Skip to main content
Log in

Analysis of Discrete Bioregulatory Networks Using Symbolic Steady States

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A discrete model of a biological regulatory network can be represented by a discrete function that contains all available information on interactions between network components and the rules governing the evolution of the network in a finite state space. Since the state space size grows exponentially with the number of network components, analysis of large networks is a complex problem. In this paper, we introduce the notion of symbolic steady state that allows us to identify subnetworks that govern the dynamics of the original network in some region of state space. We state rules to explicitly construct attractors of the system from subnetwork attractors. Using the results, we formulate sufficient conditions for the existence of multiple attractors resp. a cyclic attractor based on the existence of positive resp. negative feedback circuits in the graph representing the structure of the system. In addition, we discuss approaches to finding symbolic steady states. We focus both on dynamics derived via synchronous as well as asynchronous update rules. Lastly, we illustrate the results by analyzing a model of T helper cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon, U. (2007). Network motifs: theory and experimental approaches. Nat. Rev. Genet., 8, 450–461.

    Article  Google Scholar 

  • Bagley, R. J., & Glass, L. (1996). Counting and classifying attractors in high dimensional dynamical systems. J. Theoret. Biol., 183(3), 269–284.

    Article  Google Scholar 

  • Bastolla, U., & Parisi, G. (1998). The modular structure of Kauffman networks. Phys. D, 115(3–4), 219–233.

    Article  MATH  Google Scholar 

  • Bruggeman, F. J., Westerhoff, H. V., Hoek, J. B., & Kholodenko, B. N. (2002). Modular response analysis of cellular regulatory networks. J. Theoret. Biol., 218(4), 507–520.

    MathSciNet  Google Scholar 

  • Christensen, C., & Albert, R. (2007). Using graph concepts to understand the organization of complex systems. Int. J. Bifurc. Chaos, 17(7), 2201–2214.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubrova, E. (2006). Random multiple-valued networks: Theory and applications. In Proceedings of 36th IEEE international symposium on multiple-valued logic (ISMVL’2006), Singapore (pp. 27–33).

    Google Scholar 

  • Dubrova, E., & Teslenko, M. (2005). Compositional properties of random boolean networks. Phys. Rev. E, 71(5), 056116.

    Article  MathSciNet  Google Scholar 

  • Harary, F., Hayes, J. P., & Wu, H.-J. (1988). A survey of the theory of hypercube graphs. Comput. Math. Appl., 15(4), 277–289.

    Article  MathSciNet  Google Scholar 

  • Hartwell, L., Hopfield, J., Leibler, S., & Murray, A. (1999). From molecular to modular cell biology. Nature, 402, C47–C52.

    Article  Google Scholar 

  • Jarrah, A. S., Raposa, B., & Laubenbacher, R. (2007). Nested canalyzing, unate cascade, and polynomial functions. Phys. D, 233(2), 167–174.

    Article  MATH  MathSciNet  Google Scholar 

  • Kauffman, S. (1993). The origins of order. London: Oxford University Press.

    Google Scholar 

  • Laubenbacher, R., & Mendes, P. (2005). A discrete approach to top-down modeling of biochemical networks. In Computational systems biology (pp. 229–247). Amsterdam: Elsevier.

    Google Scholar 

  • Mendoza, L. (2006). A network model for the control of the differentiation process in Th cells. Biosystems, 84(2), 101–114.

    Article  Google Scholar 

  • Mendoza, L., & Alvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for  Arabidopsis thaliana flower morphogenesis. J. Theoret. Biol., 193(2), 307–319.

    Article  Google Scholar 

  • Mendoza, L., Thieffry, D., & Alvarez-Buylla, E. R. (1999). Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analysis. Bioinformatics, 15, 593–606.

    Article  Google Scholar 

  • Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., & Chaouiya, C. (2009). Logical modelling of regulatory networks with ginsim 2.3. Biosystems, 97(2), 134–139.

    Article  Google Scholar 

  • Naldi, A., Remy, E., Thieffry, D., & Chaouiya, C. (2009). A reduction of logical regulatory graphs preserving essential dynamical properties. In LNBI: Vol. 5688. Computational methods in systems biology, CMSB 2009, Bologna, Italy (pp. 266–280). Berlin: Springer.

