead to increasing, concave up C(t) profiles. The experiment with the largest initial
density leads to an increasing C(t) profile that changes concavity at approximately
t = 100 h.
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Table 7 Estimates of the Binary Switch Model parameters that minimise the combined least-squares error
(15) between model predictions and experimental data from Neufeld et al. (2017). The optimal parameter
set with M = 1, highlighted in bold, provides the smallest combined least-squares error for all values of M

M r R α β C1(0) C2(0) C3(0) Σχ2

0 0.0113 0.0262 0.174 2.82 × 10−6 0.0250 0.0661 0.184 0.0179

1 0.0168 0.0345 0.0608 0.0692 0.0192 0.0652 0.188 0.0154

2 0.0180 0.0576 2.84 × 10−5 0.139 0.0160 0.0619 0.191 0.0169

3 0.0206 0.0642 3.66 × 10−9 0.0892 0.0126 0.0534 0.193 0.0268

4 0.0218 0.134 3.43 × 10−9 0.0623 0.0112 0.0489 0.191 0.0366

5 0.0237 0.0110 3.73 × 10−10 2.34 × 10−4 0.00933 0.0420 0.183 0.0571

The density of U87 glioblastoma cells has already been rescaled by its maximum
packing density in Neufeld et al. (2017), so we assume that C = 1 corresponds
to the maximum rescaled density. Our aim is to choose Θ = (α, β, r , R, M), with
C1(0),C2(0), and C3(0) as initial conditions, such that the model parameters provide
the best match to all three experimental conditions simultaneously. It is important
to calibrate the model to match all three data sets simultaneously, because if (4)
is consistent with the experimental data, there should be a single choice of model
parameters thatmatches the observedpopulationdynamics, regardless of initial density
(Jin et al. 2016b).

To match all experimental data sets simultaneously, we consider the combined
least-squares error between model predictions and all data:

Σχ2(Θ) :=
∑
j

[
C(t j ;Θ) − c j

]2
. (15)

Here, we treat the initial densities, C1(0),C2(0),C3(0) as parameters to be deter-
mined; therefore, we consider the extended parameter vector, Θ = (M, r , R,

α, β,C1(0),C2(0),C3(0)). In (15), c j represents all three experimental data sets
obtained at times t j , concatenated into a single vector. While the Binary Switch
Model uses the initial conditions C1(0),C2(0), and C3(0), we denote the experi-
mental measurements at t = 0 h as c1(0), c2(0), and c3(0), respectively (Fig. 8).
Using fminsearch in MATLAB (MathWorks 2020), we estimate Θ∗ such that
Σχ2 is minimised. Since M is discrete, while (r , R, α, β,C1(0),C2(0), C3(0)) are
continuous, we estimate Θ∗ for each value of M ∈ {0, 1, 2, 3, 4, 5} and then choose
the value of M that minimisesΣχ2. AMATLAB implementation of this least-squares
procedure is discussed in the Supplementary Information.

In Fig. 8, we show the best match that the Binary Switch Model can provide to all
three data sets from Neufeld et al. (2017) for each value of M . The optimal parameter
set Θ∗ and minimal Σχ2 for each value of M are reported in Table 7. We conclude
that setting a threshold of M = 1 provides the best match to these data sets. While
larger values of M clearly deviate from the experimental data sets at low population
densities (Fig. 8b), setting M = 0 or M = 2 also leads to a reasonable visual match
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for all three experimental data sets (Fig. 8). Furthermore, it is of interest to note that
the optimal model parameters associated with small values of M correspond to non-
logistic growth features, since logistic growth can only be obtained when r = R
and α = β (Table 7). The match between the experimental data and the model at
M = 1 has several consequences: (i) this exercise confirms that the data reported by
Neufeld et al. (2017) does not follow standard logistic growth; (ii) the high-quality
match between the Binary Switch Model and the data for M = 1 is consistent with
population dynamics similar to a Weak Allee effect, and (iii) interpreting this data
using the Binary Switch Model indicates that the best way to explain the population
dynamics with a relatively small threshold population density.

