Skip to main content

Advertisement

Log in

Algorithmic Global Criteria for Excluding Oscillations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate algorithmic methods to tackle the following problem: Given a system of parametric ordinary differential equations built by a biological model, does there exist ranges of values for the model parameters and variables which are both meaningful from a biological point of view and where oscillating trajectories, can be found? We show that in the common case of polynomial vector fields known criteria excluding the existence of non-constant limit cycles lead to quantifier elimination problems over the reals.

We apply these criteria to various models that have been previously investigated in the context of algebraic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achatz, M., McCallum, S., & Weispfenning, V. (2008). Deciding polynomial-exponential problems. In ISSAC’08: Proceedings of the twenty-first international symposium on symbolic and algebraic computation, Linz/Hagenberg, Austria (pp. 215–222). New York: ACM.

    Chapter  Google Scholar 

  • Arnon, D. S., Collins, G. E., & McCallum, S. (1984). Cylindrical algebraic decomposition I: The basic algorithm. SIAM J. Comput., 13(4), 865–877.

    Article  MathSciNet  Google Scholar 

  • Bonhoeffer, S., Coffin, J. M., & Nowak, M. A. (1997). Human immunodeficiency virus drug therapy and virus load. J. Virol., 71(4), 3275.

    Google Scholar 

  • Boulier, F., Lefranc, M., Lemaire, F., Morant, P., & Ürgüplü, A. (2007). On proving the absence of oscillations in models of genetic circuits. In H. Anai, H. Horimoto, & T. Kutsia (Eds.), Lecture notes in computer science: Vol. 4545. Algebraic biology (AB 2007), Castle of Hagenberg, Austria (pp. 66–80). Berlin: Springer.

    Chapter  Google Scholar 

  • Boulier, F., Lefranc, M., Lemaire, F., & Morant, P.-E. (2008). Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In K. Horimoto, G. Regensburger, M. Rosenkranz, & H. Yoshida (Eds.), Lecture notes in computer science: Vol. 5147. Algebraic biology (AB 2008)—third international conference, Castle of Hagenberg, Austria (pp. 56–64). Berlin: Springer.

    Chapter  Google Scholar 

  • Brown, C. W. (2004). QEPCAD B: A system for computing with semi-algebraic sets via cylindrical algebraic decomposition. ACM SIGSAM Bull., 38(1), 23–24.

    Article  Google Scholar 

  • Davenport, J. H., & Heintz, J. (1988). Real quantifier elimination is doubly exponential. J. Symb. Comput., 5(1–2), 29–35.

    Article  MATH  MathSciNet  Google Scholar 

  • De Jong, H., Geiselmann, J., Batt, G., Hernandez, C., & Page, M. (2004). Qualitative simulation of the initiation of sporulation in Bacillus subtilis. Bull. Math. Biol., 66(2), 261–299.

    Article  MathSciNet  Google Scholar 

  • Dolzmann, A., & Gilch, L. A. (2004). Generic Hermitian quantifier elimination. In J. A. C. Bruno Buchberger (Ed.), Lecture notes in computer science: Vol. 3249. Artificial intelligence and symbolic computation: 7th international conference, AISC 2004, Linz, Austria (pp. 80–93). Berlin: Springer.

    Google Scholar 

  • Dolzmann, A., & Sturm, T. (1997a). REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bull., 31(2), 2–9.

    Article  MathSciNet  Google Scholar 

  • Dolzmann, A., & Sturm, T. (1997b). Simplification of quantifier-free formulae over ordered fields. J. Symb. Comput., 24(2), 209–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Dolzmann, A., Sturm, T., & Weispfenning, V. (1998a). A new approach for automatic theorem proving in real geometry. J. Autom. Reason., 21(3), 357–380.

    Article  MATH  MathSciNet  Google Scholar 

  • Dolzmann, A., Sturm, T., & Weispfenning, V. (1998b). Real quantifier elimination in practice. In B. H. Matzat, G.-M. Greuel, & G. Hiss (Eds.), Algorithmic algebra and number theory (pp. 221–247). Berlin: Springer.

    Google Scholar 

  • Dolzmann, A., Seidl, A., & Sturm, T. (2004). Efficient projection orders for CAD. In J. Gutierrez (Ed.), Proceedings of the 2004 international symposium on symbolic and algebraic computation (ISSAC 2004) (pp. 111–118). New York: ACM.

    Chapter  Google Scholar 

  • El Kahoui, M., & Weber, A. (2000). Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J. Symb. Comput., 30(2), 161–179.

    Article  MATH  Google Scholar 

  • El Kahoui, M., & Weber, A. (2002). Symbolic equilibrium point analysis in parameterized polynomial vector fields. In Ganzha, V. G., Mayr, E. W. & Vorozhtsov, E.V. (Eds.), Computer algebra in scientific computing (CASC) (pp. 71–83), Yalta, Ukraine, Sept. 2002.

