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Abstract In this paper, we derive some threshold conditions for permanence and extinc-
tion of diseases that can be described by a nonautonomous SEIRS epidemic model. Under
the quite weak assumptions, we establish some sufficient conditions to prove the perma-
nence and extinction of disease. Some new threshold values are determined.
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1. Introduction

To understand how to control and eradicate infectious disease is one of the main goals
of mathematical epidemiology. From the study of autonomous models (Thieme, 2003;
Anderson and May, 1978, 1979, 1992; Kermark and Mckendrick, 1927; Diekmann and
Heesterbeek, 2000), we know that a disease can cause an epidemic when and only when
the basic reproduction number Ry is greater than 1. Thus to eradicate a disease, we need
to reduce Ry to less than 1. However, as we well know, the nonautonomous phenomenon
often occurs in many realistic epidemic systems. Many diseases show seasonal behavior
(London and Yorke, 1973; Dowell, 2001; Earn et al., 2002). Seasonality may come from
various sources, €.g., varying transmission rates, fluctuations in birth rates, etc. Particu-
larly, when we consider the long-term dynamical behaviors of an epidemic system, the
parameters of the system usually will arise change with time.

In recent years, epidemiological models of ordinary differential equations have been
studied by a number of authors (see, for example, Thieme, 2003; Anderson and May,
1992; Kermark and Mckendrick, 1927; Diekmann and Heesterbeek, 2000; Capasso, 1993;
Ma et al., 2004; Brauer and Castillo-Chavez, 2001; Mena-Lorca and Hethcote, 1992). The
basic and important research subjects for these systems are the existence of the threshold
value which distinguishes whether the infectious disease will die out, the local and global
stability of the disease-free equilibrium and the endemic equilibrium, the existence of
periodic solutions, the persistence and extinction of the disease, etc. But most of them are
concerned with local stability of equilibria. Stability, persistence and permanence have
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been researched in a lot of papers in population biology (Cull, 1981; Takeuchi et al.,
2006a, 2006b; Teng and Li, 2000; Teng and Yu, 1999; Teng and Chen, 2003). Hence,
as the part of the population biology, permanence of disease plays an important role in
epidemiology.

Recently, we see that there have been some research works on the nonautonomous
epidemic dynamical systems, for example (Thieme, 1999, 2000; Zhang et al., 2005;
Herzog and Redheffer, 2004; Li et al., 1999). Thieme (1999, 2000) studied the persis-
tence and extinction for the following nonautonomous SIRS epidemic dynamical system

N=S+1+R,

dl
o =0T = (1) +y )L,

ar _ 1 — (@R —EOR
=Y jz & ,

where N = N (¢) is a given known continuous, bounded and nonnegative function defined
on R, = [0, +00) and expresses the size of the total population at time 7. N is divided in
three parts: susceptible S, infective / and recovered R. By applying the theory of the per-
sistence and permanence for nonautonomous semiflows in the population biology which
is developed in the same paper (Thieme, 1999, 2000), the authors obtained the sufficient
conditions for the persistence and extinction of the disease.

In 2003, SARS began in the Guangdong province of China, however, it broke out at
last in almost all parts of China. Zhang proposes a compartmental model (Zhang et al.,
2005) that mimics the SARS control strategies implemented by the Chinese government
after the middle of April 2003. In this paper, they obtain the following nonautonomous
subsystem (Zhang et al., 2005, Eq. (3.2))

E' =i (1)SE+1)— (s +dy)E,
I'=¢E —dj I —al,
P =dyE +d,,D — by, P —d,, P,

D' =2,(t)(8,P + D) +d,, P +di,] — (e +y)D.

This subsystem is obviously of fundamental importance for the prevention and control
of SARS outbreak. Therefore, the research on the nonautonomous epidemic dynamical
systems also is very important and significant like on the autonomous epidemic dynamical
systems.
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The autonomous case is well studied (Liu et al., 1987; Hethcote, 2000) and in particular
the references in (Liu et al., 1987). Liu and Hethcote (1987) studied the following SEIRS
equations

ds
4 L —ASPI? — iS4 SR,
dr 1% us +
dE
2= s - E.
7 (n+¢)

(n
U E (it
— = — s
o n+y
R (Lt OR
=vl— :

Traditionally p and g are constants with p > 0 and ¢ > O and u, A, €, y, § are nonnegative
constants. When p, A, €, y, § in system (1) are replaced by nonnegative continuous func-
tions of # and p = ¢ = 1, we get a nonautonomous equation. For this equation, Herzog
and Redheffer (2004) did some researches on positivity of solutions and the extinction of
disease.

In (Li et al., 1999) a partially nonautonomous system is considered allowing varying
total population size. From the ideas of these literatures (Thieme, 1999, 2000; Zhang
et al., 2005; Liu et al., 1987; Herzog and Redheffer, 2004), we refer to the following
nonautonomous SEIRS system

ds
i A@)—=B@O)ST —pu()S+5@)R,

dE

P BOST — () + () E,

dl 2
o =E — () +y )1, @

dR
— =rOI- () +8(1))R,

N@)=S8@)+ E@)+1(1) + R().

