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Abstract Motivated by recent work in parametric sequence alignment, we study the
parameter space for scoring RNA folds and construct an RNA polytope. A vertex of
this polytope corresponds to RNA secondary structures with common branching. We
use this polytope and its normal fan to study the effect of varying three parameters
in the free energy model that are not determined experimentally. Our results indicate
that variation of these specific parameters does not have a dramatic effect on the
structures predicted by the free energy model. We additionally map a collection of
known RNA secondary structures to the RNA polytope.

Keywords RNA secondary structure · Plane tree · Free energy · Thermodynamic
model · Parametric analysis

1 Introduction

Determining the structure of RNA molecules remains a fundamental scientific chal-
lenge, since current methods cannot always identify the “correct” fold from the large
number of possible configurations. A common method for predicting the secondary
structure of a single RNA molecule, termed the thermodynamic model, involves free
energy minimization (Mathews and Turner 2006; Zuker 2000; Zuker et al. 1999).
Extensions to this approach, such as suboptimal structure prediction and partition
function calculations, still depend on the parameters from the thermodynamic model
to score possible secondary structures. The free energy of a secondary structure is
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calculated by scoring substructures according to a set of parameters—most of which
are determined experimentally (see SantaLucia and Turner 1997 for a review). A dy-
namic programming algorithm, used in software packages like mfold (Mathews et al.
1999; Zuker 2003), computes the minimal free energy as well as the optimal sec-
ondary structure(s) (Mathews et al. 2004).

In this work, we address variation in the parameter space for scoring secondary
structures, focusing on three parameters from the multibranch loop energy function
that are not based on measurement. Specifically, we address the following questions.
What is the geometry of the parameter space for scoring RNA folds and how does
this geometry relate back to the biology? How sensitive is the thermodynamic model
to variation of the ad-hoc multibranch loop parameters? We answer these questions
using geometric combinatorics. We find that variation of the multibranch loop pa-
rameters has a smaller effect than the change in the parameter space coming from
improved measurement. Moreover, regardless of the choice of multibranch loop pa-
rameters used in the current version of the thermodynamic model, the minimal energy
structures have a low degree of branching.

Our results are achieved by applying techniques from geometric combinatorics
to give a parametric analysis of RNA folding. We construct an RNA polytope
whose vertices correspond to sets of secondary structures with common branch-
ing. Its normal fan subdivides the parameter space so that the parameters lying
in the same cone give the same minimal free energy structures. These approaches
have been used recently in parametric sequence alignment (Dewey et al. 2006;
Dewey and Woods 2005; Pachter and Sturmfels 2004a) and for more general hidden
Markov models (Beerenwinkel et al. 2005; Pachter and Sturmfels 2004b). There is
also earlier polyhedral work on parametric sequence alignment (Gusfield et al. 1992;
Waterman et al. 1992) and related work on secondary structure comparison (Wang
and Zhao 2003) and sequence/structure alignment (Lenhof et al. 1998). We addi-
tionally make comparisons with biological structures, and this work supports our
theoretical results.

2 Biological Motivations and Implications

Under the thermodynamic model, the folding of an RNA sequence is predicted to
maximize the stabilizing base pairs while minimizing the energetic cost of loop struc-
tures. These optimizations depend on the specific parameter values used to score the
favorability of RNA secondary structures under the thermodynamic model. Hence,
we focus here on a parametric analysis of RNA folding.

We investigate a combinatorial model of RNA folding to gain insight into the
trade-offs among the different types of loop structures—in particular the dependence
on the thermodynamic parameters which can be analyzed parametrically using geo-
metric combinatorics. Since this is one of the first such analyses, we limited our ther-
modynamic model to the loop energies to keep the set of parameters to a reasonable
size for these initial results. In Sect. 4, we give a complete geometric characterization
of our simplified thermodynamic parameter space and the associated RNA polytope.



756 V. Hower, C.E. Heitsch

As illustrated in Fig. 3, we see that our RNA polytope is a tetrahedron whose
boundary corresponds to (sets of) trees optimal for different possible loop parame-
ters. As we discuss, the vertices correspond to different trade-offs in terms of the
thermodynamic penalties/rewards for the number of hairpin loops, of bulge/internal
loops, and of helices in the external loop. We note this analysis holds for arbitrary
size structures and generic thermodynamic parameters in our combinatorial model of
RNA folding.

We then investigate some specific variations in the parameter space, by consid-
ering four different types of combinatorial RNA sequences. This allows us to focus
particularly on the three parameters which govern the ad hoc multibranch loop en-
ergy function. As described elsewhere, for instance in Mathews et al. (1999), most of
the 10,000+ parameters in the current thermodynamic model are derived from exper-
imental results measuring the stability of different loop structures. A notable excep-
tion to this is the affine energy function which is used to score the entropic effects for
multibranch loops. This function, chosen primarily for computational expediency, is
known to be a very low-order approximation to the complicated thermodynamics of
branching loops. Although experimentalists are now beginning to measure the ther-
modynamics of branching loops (Diamond et al. 2001; Mathews and Turner 2002),
the three function parameters currently in use were chosen through a knowledge-
based approach. Thus, we investigate the effect that varying said parameters has on
determining the optimal structures in our combinatorial model.

As in previous work (Bakhtin and Heitsch 2009), we find qualitative differences
when the current thermodynamic parameters (version 3.0) are compared against the
previous ones (version 2.3). In particular, when applied to our combinatorial RNA
sequences, the version 2.3 parameters favor a high degree of branching in the exter-
nal loop while the current ones favor a much lower degree of branching overall and
show more dependence on the base composition of the sequence. Hence, we see that
the behavior of the current thermodynamic parameters is more biologically realistic,
although it is also likely to be more sensitive to changes in the ad hoc multibranch
function parameters.

Finally, we compare the results of our parametric analysis with the branching of a
set of known RNA secondary structures. When interpreted as plane trees, a substantial
fraction of the known RNA secondary structures lie on the boundary of the appropri-
ate RNA polytope, and so would be minimal for some choice of parameters. Since
they are distributed among different facets, we conclude (as expected) that there are
important aspects of RNA folding which our combinatorial model does not capture.