    Chapter  Google Scholar 

  • Naldi, A., Thieffry, D., & Chaouiya, C. (2007). Decision diagrams for the representation and analysis of logical models of genetic networks. In LNBI: Vol. 4695. Computational methods in systems biology, CMSB 2007, Edinburgh, Scotland (pp. 233–247). Berlin: Springer.

    Chapter  Google Scholar 

  • Newman, M. E. J. (2006). Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 103(23), 8577–8582.

    Article  Google Scholar 

  • Papin, J. A., Reed, J. L., & Palsson, B. O. (2004). Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem. Sci., 29(12), 641–647.

    Article  Google Scholar 

  • Paul, U., Kaufman, V., & Drossel, B. (2006). Properties of attractors of canalyzing random boolean networks. Phys. Rev. E, 73(2), 026118.

    Article  Google Scholar 

  • Remy, É., Mossé, B., Chaouiya, C., & Thieffry, D. (2003). A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics, 19, 172–178.

    Article  Google Scholar 

  • Remy, É., & Ruet, P. (2008). From minimal signed circuits to the dynamics of Boolean regulatory networks. Bioinformatics, 24, 220–226.

    Article  Google Scholar 

  • Remy, É., Ruet, P., & Thieffry, D. (2008). Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Adv. Appl. Math., 41(3), 335–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Richard, A. (2007). On the link between oscillations and negative circuits in discrete genetic regulatory networks. JOBIM, 10–12 juillet, Marseille, France.

  • Richard, A. (2009). Positive circuits and maximal number of fixed points in discrete dynamical systems. Discrete Appl. Math., 157(15), 3281–3288.

    Article  MATH  MathSciNet  Google Scholar 

  • Richard, A., & Comet, J.-P. (2007). Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl. Math., 155(18), 2403–2413.

    Article  MATH  MathSciNet  Google Scholar 

  • Richard, A., Comet, J.-P., & Bernot, G. (2005). R. Thomas’ modeling of biological regulatory networks: introduction of singular states in the qualitative dynamics. Fund. Inform., 65, 373–392.

    MATH  MathSciNet  Google Scholar 

  • Robert, F. (1986). Springer series in computational mathematics: Vol. 6. Discrete iterations: a metric study. Berlin: Springer.

    MATH  Google Scholar 

  • Robinson, C. (1998). Dynamical systems: stability, symbolic dynamics, and chaos. Boca Raton: CRC Press.

    Google Scholar 

  • Shetty, P., Lo, M.-C., Robertson, S. M., & Lin, R. (2005). C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. Dev. Biol., 285(2), 584–592.

    Article  Google Scholar 

  • Siebert, H. (2009). Deriving behavior of boolean bioregulatory networks from subnetwork dynamics. Math. Comput. Sci., 2(3), 421–442.

    Article  MATH  MathSciNet  Google Scholar 

  • Siebert, H. (2009). Dynamical and structural modularity of discrete regulatory networks. In EPTCS: Vol. 6. Computational models for cell processes, CompMod 2009, Eindhoven, Netherlands (pp. 109–124)

    Google Scholar 

  • Siebert, H., & Bockmayr, A. (2007). Relating attractors and singular steady states in the logical analysis of bioregulatory networks. In LNCS: Vol. 4545. Algebraic biology, AB 2007, Castle of Hagenberg, Austria (pp. 36–50). Berlin: Springer.

    Chapter  Google Scholar 

  • Thomas, R., & Kaufman, M. (2001). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11, 180–195.

    Article  MATH  MathSciNet  Google Scholar 

  • Willadsen, Kai, & Wiles, Janet (2007). Robustness and state-space structure of boolean gene regulatory models. J. Theoret. Biol., 249(4), 749–765.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Siebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebert, H. Analysis of Discrete Bioregulatory Networks Using Symbolic Steady States. Bull Math Biol 73, 873–898 (2011). https://doi.org/10.1007/s11538-010-9609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9609-1

Keywords

Navigation