The letters S, E, I, R stand, respectively, for susceptible, exposed, infectious and recov-
ered. A(¢) is the growth rate of population, function . (¢) is the instantaneous per capita
mortality rate, function B(¢) is the daily contact rate, that is, the average number of con-
tacts per day, functions &(¢), y () and §(¢) are the instantaneous per capita rates of leaving
the latent stage, infected stage and recovered stage, respectively.

In this paper, our main purpose is to look for permanence conditions for diseases mod-
eled by SEIRS (susceptible-exposed-infectious-recovered-susceptible). The paper is orga-
nized as follows. Section 2 contains some basic preliminaries including initial conditions,
some hypotheses, the definition of permanence, extinction of disease. Section 3 deals with
the global existence and positivity of solutions of system (2). Permanence of solutions of
system (2) is settled in Section 4. In Section 5, we will establish some sufficient conditions
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on the extinction of the disease. We will give some corollaries in Section 6. Section 7 will
give some examples to illustrate these theorems.

2. Notation and preliminaries
For any solution (S(¢), E(¢), I(t), R(¢)) of system (2) with initial value
S(0) > 0, E(0) >0, 1(0) >0, R(0)>0. 3)

On the persistence and extinction for the infectives I in system (2) we have the following
definitions.

If liminf,_, o, 7 (¢) > 0, then we say that the infectives I are strongly persistent.

If there are positive constants vy, v, such that

vy <liminf7(¢) <limsup/(t) < v,
=00 t—00

then we say that the infectives I are permanent.
If lim,_, » I (#) = 0, then we say that the infectives I go extinct.
For system (2), we introduce the following assumptions.

(H;) Functions A(t), B(t), u(t), €(t), y(t) and (¢) are nonnegative, continuous and
bounded on R, = [0, +00) and B(0) > 0.
(H,) There exist positive constants w; > 0 (i = 1, 2, 3) such that

t+wi 1+wy
liminf/ B(s)ds > 0, liminf/ u(s)ds >0
—00 t —00 t

and

w3
liminf/ A(s)ds > 0.
t

—>00

Remark 2.1. It is easy to prove that assumption (H;) is equivalent to

1 [ 1 (!
liminf—/ B(r+s)ds >0, liminf—/ n@r+s)ds>0
0 0

t,s—oo t,s—oo f

and

t,s—>00 [

1 t
liminf—/ A(r+s)ds > 0.
0

In particularly, when system (2) degenerates into w-periodic system, that is, A(¢),
B(t), n(t), e(t), y(t) and §(¢) are all nonnegative continuous periodic functions with
period w > 0, then assumptions (H,) is equivalent to the following cases

B >0, Z>0 and A>0,
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where for any continuous periodic function f with period w > 0, we denote by f the
average value of f(z), i.e. f= i fow f@®)dt.

When system (2) degenerates into almost periodic system, that is A(¢), B(t), n(t),
&(t), y(t) and 8(¢) are all nonnegative continuous almost periodic functions, then as-
sumption (H;) is equivalent to the following cases

m(B) >0, m(u) >0 and m(A) >0,

where for any continuous almost periodic function f, we denote by m(f) the average

value of f(t),1e. m(f) = lim,_, o 1 ; fo f(®)dt.
Consider the following nonautonomous linear equation

d
=AW~ p0)z. “

We have the following result.

Lemma 2.1. Suppose that assumptions (H,) and (H,) hold. Then

(a) Each fixed solution z*(t) of Eq. (4) with initial value z*(0) > 0 is bounded and glob-
ally uniformly attractive on R, .

(b) Let z(t) be a solution of Eq. (4) and z(t) be a solution obtained in Eq. (4) when
A(t) is replaced by another continuous function A(t) and z(0) = 7(0), then there is
a constant L > 0 only depending on 11(t) such that

sup|z(t) — Z(t)| < Lsup| A(t) — A@®)|.
=0 >0

(c) There exist m, M > 0, such that

m < hmlnfz(t) <limsupz(t) < M.

—>00

(d) When Eq. (4) is w-periodic, then Eq. (4) has a unique nonnegative w-periodic solution
Z*(t) which is globally uniformly attractive.

(e) When Eq. (4) is almost periodic, then Eq. (4) has a unique nonnegative almost peri-
odic solution z7*(t) which is globally uniformly attractive.

®) If u(@)>O0forallt >0and0 < liminf,_, o, 40 (t) <
solution z(t) of Eq. (4) with the initial value Z(O) > 0, we have

A\ A\M
(—) < 11m1nfz(t) <limsupz(t) < < ) ,
0 7

1—>00

<limsup,_, % < 00, then for any

where
A\ A(t) AN\ A(t)
— ) =liminf — — —hmsup—
" =00 u(t)’ jz 1—oo (1)

Using the variation of constants formula and comparison theorem and the method of
Liapunov function, we can prove this lemma very easily. Here, we omit it.
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For convenience, we denote

a =sup (1), b=supy(t), c=supu(t)
t>0

>0 t>0

and

d=supe(t), f =supd(t)

t>0 >0

3. Positivity

In this section, we will give conditions under which the solutions exist on [0, +00) and
are positive. The main result is as follows.