We can still, though, consider the implications for RNA folding gained from the
parametric analysis of our combinatorial model. Trees on the boundary of our poly-
tope are less than half the size of trees found in the interior on average. This suggests
as we discuss that a simpler thermodynamic model may be sufficient for smaller
RNA molecules. It is already known that even the full thermodynamic model is not
adequate to accurately predict large RNA secondary structures. We find it intriguing
that more than 80% of the known secondary structures are close to the two polytope
vertices which would be optimal for our combinatorial RNA sequences under the
current thermodynamic model. This suggests that there are essential biological char-
acteristics, namely the thermodynamically favored branching configurations, which
are being captured by our combinatorial model of RNA folding.
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Fig. 1 Secondary structures as rooted plane trees

3 Background

3.1 Plane Trees and RNA Folding

We use a simplified model of RNA folding in which a secondary structure S is rep-
resented by a rooted plane tree T = T (S). Single-stranded RNA sequences fold into
molecular structures. One step in this folding process is the formation of Watson–
Crick and also G-U base pairs. The set of (nested) base pairs determines the secondary
structure of an RNA sequence. As illustrated in Fig. 1, a secondary structure has
two basic types of substructures—runs of stacked base pairs which are called helices
and the single-stranded regions known as loops. Every component of a secondary
structure is given an associated free energy score by the thermodynamic model. To
a first approximation, the score of a loop is determined its degree—the number of
base pairs contained in the loop, or equivalently the number of helices meeting the
loop. There are different energy functions for hairpin loops, which have degree 1,
bulge/internal loops with degree 2, multibranch loops with degree greater than 2,
and the exterior loop, which includes the unpaired bases not contained in any hairpin
loop, bulge/internal loop, or multibranch loop. Suppose L is multibranch loop. The
current free energy model uses the following formula for the energy of L:

E(L) = a + bn1 + cn2 + q, (1)

where n1 is the number of single-stranded bases in L, n2 is the number of helices in
L, q is the sum of the single-base stacking energies (also called “dangling energies”
Zuker et al. 1999) in L, and a, b, c are the parameters for offset, free base, and helix
penalties, respectively (Zuker et al. 1999). Equation (1) is not based on experimental
measurement, but rather it is used in order to facilitate faster computations. In this
work, our analysis is primarily focused on the three parameters a, b, and c from this
function since they are not experimentally determined. Our results are obtained by
considering rooted plane trees as a simplified model of RNA folding.

Plane trees have been used to enumerate possible RNA secondary structures
(Schmitt and Waterman 1994) and also to compare them (Le et al. 1989; Shapiro
and Zhang 1990) for some time now. The interaction between combinatorics and
RNA folding has continued to develop over the last 20 years, including using trees
as more abstract representations of RNA folding, for instance in Gan et al. (2003)
and related work as well as in Bakhtin and Heitsch (2008, 2009), Heitsch (2010).
A rooted plane tree (also called plane tree or ordered tree (Dershowitz and Zaks 1980;
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Stanley 1999)) is a tree with a specified root vertex and such that the subtrees of any
given vertex are ordered. This ordering comes from the 5′ → 3′ linear arrangement
of the RNA sequence. Plane trees with n edges are one of the many combinatorial
objects counted by the Catalan numbers

Cn = 1

n + 1

(
2n

n

)
. (2)

To obtain T , we assign the root vertex to the exterior loop of S and the non-root ver-
tices of T correspond to the remaining loops in S. Two vertices in T share an edge
when their loops in S are connected by helices. As an example, we give a secondary
structure in Fig.1A together with its associated plane tree in Fig. 1B. Technically,
a secondary structure S must be free of pseudoknots in order to construct T . While
pseudoknots do occur in secondary structures, the thermodynamic model cannot pre-
dict them and moreover one can create a nested, pseudoknot-free structure from a
given fold in several ways—some of which are in Smit et al. (2008) and our approach
is described the Materials and Methods section. Given a plane tree T with n edges,
we write r for the degree of the root vertex and for 0 ≤ k ≤ n, dk is the number of
nonroot vertices with k children. Thus, dk gives the number of non-root vertices in T

with degree k + 1, and this is the number of loops in S with k + 1 branches. To assign
an energy to a plane tree, we assign weights to the vertices, based on the down degree
of the vertex. In terms of secondary structures, we are assigning the same energy to
each type of loop in the fold. This is a simplification of the scoring for the thermo-
dynamic model, in which the energy of a structure is the sum of the energies of the
loops. For example, to assign an energy to a multibranch loop vertex of degree k, we
use the energy function (1) for a multibranch loop where the number of free bases is
a multiple of the number of helices. The parameters b and c in (1) are incorporated
into one parameter, and (1) simplifies to c2 + a2(k + 1). If T is a plane tree with n

edges, the free energy of T is written as

E(T ) = a3r + a0d0 + a1d1 +
n∑

k=2

[
c2 + a2(k + 1)

]
dk

= a3r + a0d0 + a1d1 + (c2 + 2a2)

n∑
k=2

dk + a2

n∑
k=2

(k − 1)dk

= a3r + a0d0 + a1d1 + (c2 + 2a2)(n − d0 − d1) + a2(d0 − r)

= (c2 + 2a2)n + (a3 − a2)r + (a0 − c2 − a2)d0 + (a1 − c2 − 2a2)d1,

where we have used the relations
n∑

k=2

dk = n − d0 − d1 and
n∑

k=2

(k − 1)dk = d0 − r

that hold for all plane trees (Stanley 1999). We refer the reader to Sect. 4.4 for further
discussion the energy of a plane tree. To minimize free energy, we must minimize
E(T ) over the space of all plane trees. Since this space is infinite, we will typically
think of n as being fixed but arbitrary and minimize the free energy function over the
finite space of plane trees with n edges. For a given set of parameters a0, a1, a2, a3, c2,
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this is equivalent to minimizing the following inner product

E′(T ) = (θ2, θ3, θ4) · (r, d0, d1) (3)

where

θ2 = a3 − a2, θ3 = a0 − c2 − a2, θ4 = a1 − c2 − 2a2.

3.2 Geometric Combinatorics

In this section, we present some basic definitions in geometric combinatorics. We
refer the reader to Grünbaum (2003), Ziegler (1995) for a more detailed treatment.
A set U ⊂ R

d is convex if for any two points x, y ∈ U , the line segment connecting
x and y is contained in U , that is {αx + (1 − α)y | 0 ≤ α ≤ 1} ⊂ U . For any subset
U of R

d , the convex hull of U , written convU , is the intersection of all convex sets
that contain U . A lattice polytope Δ ⊂ R

d is the convex hull of a finite collection of
lattice points: Δ = convA, where A = {y1, y2, y3, . . . , yr} ⊂ Z

d .
Any lattice polytope Δ is characterized by a finite collection of defining inequali-

ties

{ci · x ≥ bi}i∈I where ci ∈ Z
d , x ∈ Δ, and bi ∈ Z. (4)

A face F of Δ is a subset defined by setting some of the defining inequalities to
equality, i.e.,

F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Δ

∣∣∣∣∣∣∣∣∣

ci1 · x = bi1

ci2 · x = bi2
...

cik · x = bik

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

and the dimension of F is the dimension of its affine span. The vertices of Δ are the
0-dimensional faces while the facets have dimension dimΔ− 1. The boundary of Δ,
written ∂Δ is the union of all faces of Δ of dimensions 0,1,2, . . . ,dimΔ − 1.