3.1 Applications to Ecology

Threshold effects are thought to be a common feature in biological population dynam-
ics, both in cell biology and in ecology. In the previous section, we demonstrated that
a population of U87 glioblastoma cells did not follow logistic growth and was bet-
ter described using the Weak Allee effect. In a similar fashion, various populations
in ecology with known threshold effects are better described using Allee effects. A
common threshold effect arising in ecology is a threshold population density (Cour-
champ et al. 2008), whereby a particular species will go extinct below this critical
density. Species that have been noted to go extinct below a threshold density include
the quokka (Sinclair and Pech 1996), the woodland caribou (Wittmer et al. 2005), the
red-backed vole (Morris 2002), and the gypsy moth (Tcheslavskaia et al. 2002; Lieb-
hold and Bascompte 2003). In many of these populations, the threshold density has
been measured (Courchamp et al. 2008), thereby providing an appropriate estimate of
the equilibrium density C∗ employed in the Binary Switch Model. Consequently, the
Binary Switch Model aligns with threshold effects known to arise in ecology, while
also providing insight into the underlying individual-level mechanisms that give rise
to Allee effects. Furthermore, by making use of measured threshold population den-
sities, we are thereby able to obtain an estimate of the threshold parameter M , further
reducing the parameter search space needed to calibrate the Binary Switch Model to
match experimental data.

4 Conclusions

In this work, we examine the link between threshold effects in population growth
mechanisms and Allee effects. An abrupt change in growth mechanisms, which we
refer to as a binary switch, is thought to be a common feature of biological popula-
tion dynamics. Despite the ubiquitous nature of local binary switches in population
dynamics, an explicit connection to Allee effects has not been considered. To explore
this connection in greater detail, we examine a population density growth model, in
which the proliferation and death rates vary with the local density of the population.
By incorporating a local binary switch in these proliferation and death rates, we greatly
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reduce the size of the parameter space while explicitly incorporating a biologically
realistic threshold effect in the proliferation and death rates.

To provide insight into the qualitative features of population dynamics arising in the
Binary SwitchModel, we examine the presence and stability of the resulting equilibria.
We show that when the binary switch occurs at some intermediate population density
and the high-density death rate is not too large, a diverse family of Allee effects is
supported by the model. Among these Allee effects are: (i) logistic growth, when no
binary switch is present; (ii) theWeak Allee effect, which modifies the simpler logistic
growth model without changing its equilibria or their stability; (iii) an Extinction
regime, where all population densities will eventually go extinct; (iv) the Strong Allee
effect, where population below a critical density will go extinct rather than grow, and
(v) the Hyper-Allee effect, which has two distinct positive stable population densities.
Furthermore, we show that there are additional forms of Allee effects at the boundaries
in the parameter space that separate these five main classes of Allee effects.

Along with exhibiting a wide range of Allee effects, the Binary SwitchModel has a
restricted parameter regime,making the interpretation of the local binary switch clearer
while requiring fewer parameters to identify when calibrating to experimental data. To
demonstrate these advantages, we calibrate the Binary Switch Model to experimental
data sets arising in cell biology. Not only can the Binary Switch Model provide a
good match to all experimental data across three different initial densities, we also
find that the parameters used to match the data provide a more explicit interpretation
of the underlying local growth mechanisms arising in the population. Specifically, we
confirm that the experimental data are inconsistent with the standard logistic model
and that the phenomena is best explained by a binary switch at low density. We
conclude that the Binary Switch Model is useful to theorists and experimentalists
alike in providing insight into binary switches at the individual scale that produce
Allee effects at the population scale.

While one of the merits of the Binary Switch Model is to show how a single local
binary switch gives rise to a variety of Allee effects, further extensions of the mod-
elling framework can be made. For instance, additional switches can be incorporated
into the modelling framework, representing populations whose proliferation and death
rates change at more than one density. We anticipate that this kind of extension would
lead to additional forms of Allee effects in the resulting population dynamics. Another
potential modificationwould be to generalise the notion howwemeasure local density.
In this work, we take the simplest possible approach use the number of nearest neigh-
bours on a hexagonal lattice to represent the local density. Several generalisations,
such as working with next nearest neighbours or working with a weighted average of
nearest neighbours, could be incorporated into our modelling framework (Fadai et al.
2020; Jin et al. 2016a). Again, we expect that such extensions would lead to an even
richer family of population dynamics models. We leave these extensions for future
considerations.
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