Theorem 3.1. Suppose that assumptions (H;) and (Hp) hold. The solution
(S@®), E(@), 1(t), R(t)) with initial condition (3) of system (2) is nonnegative and uni-
formly bounded on [0, +00).

Using (Thieme, 2003, Theorem A.4), we can easily proof this theorem. So, we omit it.

Remark 3.2. For any nonnegative initial value (3), we can show that the following (i), (ii),
(iii) and (iv) are true.

(i) The solution (S(t), E(¢), I (), R(t)) of (2) existson R, and S(t) > 0(t > 0), E(t) >

0(t>0), I(t) >0(t >0) and R(z) > 0(¢ > 0).

(i) If E(0) > 0 and R(0) > 0, then the solution (S(¢), E(t), I (), R(¢)) of (2) exists on
Ry and S(t) >0( >0), E(t) >0( >0), I(t) >0(t >0) and R(¢) > 0(t > 0).

(iii) If E(0) =0, 1(0) =0 and R(0) = 0, then the solution (S(¢), E(¢), I(t), R(t)) of
(2) exists on R, and S(t) > 0(t >0), E(t) =0 >0), [(t) =0(t >0) and R(t) =
0(r > 0).

@iv) If E(0) > 0 and B(0) = 0, then the solution (S(¢), E(¢), I(t), R(t)) of (2) exists on
R, and S(t) > 0(t > 0), E(¢t) > 0(t >0), [ () > 0(t > 0) and R(¢) > 0(t > 0).

4. Permanence

In this section, we wish to discuss the permanence of the disease in system (2), demon-
strate how the disease in system (2) will be permanent under what conditions. Let the
function

b(t,u) =2y BO)e@u(t) — [(n) + &) + (1) + 7 (1))]

and z*(¢) be some fixed solution of Eq. (4) with initial value z*(0) > 0. We have the
following theorem.
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Theorem 4.1. Suppose that assumptions (Hy), (Hy) hold and there is a constant A > 0
such that

A
R} = liminf/ b(s,z*(s))ds > 0. (3)
t

1—>00

Then the infective I is permanent.

Proof: Let N*(t) = S(t) + E(t) + I1(t) + R(¢) with the initial value N*(0) = S(0) +
E(0) + 1(0) + R(0), then N*(¢) is a solution of Eq. (4). The system (2) is equivalent to
the following system

dE([) *
L~ =BON O = E®) = 1@0) = RO (0) = (1) + (D) EW),
dI
% =e()E@) — (,u(t)-i—]/(f))l(t)’ ©
dR
%=y(z)1(z)— (1@ +)R®.

Firstly, we prove that the number R is independent of the choice of z*(z). In fact,
Lemma 2.1 implies that for any sufficiently small € > 0 and any solution z(¢) of Eq. (4)
with initial value z(0) > 0, there exists 7 > O such thatas t > T,

() —e<z(t)<Z"()+e, () =m.
Hence,
b(r,z*(t) —€) <b(r,2(1)) <b(r,2*(t) +€).

For t > T, we obtain

t+A
lirninf/ b(s, 25(s) + e) ds <Ry + 2x/esup/e(t)B(t)
t

t—00 >0

and

t+1 2
liminf/ b(s, 75 (s) — e) ds > Ry — —=Aesup /() B(1).
t «/% t>0

t—00

By the arbitrariness of €, we finally obtain

1+
liminf/ b(s, z(s)) ds =Rj.
t

—>0o0

This shows that Rj is independent of the choice of z*(). Therefore,

—>00

t+A
liminf / b(s, N*(s))ds > 0. 7
t
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Thus, by assumptions (H;), (H;) and (7), we can choose small enough positive constants
€1, €2, €3, then there exist 7 > 0 and n; > 0 satisfying

1+wy

/ BOYMe; — (1(0) + £(0))e1 db < —ny, 3)
1+wy

/ y(@)er — (u(®) + v (0))esdo < —ny, )]
t+A

/ b(s,N*(s)—el —k€2—63)ds >N, (10)

and
N*(t) —€ —key —e3>m, N*@t)<M (11)

forall t > Ty, where k =1+ (aM + b)w,.
Firstly, we will prove

limsup /() > €;. (12)

—00

for any solution of (6). Suppose that (12) is not true, then there exists a solution
(E(t),1(t), R(t)) of (6) and 75 > T; such that I (t) < e, forall t > T,.
If E(t) > €, for all t > T, then from the first equation of system (6), we have

t

E(t) - E(T)) = / BO)(N*(©) — E@©) —1(6) — R(6))1(6)

T

— (1(0) +(0))E(0)do
< | BOMe— (1) +£(0))e db
T

for all t > T,. Then E(t) — —oo as t — oo by (8). This is a contradiction. Hence, there
is a t; > T, such that E(t;) < €;. Next, we will prove

E(t)§61+aMa)2€2. (13)

for all # > ;. Otherwise, there is a 7, > 7 such that E(1;) > €; + aMw,¢€,. Hence, there
must be a 73 € (71, 72) such that E(t3) = €; and E(¢) > €, for all ¢ € (13, 7). Choose an
integer p > 0 such that ; € [13 + pws, 73 + (p + 1)w,). Integrating the first equation of
system (6) from 73 to 7,, we obtain

€1 +aMwye; < E(12)
= E(13) +[ BO)(N*(6) — E©) — 1(6) — R(0))I(6)
3
— (1(®) +£(0))E©)db

et [ pOMe— (uO) +e@)erdo

2
<€ +/ BOYMe, — (1(0) +£(0))er dO < € + aMwse,.