A convex polyhedral cone σ is the positive hull of a finite collection of lat-
tice points in Z

d : σ = {t1z1 + t2z2 + · · · + tszs | ti ≥ 0, zi ∈ Z
d}, and we write

σ = 〈z1, z2, . . . , zs〉. Associated to each lattice polytope Δ is its normal fan N (Δ)

that will give us the set of parameter values which makes a particular face of Δ

optimal. Geometrically, N (Δ) is a collection of cones that are in one-to-one corre-
spondence with faces F of Δ:

σF = {v ∈ R
d | u · v ≤ x · v ∀u ∈ F, ∀x ∈ Δ

}
. (5)

Note that dimσF = dimΔ − dimF . As an example of the above concepts, we
give a 2-dimensional polytope Δ in Fig. 2A and its normal fan N (Δ) in Fig. 2B. The
four vertices of Δ correspond to the four 2-dimensional cones in N (Δ), and the four
facets of Δ correspond to the four rays of N (Δ).

In terms of minimization, (5) states that the points in F are minimizers of the
dot product for vectors in σF , among all points in Δ. Readers familiar with linear
programming will recognize that the polytope Δ is the feasible region of a linear pro-
gram with constraints coming from the rays (1-dimensional cones) of N (Δ). Taking
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Fig. 2 A 2-dimensional polytope Δ (A) and its normal fan N (Δ) (B)

the inner product with any vector in R
d gives the objective function for a linear pro-

gram over this feasible region. The correspondence between faces of Δ and cones
in N (Δ) in (5) says vectors in the face F solve any linear program whose objective
function lies in the cone σF . Our analysis in this work involves linear programming
over all possible count vectors (r, d0, d1).

4 Results

4.1 Plane Trees that Minimize Energy

Fixing n ≥ 5, the possible count vectors (r, d0, d1) of plane trees are classified by
the second author (Heitsch 2010) and fall into one of four classes, as listed in Ta-
ble 1 with r, d0, d1 ≥ 0 in all cases. Since r, d0, d1 must all be integers, the vertices
in Table 1B or Table 1D differ depending on whether or not n is even or odd. We
want to minimize the linear energy function over this point set (which includes count
vectors from all four cases), and hence we let Pn be the convex hull of the union of
the four polytopes listed in Table 1. Regardless of our choice of energy parameters,
a minimum energy plane tree with n edges will occur at a vertex of Pn. The following
proposition describes the vertices of Pn.

Proposition 4.1 Define Ψn as follows:

Ψn :=

⎧⎪⎪⎨
⎪⎪⎩

conv{(1, n+1
2 ,0), (1, n − 1,0), (1,1, n − 1), (n,n,0)}

n odd
conv{(1, n+2

2 ,0), (1, n
2 ,1), (2, n+2

2 ,0), (1, n − 1,0), (1,1, n − 1), (n,n,0)}
n even

Then Ψn = Pn for n ≥ 5.
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Table 1 Sets of inequalities and corresponding vertices for plane trees

Set of inequalities Vertices for n even Vertices for n odd

(A)

r = 1

d0 = 1

d1 = n − 1

{(1,1, n − 1)} {(1,1, n − 1)}

(B)

r = 1

2 ≤ d0 ≤ n

n − 2d0 + 1 ≤ d1

d1 ≤ n − d0 − 1

{
(1,2, n − 3), (1, n+2

2 ,0),

(1, n
2 ,1), (1, n − 1,0)

} {
(1,2, n − 3), (1, n+1

2 ,0),

(1, n − 1,0)

}

(C)

r = d0

2 ≤ d0 ≤ n

d1 = n − d0

{(2,2, n − 2), (n,n,0)} {(2,2, n − 2), (n,n,0)}

(D)

2 ≤ r

r ≤ 2d0 − n + d1

3 ≤ d0 ≤ n − 1

n − 2d0 + 2 ≤ d1

d1 ≤ n − d0 − 1

{
(2, n − 1,0), (n − 2, n − 1,0),

(2,3, n − 4), (2, n+2
2 ,0)

} ⎧⎪⎨
⎪⎩

(2, n − 1,0), (n − 2, n − 1,0),

(2, n+3
2 ,0), (3, n+3

2 ,0),

(2,3, n − 4), (2, n+1
2 ,1)

⎫⎪⎬
⎪⎭

Proof Clearly, Ψn ⊂ Pn, and hence we’ll show each lattice point of Pn in Table 1 is
contained in Ψn. The normal fan of Ψn has rays

{
(−1,2,1), (1,0,0), (1,1 − n,2 − n), (0,0,1)

}
n odd{

(−1,2,1), (1,0,0), (1,1 − n,2 − n), (0,0,1), (0,1,1)
}

n even

Moreover, for each lattice point t = (r, d0, d1) in Table 1, one can verify that t satisfies
the defining inequalities of Ψn:

(r, d0, d1) · (−1,2,1) ≥ n

(r, d0, d1) · (1,0,0) ≥ 1

(r, d0, d1) · (1,1 − n,2 − n) ≥ 2n − n2

(r, d0, d1) · (0,0,1) ≥ 0

and for n even we additionally have

(r, d0, d1) · (0,1,1) ≥ n + 2

2
.

This gives Pn ⊂ Ψn, and we have equality. �

In the sequel, we will primarily focus on the rational tetrahedron

Δn := conv

{(
1,

n + 1

2
,0

)
, (1, n − 1,0), (1,1, n − 1), (n,n,0)

}
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regardless of whether n is even or odd. There are many reasons for this. First, as-
ymptotically, there is no difference between Pn and Δn for n even. The normal
fan N (Pn) is obtained from N (Δn) by adding a single ray and subdividing the
full dimensional cone σ = 〈(1,0,0), (0,0,1), (−1,2,1)〉 corresponding to the vertex
(1, n+1

2 ,0). Thus, when n is even, the parameters giving (1,1, n − 1), (1, n − 1,0),

or (n,n,0) the minimal energy are the same regardless of whether we use the sub-
division of R

3 determined by N (Pn) or that determined by N (Δn). Moreover, the
parameters in σ will yield (1, n+2

2 ,0), (1, n
2 ,1), or (2, n+2

2 ,0) as minimal, and the
trees corresponding to these three count vectors are all similar, as discussed in Propo-
sition 4.3.