    Google Scholar 

  • Érdi, P., & Tóth, J. (1989). Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Manchester: Manchester University Press.

    MATH  Google Scholar 

  • Feckan, M. (2001). A generalization of Bendixson’s criterion. Proc. Am. Math. Soc., 129(11), 3395–3400.

    Article  MATH  MathSciNet  Google Scholar 

  • Fiedler, B., & Hsu, S.-B. (2009). Non-periodicity in chemostat equations: a multi-dimensional negative Bendixson–Dulac criterion. J. Math. Biol., 59(2), 233–253.

    Article  MATH  MathSciNet  Google Scholar 

  • Fussmann, G. F., Ellner, S. P., Shertzer, K. W., Hairston, J., & Nelson, G. (2000). Crossing the Hopf bifurcation in a live predator-prey system. Science, 290(5495), 1358–1360.

    Article  Google Scholar 

  • Gilch, L. A. (2003). Effiziente Hermitesche Quantorenelimination. Diploma thesis, Universität Passau, 94030 Passau, Germany, Sept. 2003.

  • Glass, L., & Pasternack, J. S. (1978). Prediction of limit cycles in mathematical models of biological oscillations. Bull. Math. Biol., 40(1), 27–44.

    MathSciNet  Google Scholar 

  • Griffith, J. S. (1968). Mathematics of cellular control processes. I. negative feedback to one gene. J. Theor. Biol., 20, 202–208.

    Article  Google Scholar 

  • Hasty, J., McMillen, D., Isaacs, F., Collins, J. J. et al. (2001). Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet., 2(4), 268–279.

    Article  Google Scholar 

  • Hong, H., Liska, R., & Steinberg, S. (1997). Testing stability by quantifier elimination. J. Symb. Comput., 24(2), 161–187.

    Article  MATH  MathSciNet  Google Scholar 

  • Jäger, W., So, J. W. H., Tang, B., & Waltman, P. (1987). Competition in the gradostat. J. Math. Biol., 25, 23–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Lasaruk, A., & Sturm, T. (2007a). Weak integer quantifier elimination beyond the linear case. In V. G. Ganzha, E. W. Mayr, & E. V. Vorozhtsov (Eds.), Lecture notes in computer science: Vol. 4770. Computer algebra in scientific computing. Proceedings of the CASC 2007 (pp. 275–294). Berlin: Springer.

    Chapter  Google Scholar 

  • Lasaruk, A., & Sturm, T. (2007b). Weak quantifier elimination for the full linear theory of the integers. A uniform generalization of Presburger arithmetic. Appl. Algebra Eng. Commun. Comput., 18(6), 545–574.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, M. Y., & Muldowney, J. S. (1995). Lower bounds for the Hausdorff dimension of attractors. J. Dyn. Differ. Equ., 7(3), 457–469.

    Article  MATH  MathSciNet  Google Scholar 

  • Mincheva, M., & Roussel, M. R. (2007). Graph-theoretic methods for the analysis of chemical and biochemical networks. I. multistability and oscillations in ordinary differential equation models. J. Math. Biol., 55(1), 61–86.

    Article  MATH  MathSciNet  Google Scholar 

  • Muldowney, J. S. (1990). Compound matrices and ordinary differential equations. Rocky Mt. J. Math., 20(4), 857–872.

    Article  MATH  MathSciNet  Google Scholar 

  • Niu, W., & Wang, D. (2008). Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci., 1(3), 507–539.

    Article  MATH  MathSciNet  Google Scholar 

  • Novak, B., Pataki, Z., Ciliberto, A., & Tyson, J. J. (2001). Mathematical model of the cell division cycle of fission yeast. J. Nonlinear Sci., 11(1), 277–286.

    MATH  Google Scholar 

  • Seidl, A. Cylindrical decomposition under application-oriented paradigms. Doctoral dissertation, Universität Passau, 94030 Passau, Germany, Dec. 2006.

  • Sensse, A., Hauser, M. J. B., & Eiswirth, M. (2006). Feedback loops for Shil’nikov chaos: The peroxidase-oxidase reaction. J. Chem. Phys., 125, 014901.

    Article  Google Scholar 

  • Smith, H. L., Tang, B., & Waltman, P. (1991). Competition in an n-vessel gradostat. SIAM J. Appl. Math., 51(5), 1451–1471.

    Article  MATH  MathSciNet  Google Scholar 

  • Strzebonski, A. (2000). Solving systems of strict polynomial inequalities. J. Symb. Comput., 29(3), 471–480.