3+pw
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This is a contradiction. Hence, (13) is valid.
If R(t) > €5 for all t > T, then from the third equation of system (6), we have

t

R(t) — R(Ty) = / YO (0) — (11(6) +5(0))R(6)db

T,
t
< / y(0)e2 — (1(0) +5(0))e3dO
b3
for all t > T,. By (9), if follows that R(#) — —oo as t — oo. This is a contradiction.
Hence, there is a 7y > T; such that R(t;) < €3. In the following, we prove

R(t) < €3+ bwsey (14)

for all + > ;. If it is not true, then there is a 7, > t; satisfying R(1;) > €3 + bw,€,. Hence,
there must be a 73 € (11, 7o) such that R(t3) = €3 and R(t) > €3 forall ¢ € (3, 72). Choose
an integer p > 0 such that 1; € [13 + pws, T3 + (p + )w,). Integrating the third equation
of system (6) from 73 to 7,, we obtain

€3+ bwre; < R(12)

)
= R(t3) +/ Yy (O)1(0) — (1(6) + 5(6)) R(©) b

33

<& +f y (@), — (1(O) +5(6))esdb

3

1}
<€ +f y(@)e2 — (1) +8(0))e3db < €3+ bane,.

3+pw)
This is a contradiction. Hence, (14) is valid. From this, we conclude that there exists
Ty > T, such that (13) and (14) are both true for all r > T.
For t > 0, we define a differentiable function V() = E(¢)I(t). When ¢t > T,
Vig ) = BO(N* () — E(t) — I(t) — R()) (t)* + () E(1)?
—[(n@®) +e@®) + (@) +y )| EOI @)
> b(t, N*(t) — E(t) — I (1) — R()) V(1)
> b(t, N*(t) — €1 —key — &3) V(1).

Integrating the above inequality from Tj to ¢, we have

t
V() > V(Ty) exp(f b(s, N*(s) —e€; —key — 63) ds).
Ty
By (10), we obtain limsup,_, ., V (t) = oo. This contradicts with the boundedness of E(¢)
and [ (¢). From this contradiction, we finally conclude limsup,_, ., I (¢) > €.
Secondly, we will prove that there is a constant v; > 0 such that
liminf 7 (¢) > vy. (15)

1—>00
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From (8-11) and (H;), we have that there exist 7 > 77, P > 0 and 1 > 0 such that

4o

/ BO)Me, — (M(G) + 8(9))61 do < —M, (16)
t+a

f y(©)er — (1(0) + v (0))e3db < —M, (17
4o

/ b(s, N*(s) —€; —ke; — e3) ds > 1, (18)

and

4o

/ B©)do >n (19)

for every @ > P, t > T. Choose an integer K, > 0 such that
et DP ek > € + aMw,e, (20)

where v, = e~ +92P By (12), for any #, > 0, we claim that it is impossible that
1(t) <€, for all t > t,. From this claim, we will discuss the following two possibilities.

(1) I(t) = €, for all large 7.
(i1) 1(t) oscillates about €, for all large .

Finally, we will show that I (¢) > e;e~¢TOKo+2P £ ) a5 ¢ is large sufficiently. Evi-
dently, we only need consider the case (ii). Let #; and #, be large sufficiently times satis-
fying

I(t) =1(t) = e,
I1(t) <e, forallte (t,1).

Ift, —t;, < (Kog+2)P, then
[y=eE®) — (n®) +yO)[(6)=—b+)I(1) and (1) =e,

which implies (1) > e;e~C+IK+DP for all ¢ € [11, 1,].

If t, — t; > (Ko + 2) P, then it is clear that I (f) > e;e~GTOKo+DP for all £ € [1, 1, +
(Ko +2)P].

If E(t) > ¢ forallt € [t;,t; + P], then

H+P
Et+P)=E®) +/ BO)SO)IO) — (,u(@) +8(9))E(9) do

n

H+pP
=M +/ BO)Me; — (1(0) +£(0))e1 db < 0.

3|

This is a contradiction. Hence, there is a # € [, t; + P] such that E(f) < €;. From (13),
we can obtain

E(t) <€ +aMwye, foralltelt,t]. (21)
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Similarly, there is a 7 € [t;, #; + P] such that R(f) < €3 and
R(t) <e3+bwre, foralltelf,t]. (22)
Obviously, as t € [t;,t; +2P],

I1(1) > ee " OT2P 2 ) 5 ). (23)