4.2 Lattice Points in ∂Pn

Suppose S is a secondary structure whose plane tree has count vector (r, d0, d1).
If (r, d0, d1) ∈ intPn then there is no choice of parameters that can make S have
minimal free energy. Conversely, if (r, d0, d1) ∈ intF for some face F of Pn, then
any parameter vector in the cone σF ⊂ N (Pn) yields S with minimal energy. We
thus want to determine the count vectors lying on ∂Pn.

All four sets of inequalities in Table 1 intersect ∂Pn. Let QA, QB , QC , and
QD be the polyhedra described in Table 1(A), (B), (C), and (D), respectively. Then
QA,QB,QC ⊂ ∂Pn and

QA = {
(1,1, n − 1)

}

(QA ∪ QB) ∩ Z
3 = conv

{
(1, n − 1,0), (1,1, n − 1),

(
1,

n + 1

2
,0

)}
∩ Z

3

(QA ∪ QC) ∩ Z
3 = conv

{
(1,1, n − 1), (n,n,0)

}∩ Z
3.

Since QD is 3-dimensional, it cannot be contained in the boundary of Pn. We do,
however, have

(QD ∩ ∂Pn) ∩ Z
3 = (intE1 ∪ intF1 ∪ intF2) ∩ Z

3, (6)

where E1 = conv{(n,n,0), (1, n+1
2 ,0)}, F1 = conv{(n,n,0), (1, n+1

2 ,0), (1,1,

n−1)}, and F2 = conv{(n,n,0), (1, n+1
2 ,0), (1, n−1,0)}. Equation (6) follows from

counting lattice points in the objects on the left and right-hand sides of the equation
using the same technique as in Proposition 4.2. The plane trees defined in Table 1D
that lie on ∂Pn satisfy d1 = 0 or r = 2d0 − n + d1. Their associated secondary struc-
tures either have no bulges/internal loops or have a maximal number of helices in the
exterior loop.

Next, we count the number of lattice points in the interior of each face of Pn. For
an edge of the form E = conv{(x1, y1, z1), (x2, y2, z2)}, we use the formula

#
(
intE ∩ Z

3)= gcd
(|x1 − x2|, |y1 − y2|, |z1 − z2|

)− 1

and obtain the following counts. The edges conv{(n,n,0), (1, n+1
2 ,0)} and

conv{(1,1, n − 1), (1, n+1
2 ,0)} each have 1

2 (n − 3) lattice points in their interiors.
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A total of 1
2 (n− 5) lattice points are in the interior of conv{(1, n− 1,0), (1, n+1

2 ,0)}.
The interior of conv{(n,n,0), (1,1, n − 1)} contains n − 2 lattice points, and
there are no interior lattice points for the edges conv{(n,n,0), (1, n − 1,0)} and
conv{(1,1, n − 1), (1, n − 1,0)}.

To determine the number of lattice points in a facet F of Pn, we use Pick’s theorem
(Iseri 2008)

#
(
intF ∩ Z

3)= Area(F ) − 1

2

[
#
(
∂F ∩ Z

3)]+ 1,

where the area of F is normalized with respect to the 2-dimensional sublattice con-
taining F . We illustrate Pick’s theorem with the following proposition.

Proposition 4.2 There are no interior lattice points in the facet

F = conv
{
(1,1, n − 1), (1, n − 1,0), (n,n,0)

}
.

Proof The triangle F lies on the hyperplane −X + (n−1)Y + (n−2)Z = n2 −2n in
R

3, and thus we normalize the area of F by dividing by
√

(−1)2 + (n − 1)2 + (n − 2)2

=√2(n2 − 3n + 3). Before normalization, the area of F is

1

2

√√√√√
∣∣∣∣∣∣
1 1 n

1 n − 1 n

1 1 1

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣

1 n − 1 n

n − 1 0 0
1 1 1

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
n − 1 0 0

1 1 n

1 1 1

∣∣∣∣∣∣
2

= 1

2

√
2n4 − 10n3 + 20n − 18n + 6

= 1

2
(n − 1)

√
2
(
n2 − 3n + 3

)
.

Moreover, using the counts above for the interior lattice points in the edges of F , we
have

#
(
∂F ∩ Z

3)= (n − 2) + 0 + 0 + 3 = n + 1.

Applying Pick’s theorem yields

#
(
intF ∩ Z

3) = 1

2
(n − 1) − 1

2
(n + 1) + 1

= 0. �

For the other three facets of Pn, each contains 1
4 (n − 3)2 interior lattice points. In

total, this gives 1
4 (3n2 − 8n + 13) lattice points on ∂Pn, all of which correspond to

plane trees.
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4.3 Biological Meaning of Pn and N (Pn)

4.3.1 The Vertices of Pn

The vertices of Pn represent the secondary structures with the maximum number of
helices in a loop—so-called “maximal degree of branching”—and the fewest helices
in a loop—or “minimal degree of branching”—as described below.

If T is a plane tree represented as a vertex of Pn, then T has n edges and n + 1
vertices. If in addition, T has count vector (n,n,0) then the degree of the root vertex
is n and the n + 1 vertices are the root together with the n leaves (vertices with
0 children). Thus, a secondary structure corresponding to T has no internal loops,
bulges, or multibranch loops and the exterior loop has n helices.

If T has count vector (1,1, n − 1), the root vertex has degree 1, there is one leaf,
and n − 1 vertices of degree 2 (1 child). Thus, T is a straight line, and a secondary
structure corresponding to T has no multibranch loops and the exterior loop has one
helix.

If T has count vector (1, n − 1,0), the n + 1 vertices are the root (with degree 1),
n − 1 leaves, and one vertex of degree n. Secondary structures corresponding to T

have no internal loops or bulges and one multibranch loop with n helices. In addition,
the exterior loop has one helix.

The remaining vertices—(1, n+2
2 ,0) for n odd and (1, n

2 ,1), (2, n+2
2 ,0), or

(1, n+2
2 ,0) for n even—are dealt with in the following proposition.

Proposition 4.3

(i) For n odd, any plane tree with count vector (1, n+1
2 ,0) satisfies d2 = n−1

2 and
di = 0 for i > 2.

(ii) For n even, any plane tree with count vector (1, n
2 ,1) or (2, n+2

2 ,0) satisfies
d2 = n−2

2 and di = 0 for i > 2.
(iii) For n even, any plane tree with count vector (1, n+2

2 ,0) satisfies d2 = n−4
2 ,

d3 = 1, and di = 0 for i > 3.

