Skip to main content
Log in

Statistical Analysis of Sets of Random Walks: How to Resolve Their Generating Mechanism

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The analysis of experimental random walks aims at identifying the process(es) that generate(s) them. It is in general a difficult task, because statistical dispersion within an experimental set of random walks is a complex combination of the stochastic nature of the generating process, and the possibility to have more than one simple process. In this paper, we study by numerical simulations how the statistical distribution of various geometric descriptors such as the second, third and fourth order moments of two-dimensional random walks depends on the stochastic process that generates that set. From these observations, we derive a method to classify complex sets of random walks, and resolve the generating process(es) by the systematic comparison of experimental moment distributions with those numerically obtained for candidate processes. In particular, various processes such as Brownian diffusion combined with convection, noise, confinement, anisotropy, or intermittency, can be resolved by using high order moment distributions. In addition, finite-size effects are observed that are useful for treating short random walks. As an illustration, we describe how the present method can be used to study the motile behavior of epithelial microvilli. The present work should be of interest in biology for all possible types of single particle tracking experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cdf:

Cumulative distribution function

MSD:

Mean Square Displacement

SPT:

Single Particle Tracking

References

  • Amblard, F., Maggs, A.C., Yurke, B., Pargellis, A., Leibler, S., 1996. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77(21), 4470–4473.

    Article  Google Scholar 

  • Bentil, D.E., 1998. Distribution of attachment events relative to actin binding sites as evidenced in a bidirectional actomyosin interaction model. Bull. Math. Biol. 60(5), 973–995.

    Article  MATH  Google Scholar 

  • Bertin, E.M., Bouchaud, J.P., 2003. Subdiffusion and localization in the one-dimensional trap model. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 67(2 Pt 2), 026128.

    Google Scholar 

  • Borgdorff, A., Choquet, D., 2002. Regulation of AMPA receptor lateral movements. Nature 417, 649–653.

    Article  Google Scholar 

  • Block, S.M., 1998. Kinesin: what gives? Cell 93(1), 5–8.

    Article  Google Scholar 

  • Caspi, A., Granek, R., Elbaum, M., 2002. Diffusion and directed motion in cellular transport. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66(1 Pt 1), 011916.

    Google Scholar 

  • Cherry, R.J., Georgiou, G.N., Morrison, I.E., 1994. New insights into the structure of cell membranes from single particle tracking experiments. Biochem. Soc. Trans. 22(3), 781–784.

    Google Scholar 

  • Cherry, R.J., Smith, P.R., Morrison, I.E., Fernandez, N., 1998. Mobility of cell surface receptors: a re-evaluation. FEBS Lett. 430(1–2), 88–91.

    Article  Google Scholar 

  • Cognet, L., Tardin, C., Boyer, D., Choquet, D., Tamarat, P., Lounis, B., 2003. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. USA 100(20), 11350–11355.

    Article  Google Scholar 

  • Coscoy, S., Waharte, F., Gautreau, A., Martin, M., Louvard, D., Mangeat, P., Arpin, M., Amblard, F., 2002. Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proc. Natl. Acad. Sci. USA 99(20), 12813–12818.

    Article  Google Scholar 

  • Coudrier, E., Amblard, F., Zimmer, C., Roux, P., Olivo-Marin, J.C., Rigothier, M.C., Guillen, N., 2005. Myosin II and the Gal-GalNAc lectin play a crucial role in tissue invasion by Entamoeba histolytica. Cell Microbiol. 7(1), 19–27.

    Article  Google Scholar 

  • Craig, A.M., Lichtman, J.W., 2001. Getting a bead on receptor movements. Nat. Neurosci. 4(3), 219–220.

    Article  Google Scholar 

  • Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A., 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644), 442–445.

    Article  Google Scholar 

  • Daumas, F., Destainville, N., Millot, C., Lopez, A., Dean, D., Salome, L., 2003. Confined diffusion without fences of a G-protein-coupled receptor as revealed by single particle tracking. Biophys. J. 84, 356–366.

    Google Scholar 

  • Friedl, P., Wolf, K., 2003. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3(5), 362–374.