Therefore, from the first equation of system (6), (11), (21) and (22), we have

E@1) = BO)(N*(1) = E(t) = (1) — RO)I () — (1) + (1)) E(1)
> B(O(N*(1) — €1 — ke — &)1 (1) — (1) + (1)) E(1)
=muB(t) — (c+d)E@)

for all t € [t; + P, t; + 2 P]. Integrating the above inequality from t; + P to t; + 2P, by
(19) we have

tH+2P
E(1i +2P) > e~ (ct00#20) [E(tl + P)e”FOUHR) 4 / mvy B (u)e du]
t+P

H+2P
> ef(c+d)(t1+2P)/ mvzﬂ(u)e(c+d)t¢ du
t+P

t1+2P
> e_(”+‘[)va2/ Bw)du > e TP muy,n > 0.
1n+P

We claim that I (¢) > v, for all t € [t; + (Ko 4+ 2) P, t,]. If it is not true, then there is a
To>O0suchthat I (t; + (Ko +2)P + Ty) = vy and I(¢t) > v, on [t1,1; + (Ko +2)P + Tp].
Let V(t) = E(t)I(t) and o = t; + (Ko +2) P 4 Ty. The derivative of V (¢) along solutions
of (6) satisfies

Vg @) = B@)(N*(t) — E(t) — I(t) — R()) I (t)* + (1) E(t)*
—[(n@®) +e@®) + (L) + vy )| EOI @)
>b(t, N*(1) — E(t) = 1(t) — R()) V(1)
> b(t, N*(t) — €] —key — 63)V([)

for all ¢ € [t; 4+ 2P, 1,]. Integrating the above inequality from #; + 2P to ty, we further
have

fo
E(to)vy > E(t; +2P)I (t; +2P) exp(/ b(r, N*(1) — €1 — kez — €3) dt)
H+2P

> e FDP v X0 > (61 + aMw,er)vy.

Thus, E(ty) > €; + aMw,e, which contradicts with (21). So I(¢) > v, is valid for any
t € [t1, 1]. Hence, we have

liminf7(¢) > v; > 0.

1—+00
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According to Theorem 3.1, we have that the infective / is permanent. The proof is com-
pleted. ]

Remark 4.1. In system (2), A(t), B(t), u(t), 6(¢), e(t) and y(¢) are replaced by non-
negative constants, i.e., system (2) becomes an autonomous SEIRS system. The basic
reproduction number of the resulting system is given by

BAe
Ry=——— .
u(u+e)(u+y)

When Ry > 1, the corresponding autonomous system of system (2) is uniformly persistent
(Liu et al., 1987).

On the other hand, the condition R > 0 is equivalent to

(2 ﬂeﬁ)
T(wto+mty)

Ro

Evidently, Ry > 1 implies Ry > 1.

Remark 4.2. From Remark 4.1, we have the following problem, when the condition R >
0 is replaced by

141
Ry = ligigf/ [Bae)z* ) — (1) +e@)) (@) + ¥ W) ]du >0, (24)
1
whether we can obtain the permanent of disease of system (2) or not.

Theorem 4.2. Suppose that assumptions (H;), (Hy) hold and there exist two positive con-
stants ry and r, such that

liminf, o0 [r1 BOON*(£) = ra (11(1) + ¥ (1)) ] > 0,

(25)
liminf, oo [r26(1) — 11 (1(2) + £(1))] > 0.

Then the infective I is permanent.

Proof: By (H;), (H;) and (25), we can choose €; > 0, €, > 0, €3 > 0 which are small
enough, then there exist n > 0 and 7 > 0 such that

+wy
/ BOYMer — (1(0) +£(6))e d6 < —n, (26)
1+wy
/ y(@)e — (n(©®) + y(0))esdo < —n, 27
nBO(N*(1) — € — kes — &) — ra (1) + y (1) = n, (28)
rae(t) —ri(n@) + &) =1 (29)

forall t > Ty, where k =1+ (aM + b)w,.
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Firstly, we claim that it is impossible that 7 () < €, for all ¢ > T). Suppose the contrary,
being similar to the proof in Theorem 4.1, we know that there exists a 7, > T) satisfying

E(t) <€ +aMwse,,
R(t) < &3+ bwre,,

for all t > T5. Construct a continuous differential function V (¢) = r E(t) +r,1(t). When
t > T, we have

Vie®) = [rBO(N* () — E(t) — I(t) — R(®)) — ra (1) + y (1)) |1 (1)
+ [r2e(@) = ri (k@) + )] E@)
> [nB@)(N* (1) — €1 — key — €3) — ra((t) + ¥ (1)) |1 (¢)
+ [r2e() — ri(n(@) +e®)]|E@) = pV (1).

Here p = min{Z, L} > 0. Hence,
ron

V() > V(Ty)e’ ™™ — too(r — 00).

This is contrary to the boundedness of V (¢). Hence, the claim is proved. From this claim,
we will discuss the following two possibilities.

(i) 1(t) > €, for all large ¢.
(i) I(z) oscillates about €, for all large ¢.