Proof For (i), suppose n is odd and T is a plane tree with n edges, r = 1, d0 = n+1
2 ,

and d1 = 0. Then T has n+1
2 + 1 vertices of degree 1, and the remaining n + 1 −

( n+1
2 + 1) = n−1

2 vertices have degree at least 3. Thus,

∑
v∈V

degv = 1

2
(n + 1) + 1 +

∑
degv≥3

degv

≥ 1

2
(n + 1) + 1 + 3

2
(n − 1)

= 2n.

However, since
∑

v∈V degv = 2|E|, we must have equality. Thus, all other vertices
must have degree 3 (2 children).

The proof of (ii) is nearly identical to that of (i).
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Fig. 3 The RNA polytope Pn

For (iii), a plane tree with n edges, r = 1, d0 = n+2
2 and d1 = 0 has n+4

2 vertices
of degree 1 and zero vertices of degree 2. Such a tree cannot have all other vertices of
degree 3 as this would yield a graph with an odd number of odd vertices. Thus, there
is a vertex v0 with degree p with p ≥ 4 even. This gives

∑
v∈V

degv = 1

2
(n + 4) + p +

∑
degv ≥ 3
v 
= v0

degv

≥ 1

2
(n + 4) + 4 + 3

2
(n − 4)

= 2n

As before this inequality must be an equality, and hence p = 4 and all other vertices
have degree 3. �

Thus, for n odd, the count vector (1, n+1
2 ,0) corresponds to secondary structures

with no interior loops/bulges, all multibranch loops have 3 helices, and the exterior
loop has one helix. When n is even, a secondary structure with n helices and all three
of these properties is not possible. We instead have three cases, each with exactly
one of the properties relaxed: a structure corresponding to (1, n

2 ,1) has one interior
loop/bulge, the count vector (1, n+2

2 ,0) arises from structures having one multibranch
loop with 4 helices (all other multibranch loops have 3 helices), and the exterior
loop of a structure corresponding to (2, n+2

2 ,0) has 2 helices. For n odd, plane trees
representative of those described in this section are shown in Fig. 3.
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Remark The map from plane trees to count vectors is generically many-to-one. Three
of the 4 vertices, however, correspond to exactly one tree: (n,n,0), (1,1, n − 1),

(1, n−1,0). The trees with count vector (1, n+1
2 ,0) are in one-to-one correspondence

with full binary trees with n − 1 edges (by removing the root vertex). There are Cn−1
2

such trees (Deutsch 2004), where Cn−1
2

is the n−1
2 th Catalan number defined in (2).

4.3.2 The Rays in N (Pn)

The energy function E′ in (3) scores a secondary structure with n helices based on
the number of helices in the exterior loop, the number hairpin loops, and the num-
ber of bulges/internal loops. The normal fan N (Pn) of Pn subdivides the (θ2, θ3, θ4)

parameter space. Each vector in (x, y, z) ∈ R[θ2] × R[θ3] × R[θ4] corresponds to a
scoring function in which x gives the weight of a helix in the external loop, y gives
the weight of a hairpin loop, and z gives the weight of a bulge/internal loop.

The fan N (Pn) consists of cones generated by elements in the power set

P
({

(1,0,0), (0,0,1), (−1,2,1), (1,1 − n,2 − n)
})

.

Thus, a parameter vector v ∈ R[θ2]× R[θ3]× R[θ4] has the form c1y1 + c2y2 + c3y3

with c1, c2, c3 ≥ 0 and y1, y2, y3 ∈ {(1,0,0), (0,0,1), (−1,2,1), (1,1 − n,2 − n)}.
A generic vector in R

3 lies in the interior of one of the 3-dimensional cones in N (Pn),
and hence we give a brief interpretation of the parameter vectors with ci 
= 0 for
i = 1,2,3.

Scoring vectors in the interior of the cone 〈(0,0,1), (1,0,0), (1,1 − n,2 − n)〉
penalize for hairpin loops and can independently penalize or reward for helices in
the exterior loop and bulges/internal loops. If v ∈ int〈(0,0,1), (1,0,0), (−1,2,1)〉
then v gives a penalty for both hairpin loops and interior loops/bulges. Helices in
the exterior loop can be beneficial or harmful with this scoring vector, and v can
equally penalize helices in the exterior loop, hairpin loops, and internal loops/bulges.
Scoring vectors in the interior of one of the two remaining cones can reward or
penalize all three quantities. These are not independent, however. For instance,
if v ∈ int〈(1,1 − n,2 − n), (0,0,1), (−1,2,1)〉 and hairpin loops are disadvanta-
geous under v’s scoring scheme then helices in the exterior loop are beneficial. If
w ∈ int〈(1,0,0), (1,1 − n,2 − n), (−1,2,1)〉 and w rewards hairpin loops, then
w rewards bulges/internal loops. Similarly, if w penalizes for bulges/internal loops
then w penalizes for hairpin loops. Also, scoring vectors in the interior of the cone
〈(1,1 − n,2 − n), (0,0,1), (−1,2,1)〉 can equally reward hairpin loops, internal
loops/bulges, and helices in the exterior loop.

4.4 Variation in the Parameter Space

In this section, we add additional information to the parameters {θ2, θ3, θ4} in order
to study the effect of varying the multibranch loop parameters in the thermodynamic
model of RNA folding. We obtain free energy parameters for plane trees using one
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Table 2 Energy parameters for
plane trees Sequence Turner 3.0 values Turner 2.3 values

a3 a0 a1 a3 a0 a1

X = A, Y = G, Z = C −1.9 4.1 2.3 −1.9 3.5 3.0

X = A, Y = C, Z = G −1.6 4.5 2.3 −1.6 3.8 3.0

X = C, Y = A, Z = U −0.4 5.0 3.7 −0.4 4.3 4.0

X = C, Y = U , Z = A −0.6 4.9 3.7 −0.6 4.2 4.0

of the four combinatorial sequences having the form

X4(Y 6X4Z6X4)k where k ≥ 1 and

{
X = A and {Y,Z} = {C,G}
X = C and {Y,Z} = {A,U}.