    Article  MATH  MathSciNet  Google Scholar 

  • Strzebonski, A. W. (2006). Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput., 41(9), 1021–1038.

    Article  MATH  MathSciNet  Google Scholar 

  • Strzebonski, A. (2008). Real root isolation for exp-log functions. In ISSAC’08: Proceedings of the twenty-first international symposium on symbolic and algebraic computation, Linz/Hagenberg, Austria (pp. 303–314). New York: ACM.

    Chapter  Google Scholar 

  • Sturm, T. (2006). New domains for applied quantifier elimination. In V. G. Ganzha, E. W. Mayr, & E. V. Vorozhtsov (Eds.), Lecture notes in computer science: Vol. 4194. Computer algebra in scientific computing: 9th international workshop, CASC 2006, Chisinau, Moldova, 11–15 September 2006. Berlin: Springer.

    Google Scholar 

  • Sturm, T. (2007). Redlog online resources for applied quantifier elimination. Acta Acad. Abo., Ser. B, 67(2), 177–191.

    Google Scholar 

  • Sturm, T., & Weber, A. (2008). Investigating generic methods to solve Hopf bifurcation problems in algebraic biology. In K. Horimoto, G. Regensburger, M. Rosenkranz, & H. Yoshida (Eds.), Lecture notes in computer science: Vol. 5147. Algebraic biology—third international conference (AB 2008), Castle of Hagenberg, Austria. Berlin: Springer.

    Google Scholar 

  • Sturm, T., Weber, A., Abdel-Rahman, E. O., & El Kahoui, M. (2009). Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Math. Comput. Sci., 2(3), 493–515. Special issue on ‘Symbolic Computation in Biology’.

    Article  MATH  MathSciNet  Google Scholar 

  • Tarski, A. (1951). A decision method for elementary algebra and geometry (2nd revised edn.). Berkeley: University of California Press. Reprinted in B. F. Caviness and J. R. Johnson (Eds.), Quantifier elimination and cylindrical algebraic decomposition. Texts and monographs in symbolic computation (pp. 24–84). Berlin: Springer (1998).

    MATH  Google Scholar 

  • Thomas, R., Thieffry, D., & Kaufman, M. (1995). Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol., 57(2), 247–276.

    MATH  Google Scholar 

  • Toth, J. (1987). Bendixson-type theorems with applications. Z. Angew. Math. Mech., 67, 31–35.

    Article  MATH  MathSciNet  Google Scholar 

  • Tuckwell, H. C., & Wan, F. Y. M. (2004). On the behavior of solutions in viral dynamical models. Biosystems, 73(3), 157–161.

    Article  Google Scholar 

  • Tyson, J. J., Chen, K., & Novak, B. (2001). Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol., 2(12), 908–916.

    Article  Google Scholar 

  • van den Driessche, P., & Zeeman, M. L. (1998). Three-dimensional competitive Lotka–Volterra systems with no periodic orbits. SIAM J. Appl. Math., 58(1), 227–234.

    Article  MATH  MathSciNet  Google Scholar 

  • Weispfenning, V. (1988). The complexity of linear problems in fields. J. Symb. Comput., 5(1&2), 3–27.

    Article  MATH  MathSciNet  Google Scholar 

  • Weispfenning, V. (1994). Quantifier elimination for real algebra—the cubic case. In Proceedings of the international symposium on symbolic and algebraic computation (pp. 258–263). New York: ACM.

    Chapter  Google Scholar 

  • Weispfenning, V. (1997a). Quantifier elimination for real algebra—the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput., 8(2), 85–101.

    Article  MATH  MathSciNet  Google Scholar 

  • Weispfenning, V. (1997b). Simulation and optimization by quantifier elimination. J. Symb. Comput., 24(2), 189–208. Special issue on applications of quantifier elimination.

    Article  MATH  MathSciNet  Google Scholar 

  • Weispfenning, V. (1998). A new approach to quantifier elimination for real algebra. In B. Caviness & J. Johnson (Eds.), Texts and monographs in symbolic computation, quantifier elimination and cylindrical algebraic decomposition (pp. 376–392). New York: Springer.

    Google Scholar 

  • Weispfenning, V. (2000). Deciding linear-transcendental problems. In V. G. Ganzha, E. W. Mayr, & E. V. Vorozhtsov (Eds.), Proceedings of the 3rd workshop on computer algebra in scientific computing, CASC’2000 (pp. 423–437), Samarkand, Uzbekistan, 5–9 October 2000. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, A., Sturm, T. & Abdel-Rahman, E.O. Algorithmic Global Criteria for Excluding Oscillations. Bull Math Biol 73, 899–916 (2011). https://doi.org/10.1007/s11538-010-9618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9618-0

Keywords

Navigation