By (26) and (27), there exist P > 0 and T > T such that
t+a
/ BOMey — (11(6) + £(8))er db < —M, (30)
t

1+a
/ y(@)er — (1(0) + y(0))e3d0 < =M, (3D

and N*(¢) < M for any o > P, t > T. Choose a positive integer K, such that

1
;[}"1626

~(b+O)P ,pKoP 7(b+c)(K0+1)P]

— Inee > €] +(1Ma)2€2.

where p = min{Z, 1}, In the following, we will prove I () > e;e~C+OKo+DP &4 for

large sufﬁciently'lt. El,vidently, we only need consider the case (ii). Let #; and #, be large
sufficiently times satisfying

I(t) =1(t) = e,

I1(t) <e, forallte (1, 1).
Iflz —n < (K0+ l)P, then
[ty =eE®) — (v +y®) (1) = =B+ ) (1),

which implies (¢) > v, for all ¢ € [#,, £,].
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Iftp —t; > (Ko + 1) P, then it is clear that /(¢) > v, forallt € [t;, 11 + (Ko + 1) P]. It
is easy to prove that

E(t) <€ +aMwe;, R(t) < &5+ barer (32)
forallt € [t; + P, t,] and I (f; + P) > e2e~ 9P We claim that 7 (t) > v; on [t; + (Ko +
1)P, t,]. If it is not true, then there is a T > 0 such that I(#; + (Ko + 1) P 4+ Tp) = v,

and I(t) > v, forallt € [t;,t; + (Ko+ )P + Tyl. Set V(t) =r E(t) + rpI(t) and ) =
ti+ (Kog+ 1)P + T,. Hence, as t € [t; + P, t»], one has

Vig®) = [rB@®(N* @) — E(t) — 1) — R(t)) — ra (1)) + y ) 1 ()
+ [r2e@) = ri (k@) + )] E@)
> [nB@)(N*(1) — €1 — key — €3) — ra(t) + ¥ (1)) |1 (2)
+ [re@) —ri(n@) +e®)]|E@®) = pV ().

Integrating the above inequality from #; + P to ty, we obtain
nE (o) + 21 (to) = 121 (1 + P)e” .

This implies that
1 .
E(ty) > —[rlegef(bJr‘)Pe/’KOP — rgezef(b“)(’(o“)f)] > €; +aMme;.
r

This is a contradiction with (32). Therefore, I (¢) > v; for all ¢ € [#1, t,]. Thus, we have

liminf 7 () > v; > 0.
t——+00

The proof is completed. (]

Remark 4.3. When system (2) transform into the autonomous system, the condition (25)
is as follows

A
rnp——ra(u+y)>0,
"
re—ri(n+e) >0,

which is equivalent to Ry > 1.

Remark 4.4. In Theorem 4.2, if we are replaced the condition (25) by

liminf LON@ e EO)

-liminf ——— > (33)
t—oo pu(t) +y (1) 1= u(r)+e)

then the infective / is still permanent. In fact, the condition (33) can derive the condition
(25).
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5. Extinction
On the extinction of infective I in system (6), we have the following results.

Theorem 5.1. Suppose that assumptions (H1), (H,) hold. If there is a constant A > 0 such
that

1+
Rf = limsup/ [BO)N* () — u(0)]do <0 (34)
or
R; =limsup ;/ [BOYN*(0) — n(6)]do <0 (35)
t—00 0

then infective I in system (0) is extinct i.e. lim,_, o, I (1) = 0.

Proof: From assumption (H,), we can choose n > 0 small enough and 7; > 0 big enough
satisfying

+wy
| peras =y
t
forall t > T;.

For any constant 0 < € < 1, we set ¢y = mln{ﬁ, 5’76} > 0. If (34) holds, then there
exists 7, > T such that

t+A
/ BOIN™(0) — u(0)do < €

for all # > T5. Choose an integer n satlsfylng =2 <pg < zﬂ + 1. Set Ao = ngA, then

1+
/ BO)N*(O) — u(0) — B(B)edb

t+ngh t+2wr
< f BOIN*(6) — pu(6)d6 — / B©O)e do

1
< oo — 2n€ < —Eﬂfé—flo <. (36)

Construct a continuous function V (t) = E(t) + I (t), differentiate V along a solution of
(6) obtaining

V'(@t) =B (N*(t) —E@) — (1) — R(®))1 (1) — )V () —y (1)1 (1)
< BW)(N*(1) = E(t) = 1(t) = RD) V(1) — n()V (1)
< (BON*(t) — u@) = BOV (1)) V (1). (37)

If V(t) > € for all t > T3, then from (5) we obtain



2552 Zhang and Teng

V) < V(Tz)eXp/ [B()N*(s) — u(s) — B(s)e] ds. (38)
T

By (5), it follows that V (¢) — 0 as t — oo. This is a contradiction with V (¢) > €. Hence,
there must be a #; > T, such that V(1) < €. Let N(€) = sup,. . {|B(O)N*(t) — n(®)] +
B(t)e}, N(¢) is bounded for each € € (0, 1). Finally, we will prove

V(1) < eexp(N(€)Ao) (39

for all t > ¢,. If it is not true, then there exists a #, > t;, such that V(#,) > € exp(N (€)Ag).
Hence, there exists a t3 € (#1, t>) such that V(t;) =€ and V(t) > € for all t € (13, 1,). Let
p be a nonnegative integer such that t, € (13 + pAo, t3 + (p + 1)A], then from (5) and (5)
we have

1
eexp(N(e)rg) < V() < V(l‘3)€XP/ BAN™(t) — u(t) — B(t)edt
< eexp(N(€)o). .

