Skip to main content

Advertisement

Log in

Practical Identifiability of HIV Dynamics Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the practical identifiability of parameters, i.e., the accuracy of the estimation that can be hoped, in a model of HIV dynamics based on a system of non-linear Ordinary Differential Equations (ODE). This depends on the available information such as the schedule of the measurements, the observed components, and the measurement precision. The number of patients is another way to increase it by introducing an appropriate statistical “population” framework. The impact of each improvement of the experimental condition is not known in advance but it can be evaluated via the Fisher Information Matrix (FIM). If the non-linearity of the biological model, as well as the complex statistical framework makes computation of the FIM challenging, we show that the particular structure of these models enables to compute it as precisely as wanted. In the HIV model, measuring HIV viral load and total CD4+ count were not enough to achieve identifiability of all the parameters involved. However, we show that an appropriate statistical approach together with the availability of additional markers such as infected cells or activated cells should considerably improve the identifiability and thus the usefulness of dynamical models of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, A., Donev, A., 1992. Optimum Experimental Designs. Oxford University Press, London.

    MATH  Google Scholar 

  • Audoly, S., Bellu, G., D’Angio, L., Saccomani, M., Cobelli, C., 2001. Global identifiability of nonlinear models of biological systems. IEEE Trans. Biomed. Eng. 48, 55–65.

    Article  Google Scholar 

  • Auranen, K., Arjas, E., Leino, T., Takala, A., 2000. Transmission of pneumococcal carriage in families: a latent Markov process model for binary longitudinal data. J. Am. Stat. Assoc. 95.

  • Banks, H., Grove, S., Hu, S., Ma, Y., 2005. A hierarchical Bayesian approach for parameter estimation in HIV models. Inverse Probl. 21, 1803–1822.

    Article  MATH  MathSciNet  Google Scholar 

  • Bortz, D., Nelson, P., 2006. Model selection and mixed-effects modeling of HIV infection dynamics. Bull. Math. Biol. 68, 2005–2025.

    Article  MathSciNet  Google Scholar 

  • Box, G.E.P., Draper, N.R., 1959. A basis for the selection of a response surface design. J. Am. Stat. Assoc. 54, 622–654.

    Article  MATH  MathSciNet  Google Scholar 

  • Cauchemez, S., Temime, L., Guillemot, D., Varon, E., Valleron, A., Thomas, G., Boëlle, P., 2006. Investigating heterogeneity in pneumococcal transmission: a Bayesian MCMC approach applied to a follow-up of schools. J. Am. Stat. Assoc. 101, 946–958.

    Article  MATH  Google Scholar 

  • Chun, T.W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J.A., Taylor, H., Hermankova, M., Chadwick, K., Margolick, J., Quinn, T.C., Kuo, Y.H., Brookmeyer, R., Zeiger, M.A., Barditch-Crovo, P., Siliciano, R.F., 1997. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188.

    Article  Google Scholar 

  • Commenges, D., Jacqmin-Gadda, H., Proust, C., Guedj, J., 2006. A Newton-like algorithm for likelihood maximization: the robust variance scoring algorithm. arXiv:math.ST/0610402.

  • Davidian, M., Giltinian, D.M., 1995. Nonlinear Models for Repeated Measurements Data. Chapman & Hall, London.

    Google Scholar 

  • Fedorov, V.V., 1972. Theory of Optimal Experiments. Academic, San Diego

    Google Scholar 

  • Genz, A., Keister, B.D., 1996. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71, 299–311.

    Article  MATH  MathSciNet  Google Scholar 

  • Grossman, Z., Meier-Schellersheim, M., Sousa, A.E., Victorino, R.M.M., Paul, W.E., 2000. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat. Med. 8, 319–323.

    Article  Google Scholar 

  • Guedj, J., Thiébaut, R., Commenges, D., 2007. Maximum likelihood estimation in dynamical models of HIV. Biometrics, Epub 2007 May 8.

  • Han, C., Chaloner, K., 2004. Bayesian experimental design for nonlinear mixed-effects models with application to HIV dynamic. Biometrics 60, 25–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M., 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.

    Article  Google Scholar 

  • Holmberg, A., 1982. On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities. Math. Biosci. 62, 23–43.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, Y., Liu, D., Wu, H., 2006. Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics 63, 413–423.

    Article  MathSciNet  Google Scholar 

  • Huang, Y., Wu, H., 2006. A Bayesian approach for estimating antiviral efficacy in HIV dynamic models. J. Appl. Stat. 33, 155–174.

    Article  MATH  MathSciNet  Google Scholar 

  • Julien, S., Barbary, J., Lessard, P., 1997. Theoretical and practical identifiability of a reduced order model in an activated sludge process doing nitrification and denitrification. Water Sci. Technol. 37, 309–316.

    Article  Google Scholar 

  • Kiefer, J., 1974. General equivalence theory for optimum designs (approximate theory). Ann. Stat. 2, 849–879.

    MATH  MathSciNet  Google Scholar 

  • Knight, K., 2001. Mathematical Statistics. Chapman & Hall/CRC, London/Boca Raton.

    Google Scholar 

  • Louis, T., 1982. Finding the observed Information matrix when using the EM algorithm. J. Roy. Stat. Soc. Ser. B 44, 226–233.