    Article  Google Scholar 

  • Flyvbjerg, H., Peterson, H.G., 1989. Error estimates on averages of correlated data. J. Chem. Phys. 91, 461–466.

    Article  MathSciNet  Google Scholar 

  • Geerts, H., De Brabander, M., Nuydens, R., Geuens, S., Moeremans, M., De Mey, J., Hollenbeck, P., 1987. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J. 52(5), 775–782.

    Google Scholar 

  • Goulian, M., Simon, S.M., 2000. Tracking single particles within cells. Biophys. J. 79, 2188–2198.

    Google Scholar 

  • Gross, S.P., Welte, M.A., Block, S.M., Wieschaus, E.F., 2000. Dynein-mediated cargo transport in vivo: a switch controls travel distances. J. Cell Biol. 148, 945–956.

    Article  Google Scholar 

  • Hughes, B.D., 1995. Random Walks. Random Walks and Random Environments, vol. 1. Clarendon, Oxford.

    MATH  Google Scholar 

  • Hughes, B.D., 1996. Random Environments. Random Walks and Random Environments, vol. 2. Clarendon, Oxford.

    MATH  Google Scholar 

  • Hugues, S., Fetler, L., Bonifaz, L., Helft, J., Amblard, F., Amigorena, S., 2004. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat. Immunol. 5(12), 1235–1242.

    Article  Google Scholar 

  • Kulesa, P., Ellies, D.L., Trainor, P.A., 2004. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Dev. Dyn. 229(1), 14–29.

    Article  Google Scholar 

  • Kusumi, A., Sako, Y., 1996. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8(4), 566–574.

    Article  Google Scholar 

  • Lamb, R.F., Ozanne, B.W., Roy, C., McGarry, L., Stipp, C., Mangeat, P., Jay, D.G., 1997. Essential functions of ezrin in maintenance of cell shape and lamellipodium extension in normal and transformed fibroblasts. Curr. Biol. 7(9), 682–688.

    Article  Google Scholar 

  • Luby-Phelps, K., 2000. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221.

    Article  Google Scholar 

  • Maly, I.V., Vorobjev, I.A., 2002. Centrosome-dependent anisotropic random walk of cytoplasmic vesicles. Cell Biol. Int. 26(9), 791–799.

    Article  Google Scholar 

  • Marshall, W.F., Marko, J.F., Agard, D.A., Sedat, J.W., 2001. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr. Biol. 11(8), 569–578.

    Article  Google Scholar 

  • Martin, D.S., Forstner, M.B., Kas, J.A., 2002. Apparent subdiffusion inherent to single particle tracking. Biophys. J. 83(4), 2109–2117.

    Google Scholar 

  • Niggemann, B., Drell, T.L. 4th, Joseph, J., Weidt, C., Lang, K., Zaenker, K.S., Entschladen, F., 2004. Tumor cell locomotion: differential dynamics of spontaneous and induced migration in a 3D collagen matrix. Exp. Cell Res. 298(1), 178–187.

    Article  Google Scholar 

  • Ochi, M.K., 1990. Applied Probability and Stochastic Processes. Wiley, New York.

    MATH  Google Scholar 

  • Ordemann, A., Berkolaiko, G., Havlin, S., Bunde, A., 2000. Swelling-collapse transition of self-attracting walks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 61(2), R1005–R1007.

    Google Scholar 

  • Ott, A., Bouchaud, J.P., Langevin, D., Urbach, W., 1990. Anomalous diffusion in “living polymers”: a genuine Levy flight? Phys. Rev. Lett. 65(17), 2201–2204.

    Article  Google Scholar 

  • Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M., Stanley, H.E., 1992. Long-range correlations in nucleotide sequences. Nature 356(6365), 168–170.

    Article  Google Scholar 

  • Rabinovich, S., Roman, H.E., Havlin, S., Bunde, A., 1996. Critical dimensions for random walks on random-walk chains. Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 54(4), 3606–3608.