This leads to a contradiction. Hence, inequality (39) holds. Furthermore, since € can be
arbitrarily small and 0 < I(¢) < V(¢), we conclude that / (#) — 0 as t — co. Suppose that
(35) holds. There exist § > 0 and T; > 0 such that

%/ BOIN™(0) — u(0)do < =5 (40)
0

for all t+ > Tj. From (38) we directly obtain

V() < V(Ty)exp / [BGIN*(5) — u(s)]ds
T

for all t > Ty. By (40), V(1) — 0 as t — oo. Therefore, we finally also have 7(#) — 0 as
t — oo. This completes the proof of Theorem 5.1. g

Remark 5.1. For the corresponding autonomous system of system (2), the conditions (34)
and (35) come into

Al Al
B——<1 and B—— <1,
oy oy

which implies Ry < 1. From (Liu et al., 1987), the disease will go to extinct when R, < 1.
It is similar to Remark 4.2 that we put forward the problem: If the conditions (34) and
(35) are replaced by

t+A
Ry" = limsup / [BON*©)2(0) — (11(6) +£(®)) (1(6) + () ]do <0 (41)

and

1 t
R5* = limsup /0 [BON*©)e(®) — (1(8) +£() (1(6) +y ()] d6 <0 (42)

—>00

respectively, will the disease of system (2) go to extinct?
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Theorem 5.2. Suppose that assumptions (Hy), (Hy) hold. If there exist two positive con-
stants ry and ry such that

limsup,_, .. [r1BON*(t) — r2 (1) + ¥ (1))] <0,

, (43)
hmsupt_,oo[rzg(t) —r ([,L(t) + 8([))] <0
then infective I in system (0) is extinct i.e. lim,_, o, 1 (t) = 0.
Proof: From (43), choose n > 0 small enough, then there exists 7 > 0 such that
rBAON* (1) — ra(u(t) + y (1)) < —n,
(44)

re(t) —ri(p(t) + () < —n
forall t > T. Define V(t) =r  E(t) + r,1 (¢) and obtain
Vi) = [MBO(N* (1) — E(t) — I(t) — R(1)) — ra(e () + y () |1 (1)
+ [r2e@) = ri (k@) + )] E@)
< [nBON*t) — ra(n@) +y®))]1 (1)
+[r2e@) = ri (k@) + )| E@) < —pV ().

where p = min{%, %}. This implies that V (1) — 0 as t — 0o. Hence lim,_, o, 1 (#) = 0. O

Remark 5.2. When system (2) transform into the autonomous system, the condition (43)
is as follows

A
rlﬂ; —n(u+y) <0,
rae —ri(u+¢) <0,
which is equivalent to Ry < 1.

Remark 5.3. In Theorem 5.2, if we are replaced the condition (43) by

! BON* (1) . . (1)
im sup f

——— .liminf ——— < 1, 45)
t—o0 M(@) +y (@) 1o u(t)+e(t)

then the infective [ is still extinct. In fact, the condition (45) can derive the condition (43).

6. Some corollaries

As consequences of Theorems 4.1 and 5.1, we have the following a series of corollaries.

Corollary 6.1. Suppose that assumptions (Hy), (Hy) hold and () > 0 for all t > 0 and

0 <liminf, % <limsup,_, 2—8)) < 00. If there is a constant A > 0 such that

t+A A m
liminf/ b(s, <—> )ds >0,
—00 t l,{,

then the infective I of system (2) is permanent.
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Corollary 6.2. Suppose that assumptions (Hy), (Hy) hold and u(t) > 0 for all t > 0 and

0 < liminf,_, o 22 <lim SUP,_, 00 A0 o, If there is a constant A > 0 such that

nn = 0]

t+1 A M

limsup/ ,B(G)(—) —n(@)do <0
t—00 t u

or

1 M
limsup%/o ,8(9)(2) —u@)do <0

t—00
then infective I in system (2) is extinct i.e. lim,_, o, I (t) = 0.

Corollary 6.3. Suppose that assumptions (Hi), (Hz) hold and there exists a constant
A > 0 such that Ry > 1, where

B = COVBEz
T (e + ()

Here,

t+A
(2VBez*), = ligg}f/ 2yBMe)z* (1) dt,

t+r

0 ..

(r+e)+wm+y) = hmsup/ () + &) + (n@) +y (@) dt.
t—00 t

7%(t) be some fixed solution of Eq. (4) with initial value 7*(0) > 0. Then the infective I is

permanent.

Corollary 6.4. When system (2) is w-periodic and assumptions (H,), (Hy) hold, then the
infective I is permanent provided that

R (2v/Bez")

R TET EXES)

Here, 7*(t) is the globally uniformly attractive nonnegative w-periodic solution of Eq. (4).

Corollary 6.5. When system (2) is almost periodic and assumptions (H,), (Hy) hold, then
the infective I is permanent provided that

_ mQJFeE)
Com((+e)+ (u+y))

ﬁ03

Here, z*(t) is the globally uniformly attractive nonnegative almost periodic solution of
Eq. (4).