In these sequences, the segments of the form Y 6 pair with the Z6 segments while the
X nucleotides remain unpaired, and moreover all the loops of a given type have the
same free energy. We do not include the possibilities X = U and {Y,Z} = {C,G}
or X = G and {Y,Z} = {A,U} because we want to prevent the G − U pairing.
For a given sequence, we use both the current (version 3.0) (Mathews et al. 2004)
and previous (version 2.3) (Walter and Turner 1994) thermodynamic parameters,
determined by the Turner lab. Parameters in the thermodynamic model are calcu-
lated by measuring the change in free energy coming from the formation of a given
motif in the structure at a fixed temperature (typically 37◦C). See SantaLucia and
Turner (1997) for a review of common methods used including optical melting and
Burkardm et al. (2001), Chen et al. (2009) as examples of the experimental methods.
The parameters a3, a0, and a1 are based on this type of measurement for the com-
binatorial sequences and are listed in Table 2. The parameters a2 and c2 come from
the multi-branch loop scoring function in (1), where the parameters a, b, and c in
this function are not determined experimentally. If L is a multibranch loop with n1

single-stranded bases and n2 helices and L appears in a secondary structure for one
of our 4 combinatorial sequences, then we have n1 = 4n2. Additionally, for each he-
lix in L, the single-base stacking energy is a3. Thus, free energy of L in (1) becomes
E(L) = a +4bn2 + cn2 +a3n2, and the parameters a2 and c2 in the free energy func-
tion E′ in (3) can be written as a2 = 4b + c + a3 and c2 = a. Table 3 illustrates three
types of variation: variation of specific nucleotides in combinatorial sequence, varia-
tion of the version of Turner’s energy parameters, and variation of a, b, c parameters.
The effect of varying the multibranch loop parameters a, b, c is more or less the same
for each sequence and energy table: two different count vectors can be minimal de-
pending on the value of a + 12b + 3c. Technically, a third vertex of Pn has minimal
energy in some cases when b = c = 0. However, if the offset and helix penalties are
both zero, the multibranch energy function will have no penalties for the number of
single-stranded bases and the number of stems in a loop. This does not agree with the
free energy model.

Varying the sequence alone, we obtain differences in the cut-off values for a +
12b + 3c. On the whole, however, nucleotide variation in the combinatorial sequence
does not give qualitative differences in the minimal energy plane trees.
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Table 3 Restrictions on a, b, c parameters from full-dimensional cones in N (Pn)

Vertex Rays in N (Pn) Energy version Restrictions on a, b, c Sequence:
[X,Y,Z] =

(1,1, n − 1)

(1,1 − n,2 − n)

(1,0,0)

(−1,2,1)

3.0 (2.3) a + 12b + 3c ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N/A (N/A)

4.9 (N/A)

3.6 (N/A)

4.3 (N/A)

[A,G,C]
[A,C,G]
[C,A,U ]
[C,U,A]

(1, n+1
2 ,0)

(0,0,1)

(1,0,0)

(−1,2,1)

3.0 (2.3) a + 12b + 3c ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6.0 (5.4)

4.9 (5.4)

3.6 (4.7)

4.3 (4.8)

[A,G,C]
[A,C,G]
[C,A,U ]
[C,U,A]

(n,n,0)

(1,1 − n,2 − n)

(0,0,1)

(−1,2,1)

3.0 (2.3) a + 12b + 3c ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6.0 (5.4)

N/A (5.4)

N/A (4.7)

N/A (4.8)

[A,G,C]
[A,C,G]
[C,A,U ]
[C,U,A]

(1, n − 1,0)

(0,0,1)

(1,0,0)

(1,1 − n,2 − n)

3.0 (2.3) b = c = 0, a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6.0 (5.4)

N/A (5.4)

N/A (4.7)

N/A (4.8)

[A,G,C]
[A,C,G]
[C,A,U ]
[C,U,A]

We do see (in 3 of the 4 sequences) qualitative differences in the minimal en-
ergy trees when we compare version 3.0 parameters to version 2.3 parameters. For
instance, when a + 12b + 3c is large, 3 of the 4 sequences give the “straight line”
tree with count vector (1,1, n − 1) minimal with version 3.0 parameters. Using ver-
sion 2.3, all four sequences result in the maximal degree of branching, with count
vector (n,n,0) having minimal energy. This difference in minimal energy trees is not
too surprising because the change from version 2.3 to version 3.0 was based on more
accurate experimental measurement. The secondary predicted structures have indeed
changed. It is worth noting that if we use the actual penalties for offset, free base,
and helix from versions 2.3 and 3.0 of the Turner energies, we obtain

a + 12b + 3c =
{

4.6 v3.0
9.7 v2.3.

Thus, all four combinatorial sequences yield (n,n,0) with minimal energy for ver-
sion 2.3. Moreover, as 9.7 is a fair amount greater than the cut off for all four
sequences, slight variation in these parameters will not change the predicted struc-
ture. For version 3.0, the two combinatorial sequences with unpaired poly-A seg-
ments have (1, n+1

2 ,0) being minimal while (1,1, n− 1) is minimal for the other two
sequences. Also, 4.6 is much closer to the cut off values for the sequences. Small
changes in these parameters could change which trees have minimal energy.
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Table 4 Trees in RNA STRAND collection by size

Category Range of n # of trees Average length Median length Average n Median n

Small 5–12 50 244 220 9 9

Medium 13–40 40 676 512 22 19

Large 41–136 20 2104 1831 82 76

4.5 RNA STRAND Database Analysis

4.5.1 Overall Shape of Data

Our initial collection of secondary structures contains 145 structures from 137 dis-
tinct RNA sequences, as described in Materials and Methods. The sequences range
from 19 to 4216 nucleotides. We exclude structures for which the number of helices
is less than 5 from further analysis. This reason for this is that not all the vertices of
Pn listed in Proposition 4.1 are valid and distinct when n ≤ 4. We have 110 structures
with n ≥ 5 (from 103 sequences) having average (median) length of 739 (367) and
n = 27 (13). We break these into classes, based on the number of helices, as depicted
in Table 4.

While our collection contains more small and medium trees as compared to large
trees, this reflects the frequency in the RNA STRAND database. For instance, accord-
ing to an analysis done by RNA STRAND, the average (median) number of helices
over the entire database is 28 (8). This count does, however, include the sequences
with fewer than 5 helices and includes a less restrictive definition of bulges/internal
loops and helices: internal loops/bulges can have any number of unpaired bases and
helices can have any number of base pairs. Our large trees come from 16S ribosomal
RNA and 23S ribosomal RNA sequences and have a minimum sequence length of
954 nucleotides. In the RNA STRAND database, only 20% of the 4,666 structures
contain at least 954 nucleotides.