    MATH  MathSciNet  Google Scholar 

  • Mclean, A.R., Michie, C.A., 1995. In vivo estimates of division and death rates of human t lymphocytes. Proc. Nat. Acad. Sci. USA 92, 3707–3711.

    Article  Google Scholar 

  • Mentré, F., Mallet, A., Baccar, D., 1997. Optimal design in random-effects regression models. Biometrika 84, 429–442.

    Article  MATH  MathSciNet  Google Scholar 

  • Patterson, B.K., Mosiman, V.L., Cantarero, L., Furtado, M., Bhattacharya, M., Goolsby, C., 1998. Detection of HIV-RNA-positive monocytes in peripheral blood of HIV-positive patients by simultaneous flow cytometric analysis of intracellular HIV RNA and cellular immunophenotype. Cytometry 31, 265–274.

    Article  Google Scholar 

  • Perelson, A.S., 2002. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36.

    Article  Google Scholar 

  • Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D., 1996. Viral dynamics in human immunodeficiency virus type 1 infection. Science 271, 1582–1586.

    Article  Google Scholar 

  • Petersen, B., Gernaey, K., Vanrolleghem, P.A., 2001. Practical identifiability of model parameters by combined respirometric-titrimetric measurements. Water Sci. Technol. 43, 347–355.

    Google Scholar 

  • Piatak, M., Saag, M., Yang, L.C., Clark, S.J., Kappes, J.C., Luk, K.C., Hahn, B.H., Shaw, G.M., Lifson, J.D., 1993. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754.

    Article  Google Scholar 

  • Pinheiro, J.C., Bates, D.M., 2000. Mixed-Effects Models in S and S-PLUS. Springer, London.

    MATH  Google Scholar 

  • Pohjanpalo, H., 1978. System identifiability based on the power series expansion of the solution. Math. Biosci. 41.

  • Putter, H., Heisterkamp, S.H., Lange, J.M.A., de Wolf, F., 2002. A Bayesian approach to parameter estimation in HIV dynamic models. Stat. Med. 21, 2199–2214.

    Article  Google Scholar 

  • Radhakrishnan, K., Hindmarsh, A.C., 1993. Description and use of LSODE, the livermore solver for ordinary differential equations. LLNL Report UCR-ID-113855 Livermore, CA 4.

  • Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J.E., Markowitz, M., Moore, J.P., Perelson, A.S., Ho, D.D., 1999. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1786.

    Article  Google Scholar 

  • Retout, S., Dufull, S., Mentr, F., 2001. Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs. Comput. Meth. Programs Biomed. 65, 141–151.

    Article  Google Scholar 

  • Ribeiro, R.M., Mohri, H., Ho, D.D., Perelson, A.S., 2002. In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: Why are CD4 but not CD8 T cells depleted? Proc. Nat. Acad. Sci. 24, 15572–15577.

    Article  Google Scholar 

  • Rothenberg, T.J., 1971. Identification in parametric models. Econometrica 39, 577–591.

    Article  MATH  MathSciNet  Google Scholar 

  • Rusert, P., Fischer, M., Joos, B., Leemann, C., Kuster, H., Flepp, M., Bonhoeffer, S., Gunthard, H.F., Trkola, A., 2004. Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol. Virology 326, 113–129.

    Article  Google Scholar 

  • Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S., 2000. Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285–301.

    Article  Google Scholar 

  • Thiébaut, R., Guedj, J., Jacqmin-Gadda, H., Chêne, G., Trimoulet, P., Neau, D., Commenges, D., 2006. Estimation of dynamical model parameters taking into account undetectable marker values. BMC Med. Res. Methodol. 6, 1–10, http://www.biomedcentral.com/1471-2288/6/38.

    Article  Google Scholar 

  • Thiébaut, R., Jacqmin-Gadda, H., Leport, C., Katlama, C., D., C., Le Moing, V., Morlat, P., Chene, G., the APROCO Study Group, 2003. Bivariate longitudinal model for the analysis of the evolution of HIV RNA and CD4 cell count in HIV infection taking into account left censoring of HIV RNA measures. J. Biopharm. Stat. 13, 271–282.

    Article  Google Scholar 

  • Vajda, S., Rabitz, H., Walter, E., Lecourtier, Y., 1989. Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models. Chem. Eng. Commun. 83, 191–219.

    Article  Google Scholar 

  • Walter, E., Pronzato, L., 1997. Identification of Parametric Models from Experimental Data. Springer, Berlin.

    MATH  Google Scholar 

  • Wei, X., Ghosh, S.K., E., T.M., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, N.A., Hahn, B.H., Saag, M.S., Shaw, G.M., 1995. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122.

    Article  Google Scholar 

  • Wu, H., 2005. Statistical methods for HIV dynamic studies in AIDS clinical trials. Stat. Methods Med. Res. 14, 1–22.

    Article  Google Scholar 

  • Xia, X., Moog, C.H., 2003. Identifiability of nonlinear systems with applications to HIV/AIDS models. IEEE Trans. Autom. Control 48, 330–336.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guedj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guedj, J., Thiébaut, R. & Commenges, D. Practical Identifiability of HIV Dynamics Models. Bull. Math. Biol. 69, 2493–2513 (2007). https://doi.org/10.1007/s11538-007-9228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9228-7

Keywords

Navigation