Corollary 6.6. Suppose that assumptions (Hi), (Hz) hold and there exists a constant
A > 0 such that Ry; < 1, where

- (B
Ry = .
T (o
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Here,

t+A
(ﬁz*)ozlimsup/ Bz (1) dt,

t—00
142
(W) = liminf/ u(t)dt.
—00 t

7*(t) be some fixed solution of Eq. (4) with initial value 7*(0) > 0. Then the infective I is
extinct.

Corollary 6.7. When system (2) is w-periodic and assumptions (H,), (Hy) hold, then the
infective 1 is extinct provided that

(Bz*)

w

Ry = <1

Here, z*(t) is the globally uniformly attractive nonnegative w-periodic solution of Eq. (4).

Corollary 6.8. When system (2) is almost periodic and assumptions (H,), (Hy) hold, then
the infective I is extinct provided that

Here, 7*(t) is the globally uniformly attractive nonnegative almost periodic solution of
Eq. (4).

7. Examples

In this paper, we investigate a class of nonautonomous SEIRS epidemic model. By using
analytic method, we give some sufficient conditions for the permanence, extinction of the
disease.

In order to testify the validity of our results, we consider the following nonautonomous
SEIRS epidemic model.

ds
< =AW = BOSI — S+ IR,

dE
- = BWSI — (n+e())E,
(46)

I
=eE - (n+y)l,

dt
R _ (u+8)R
o=l ,
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1t
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0 10 2 % 4 5N & W B 0

Fig. 1 The left figure shows that movement paths of S, E, I and R as functions of time ¢. The graph of
the trajectory in (S, E, I)-Space is shown in the right figure. R =2.8696 > 0 and Rj* =3.3419 > 0.
The disease is permanent.

Corresponding auxiliary system is

dz

— = A(t) — uz. 47

7 (1) — uz (47)
In system (46), let A(¢) = 14sin(2xt), B(t) = 0.6+0.5sin(rrt), e(¢r) = 0.5+ 0.3 sin(wt),
n =02,y =0.1 and § = 0.2. We easily verify that assumptions (H;) and (H;) hold.
Therefore, from Lemma 2.1, system (47) has a globally asymptotically stable positive
periodic solution z*(¢) with period 1. Here

() =e M (Zo —I—/ e’”A(s)ds)
0

where zo = ﬁ fol e A(s)ds. By (5) and (24), we can solve R; = 2.8696 > 0 and
R§* = 3.3419 > 0. From Theorem 4.1 and Corollary 6.4, the disease of system (6) is
permanent and has a positive periodic solution. Numerical simulation of the above results
can seen in Fig. 1.

However, if in system (46), let A(¢) = 0.5+ sin(27t), f(t) = 0.6+ 0.4sin(x1), e(t) =
0.540.3sin(rt), © =0.36, y = 0.1 and § = 0.2. We easily can solve R} = —0.0612 < 0
and Rj* =0.2183 > 0, i.e., the condition (5) is invalid but the condition (24) is valid.
Computer observations (see Fig. 2) suggest that when (24) holds, system (46) is still
permanent.

Furthermore, if in system (46), let A(t) = 0.5+ sin(2xwt), B(¢) = 0.1 +sin(rwt), e(t) =
0.2 +sin(wrt), © =0.5, y =0.4 and § = 0.1. By (34) and (41), we can easily solve R} =
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Fig. 2 The left figure shows that movement paths of S, E, I and R as functions of time ¢. The graph of
the trajectory in (S, E, I)-Space is shown in the right figure. R§ = —0.0612 < 0 and Rj* =0.2183 > 0.
The disease is permanent.

12§ | S(t)

08

08

06

[105)

NN N0 0 6 N Eff) 0 | s

Fig. 3 The left figure shows that movement paths of S, E, I and R as functions of time ¢. The graph of
the trajectory in (S, E, I)-Space is shown in the right figure. R’l" = —0.8784 < 0 and R(”)‘* = —1.0000 < 0.
The disease is extinct.
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Fig. 4 The left figure shows that movement paths of S, E, I and R as functions of time ¢. The graph of
the trajectory in (S, E, I)-Space is shown in the right figure. R} = 0.2 > 0 and R§* = —0.4381 < 0. The
disease is extinct.

—0.8784 < 0 and R}* = —1.0000 < 0. From Fig. 3, we can obtain that the disease of
system (6) is extinct.

Finally, if in system (46), let A(¢) = 0.5 + sin(2r¢), B(¢r) = 0.6 4+ 0.5sin(w?), e(t) =
0.5+ 0.3sin(?), © =0.5, y = 0.1 and § = 0.2. By (34) and (40), we can easily solve
Ry =0.2 >0 and Rj* = —0.4381 < 0. From Fig. 4, we can obtain that the disease of
system (6) is extinct.

Obviously, conditions (24), (41) and (42) are the improvement of the condition (5),
(34) and (35), respectively. Therefore, as an improvement of Theorems 4.1 and 5.1 we
have following interesting open problems.

Question 1. Suppose that assumptions (H;) and (H») hold. Is the disease in system (6)
is still permanent when condition (24) holds?

Question 2. Suppose that assumptions (H;) and (H;) hold. Is the disease in system (6)
is extinct when condition (41) or (42) holds?
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