4.5.2 Location of Count Vectors on Polytope

It is of great importance to know when biologically correct secondary structures can
be predicted by the free energy model. With our simplified energy function E′ in (3),
we ask if the biologically correct structures can be minimal for some choice of pa-
rameters. As mentioned in Sect. 4.2, this translates into determining when the corre-
sponding count vectors lie on the boundary of Pn.

Seventy-one out of 110 count vectors lie on the boundary of Pn: 49 lying on the
interior of a facet, 18 lying on the interior of an edge, and 4 occurring as vertices.
For a generic choice of parameter values, the count vectors lying on a vertex will
be predicted minimizers. Thus, our simple combinatorial model is not sufficient to
capture the complexity of RNA folding, since the structures on the boundary are
distributed in faces of different dimensions. Moreover, the results below illustrate the
connection between the complexity of the folding model and the size of structures
which it can handle.
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Fig. 4 Location of count vectors on Pn for small, medium, and large trees (in percentage)

The average number of edges for plane trees on the boundary of Pn is 17 and is 45
for plane trees in the interior of Pn. Of those contained in the interior of a facet, 28 are
minimal for parameters in 〈(−1,2,1)〉, 7 are minimal for parameters in 〈(0,0,1)〉,
and 14 are minimal for parameter values in 〈(1,0,0)〉. Of those contained in the inte-
rior of an edge, 8 are minimal for parameters in 〈(−1,2,1), (1,0,0)〉, 9 are minimal
for parameters in 〈(−1,2,1, (1,1 − n,2 − n)〉, and 1 is minimal for parameters in
〈(1,0,0), (0,0,1)〉. The 4 count vectors that are vertices of Pn satisfy n = 5 or 6
and consist of the set {(5,5,0), (6,6,0), (1,4,0), (1,1,4)}. Figure 4 shows the lo-
cation of the count vectors for small, medium, and large trees, given in terms of the
percentage of trees in each category.

4.5.3 Closest Vertex to Count Vectors

In order to determine which of the 4 vertices of Pn is closest to a given count vector,
we map the tetrahedron

conv

{
(1, n,n,0), (1,1,1, n − 1), (1,1, n − 1,0),

(
1,1,

n + 1

2
,0

)}

onto the standard tetrahedron with vertices {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,

0,1)}. This is accomplished with the following matrix:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
n−1

1
n−1 0 0

0 0 0 1
n−1

− n
n−3 − 1

n−3
2

n−3
1

n−3

2n(n−2)
(n−1)(n−3)

2
(n−1)(n−3)

− 2
n−3 − 2(n−2)

(n−1)(n−3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

which has determinant 2
(n−1)2(n−3)

. For a given n, any count vector (r, d0, d1) can be
written as a sum

a1(n,n,0) + a2(1,1, n − 1) + a3(1, n − 1,0) + a4

(
1,

n + 1

2
,0

)

with 0 ≤ ai ≤ 1 and a1 + a2 + a3 + a4 = 1. After applying the linear transforma-
tion (7), the lattice point (1, r, d0, d1) will have coordinates (a1, a2, a3, a4). The co-
ordinate ai gives a measure of the “closeness” to vertex i. For a given RNA struc-
ture, the largest of the ai gives the vertex closest to its count vector. Moreover, if
t = max{a1, a2, a3, a4} then 0.25 ≤ t ≤ 1.

Fifty-two of the 110 structures are closest to (1, n+1
2 ,0), 38 are closest to (1,1,

n − 1), 10 are closest to (n,n,0), and 6 are closest to (1, n − 1,0). Additionally,
we have 2 that are closest to both (1,1, n − 1) and (n,n,0) and 2 that are closest to
both (1,1, n − 1) and (1, n+1

2 ,0). The average values of (a1, a2, a3, a4) over the 110
structures are (0.181,0.357,0.138,0.332) which shows that as a whole, the count
vectors are closest to (1,1, n − 1) and (1, n+1

2 ,0).
We say a count vector is ‘close’ to vertex i if ai > 0.625. The value 0.625 is

halfway in between the smallest and largest possible values of ai . With this definition,
22% of the small trees are close to vertices, 5% of the medium trees are close to
vertices, and no large trees are close to vertices. Thirteen trees in total are close to
vertices, of which 8 are close to (1,1, n − 1), 2 are close to (1, n+1

2 ,0), 2 are close
to (n,n,0), and 1 is close to (1, n − 1,0). All thirteen of these lattice points lie on
the boundary of Pn and hence correspond to minimal energy trees for some choice of
parameter values.

5 Discussion and Conclusions

We have used a simple scoring scheme for scoring RNA folds: energy is assigned to
a secondary structure based solely on the total number of helices, the number of he-
lices in the exterior loop, and the numbers of hairpin loops and bulges/internal loops.
Fixing the total number of helices, the extremal folds are those with the maximal and
minimal degrees of branching. When a generic parameter vector is chosen, precisely
one of those will have minimal energy. For more specific choices of parameters (bi-
ologically realistic or not), the number of minimal count vectors is on the order of
the square of the total number of helices. While this seems large, the total number
of count vectors that cannot be minimal for any choice of parameters is on the order
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of the cube of the total number of helices. Thus, when this total is large, we would
not expect such a scoring scheme to accurately predict the correct structures. This is
supported by our RNA STRAND analysis in which 85% of the count vectors from
known structures with a high number of helices cannot be minimal for any choice
of parameters. None of these structures are “close” to the extremal folds. This is not
unexpected, however, since even the highly detailed free energy model is not accurate
for large RNA molecules (Doshi et al. 2004).

On the other hand, when the total number of helices is small, only 10% of the
known structures cannot be minimal for our scoring scheme. While the scoring func-
tion used in this work is too simplistic to implement in a prediction software, our
results suggest that for small RNA molecules, the full free energy model is not nec-
essary for accurate predictions. We are not the first to make this observation, for
Dowell and Eddy (2004) analyzed some simple probabilistic RNA folding models—
one with as few 21 free parameters—whose accuracies are comparable to mfold’s. In
their study, the sequences used for testing came from ribonuclease P RNA, transfer
mRNA, and signal recognition particle RNA sequences, all of which yield small to
medium trees by our classification. While 21 parameters is far too many for paramet-
ric analysis using polyhedral geometry, perhaps a simple model incorporating some
thermodynamics and some probabilistic parameters can accurately predict the folding
of small RNA molecules.