    Google Scholar 

  • Rief, M., Rock, R.S., Mehta, A.D., Mooseker, M.S., Cheney, R.E., Spudich, J.A., 2000. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97(17), 9482–9486.

    Article  Google Scholar 

  • Rock, R.S., Rice, S.E., Wells, A.L., Purcell, T.J., Spudich, J.A., Sweeney, H.L., 2001. Myosin VI is a processive motor with a large step size. Proc. Natl. Acad. Sci. USA 98(24), 13655–13659.

    Article  Google Scholar 

  • Rudnick, J., Hu, Y., 1988. Winding angle of a self-avoiding random walk. Phys. Rev. Lett. 60(8), 712–715.

    Article  MathSciNet  Google Scholar 

  • Salomé, L., Cazeils, J.L., Lopez, A., Tocanne, J.F., 1998. Characterization of membrane domains by FRAP experiments at variable observation areas. Eur. Biophys. J. 27(4), 391–402.

    Article  Google Scholar 

  • Savino, T.M., Gebrane-Younes, J., De Mey, J., Sibarita, J.B., Hernandez-Verdun, D., 2001. Nucleolar assembly of the RNA processing machinery in living cells. J. Cell Biol. 153(5), 1097–1110.

    Article  Google Scholar 

  • Saxton, M.J., 1993. Lateral diffusion in an archipelago. Single-particle diffusion. Biophys. J. 64(6), 1766–1780.

    Google Scholar 

  • Saxton, M.J., 1994. Single-particle tracking: models of directed transport. Biophys. J. 67(5), 2110–2119.

    Google Scholar 

  • Saxton, M.J., 1995. Single-particle tracking: effects of corrals. Biophys. J. 69(2), 389–398.

    Google Scholar 

  • Saxton, M.J., 1997. Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72(4), 1744–1753.

    Google Scholar 

  • Sciutto, S.J., 1995. Study of the shape of random walks: II. Inertia moment ratios and the two-dimensional asphericity. J. Phys. A: Math. Gen. 28, 3667–3679.

    Article  MATH  MathSciNet  Google Scholar 

  • Shaevitz, J.W., Abbondanzieri, E.A., Landick, R., Block, S.M., 2003. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426(6967), 684–687.

    Article  Google Scholar 

  • Sheetz, M.P., 1999. Motor and cargo interactions. Eur. J. Biochem. 262(1), 19–25.

    Article  Google Scholar 

  • Simson, R., Sheets, E.D., Jacobson, K., 1995. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993.

    Article  Google Scholar 

  • Spudich, J.A., 2001. The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2(5), 387–392.

    Article  Google Scholar 

  • Tsien, R.Y., 1998. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  Google Scholar 

  • Ulrich, F., Concha, M.L., Heid, P.J., Voss, E., Witzel, S., Roehl, H., Tada, M., Wilson, S.W., Adams, R.J., Soll, D.R., Heisenberg, C.P., 2003. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130(22), 5375–5384.

    Article  Google Scholar 

  • Waharte, F., Brown, C.M., Coscoy, S., Coudrier, E., Amblard, F., 2005. A two-photon FRAP analysis of the cytoskeleton dynamics in the microvilli of intestinal cells. Biophys. J. 88(2), 1467–1478.

    Article  Google Scholar 

  • Wei, G., 1995. Exact shapes of random walks in two dimensions. Physica A 222, 152–154.

    Article  Google Scholar 

  • Wong, I.Y., Gardel, M.L., Reichman, D.R., Weeks, E.R., Valentine, M.T., Bausch, A.R., Weitz, D.A., 2004. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett. 92(17), 178101.

    Article  Google Scholar 

  • Zhang, F., Lee, G.M., Jacobson, K., 1993. Protein lateral mobility as a reflection of membrane microstructure. Bioessays 15(9), 579–588.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Coscoy.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coscoy, S., Huguet, E. & Amblard, F. Statistical Analysis of Sets of Random Walks: How to Resolve Their Generating Mechanism. Bull. Math. Biol. 69, 2467–2492 (2007). https://doi.org/10.1007/s11538-007-9227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9227-8

Keywords

Navigation