We compared the variation of multibranch loop parameters to two other types of
variation in the parameter space. Fixing the combinatorial sequence and energy ver-
sion, two possible count vectors can be minimal by varying the multibranch loops
parameters. If we use the most recent (accurate) energy version, we find that for 3 of
the 4 sequences, these two count vectors include (1,1, n − 1) and (1, n+1

2 ,0). Inter-
estingly, these two vertices are closest to the known structures in our RNA STRAND
collection. Moreover, regardless of the choices of multi-branch loop parameters in
the current version of the thermodynamic model, predicted structures have a low de-
gree of branching—both in the exterior loop and in the multibranch loops. Out of
the three possible variations, the most significant changes come from varying the en-
ergy version, as the possible predicted structure for version 2.3 have a high degree
of branching. Even though the penalties for off-set, free base and helix in the multi-
branch loop energy calculation are chosen without specific measurement, they do not
appear to have a dramatic effect on the predicted structures. One would hope that the
parameters determined experimentally are what truly govern the predicted structures,
and our findings support this possibility.

6 Future Work

The parametric analysis of RNA branching configurations given here addressed vari-
ation in the parameter space for scoring RNA secondary structures. In particular, we
focused on three parameters from the multibranch loop energy function which are
not based on experimental measurement. We finish by discussing several ways in
which this analysis can be extended beyond the scoring scheme for RNA branching
investigated here.
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An immediate extension of this work is to investigate the impact of varying these
multibranch loop parameters on the folding of specific RNA sequences. We expect
that this could be achieved either through polytope propagation or an incremental ap-
proach. For a given RNA sequence, it is possible to find the optimal, that is the “min-
imum free energy,” secondary structure under the nearest neighbor thermodynamic
model using dynamic programming. The polytope propagation method (Pachter and
Sturmfels 2004a) would compute the dynamic programming optimization over a
semiring of polytopes rather than the numerical parameters. The output is an “fold-
ing polytope” for the particular RNA sequence input. As with our results here, the
vertices of the polytope correspond to the folds which are optimal under some choice
of the multi-branch loop scoring parameters. In the incremental approach (Dewey
et al. 2006) the folding polytope is computed by running the dynamic programming
optimization for different scoring parameters. Different optimal folds yield differ-
ent vertices of the polytope. In this way, the folding polytopes for different RNA
sequences could be computed and then compared.

Further extensions of this work include investigating the folding polytopes’ face
complexity as a function of characteristics of the input sequences such as length or
G-C content. Our initial results indicate a dependence on the length of the sequence
but are less clear in terms of its base composition. Another interesting direction would
be exploring different approximations to the complicated biophysics of branching
loop thermodynamics. For instance, the Jacobson–Stockmeyer theory derives an en-
ergy function with a logarithmic dependence on the number of unpaired bases in the
branching loop. Additionally, there are now prediction algorithms which take into
account the coaxial stacking of adjacent helices in the multi-branch loops.

Finally, there are a range of other questions to be considered in the parametric
analysis of RNA folding. One possibility would be to use parametric methods to per-
form sensitivity analyses of RNA folding. The decomposition of the parameter space,
such as the one analyzed in Gusfield et al. (1992), can be used to determine how
sensitive a particular alignment is to changes in the parameters. A related question
would take the relatively few known secondary structures and compute the parame-
ters which are optimal for those folds. More generally, there are the questions of face
complexity and polyhedral algorithms. While sequence alignment and RNA folding
share certain broad characteristics, the details in the RNA folding case are consider-
ably more complicated. Hence, we expect that considerable future work is needed to
address the complexity and computability of parametric RNA folding.

7 Materials and Methods

7.1 Selection of Secondary Structures from RNA STRAND Database

The RNA STRAND database (Andronescu et al. 2008) was searched by type of RNA
(for example, 16S ribosomal RNA, cis-regulatory element, or group I intron). Each
type of RNA was sorted by molecule length, and structures were selected from a vari-
ety of organisms to be representative of the different lengths appearing in the database
for that type of RNA. Visual inspection of the secondary structures was important in
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Fig. 5 Helices and internal loops: A, B, and C are fragments from structures in the RNA STRAND
database

the selection of the structures for our collection. It allowed for the inclusion of simi-
lar length structures with different types of branching. It also prevented our collection
from containing nearly identical structures formed by two different RNA molecules
of the same type. Finally, visual inspection kept our collection from having a plethora
of structures with only one or two helices; these structures are overrepresented in the
RNA STRAND database.

7.2 Removal of Pseudoknots from .ct Files

In order to obtain a plane tree from a give secondary structure, pseudoknots were
removed. A perl script read the .ct file and stored the closing pairs of all helices,
where the helices are defined is Sect. 7.3. Each pair (i, j) and (i′, j ′) of closing pairs
was tested to see if i < i′ < j < j ′. If true, the pairs (i, j) and (i′, j ′) were printed
to a file. Next, for each pair (i, j) and (i′, j ′) in the output file, one of the associated
helices was removed according to the following rubric. If some closing pair (i, j)

appears multiple times, its helix was removed under the assumption that it formed a
pseudoknot. If both (i, j) and (i′, j ′) were not listed with any other closing pairs, the
shorter of the 2 corresponding helices was removed. In the event that the two helices
had the same number of paired bases, two versions of the .ct file were saved—one
with the first helix removed and one with the second helix removed.

7.3 Calculation of n, r, d0, d1 from .ct Files

After all the pseudoknots were removed from the .ct files of secondary structures in
our collection, a perl script calculated n, r, d0, and d1. In our simplified model of
RNA folding, all helices have the same energy independent of the number of base
pairs in the helix. Similarly, all bulges/internal loops have the same energy regardless
of the number of free bases in the loop. Because of this, very small bulges/internal
loops and very short helices were ignored. Bulges and interior loops were required
to have at least 3 unpaired bases. No restrictions were placed on the number of free
bases in a hairpin loop, which was important so as to maintain the graph structure
(edges connecting two vertices).
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Each helix with choice of closing pair has a “left length” and “right length” of the
helix. The left length of a helix is the number of bases in the portion of the sequence
that terminates at one of the closing bases. The right length of a helix is the number
of bases in the portion of the sequence that originates at one of the closing bases.
The closing pair of a helix as well as its right length are depicted in Fig. 5A. For this
structure, the helix with closing pair G–C has left length 28 and right length 25. For
our analyses, a helix was defined to have both the left and right length 3 or greater.
Thus, the piece of secondary structure shown in Fig. 5B has two helices—one with
left and right length 5 and one with left and right length 3—and one hairpin loop.
Similarly, with our definitions, the fragment depicted in Fig. 5C has only 1 interior
loop that contains the base pairs G–C and U–A. The single C–G base pair is not
considered a helix, and since each of the internal loops containing the C–G pair have
more than 3 unpaired bases, the C–G base pair is not considered a part of either helix.
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