Skip to main content
Log in

A Short Note on Short Dispersal Events

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study how the speed of spread for an integrodifference equation depends on the dispersal pattern of individuals. When the dispersal kernel has finite variance, the central limit theorem states that convolutions of the kernel with itself will approach a suitably chosen Gaussian distribution. Despite this fact, the speed of spread cannot be obtained from the Gaussian approximation. We give several examples and explanations for this fact. We then use the kurtosis of the kernel to derive an improved approximation that shows a very good fit to all the kernels tested. We apply the theory to one well-studied data set of dispersal of Drosophila pseudoobscura and to two one-parameter families of theoretical dispersal kernels. In particular, we find kernels that, despite having compact support, have a faster speed of spread than the Gaussian kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, K., Nisbet, R., Diehl, S., Cooper, S., 2005. Scaling population responses to spatial environmental variability in advection dominated systems. Ecol. Lett. 8, 933–943.

    Article  Google Scholar 

  • Aronson, D., Weinberger, H.F., 1975. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J. (Ed.), Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, vol. 446. Springer-Verlag, pp. 5–49.

  • Brockmann, D., Hufnagel, L., Geisel, T., 2006. The scaling laws of human travel. Nature 439, 462–465.

    Article  Google Scholar 

  • Byers, J., Pringle, J., 2006. Going against the flow: Retention, range limits and invasions in advective environments. Mar. Ecol. Prog. Ser. 313, 27–41.

    Google Scholar 

  • Clark, J., Silman, M., Kern, R., Macklin, E., HilleRisLambers, J., 1999. Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology 80(5), 1475–1494.

    Article  Google Scholar 

  • Dembo, A., Zeitouni, O., 1998. Large Deviations Techniques and Applications. Applications of Mathematics. Springer, New York.

    Google Scholar 

  • Dobzhansky, T., Wright, S., 1943. Genetics of natural populations. X. Dispersion rates in Drosophila pseudoobscura. Genetics 28, 304–340.

    Google Scholar 

  • Fisher, R., 1937. The advance of advantageous genes. Ann. Eugen. 7, 355–369.

    Google Scholar 

  • Hastings, A., Cuddington, K., Davies, K., Dugaw, C., Elmendorf, A., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B., Moore, K., Taylor, C., Thomson, D., 2005. The spatial spread of invasions: New developments in theory and evidence. Ecol. Lett. 8, 91–101.

    Article  Google Scholar 

  • Kot, M., Lewis, M., van den Driessche, P., 1996. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2024.

    Article  Google Scholar 

  • Lutscher, F., Pachepsky, E., Lewis, M., 2005. The effect of dispersal patterns on stream populations. SIAM Appl. Math. 65(4), 1305–1327.

    Article  MATH  MathSciNet  Google Scholar 

  • Medlock, J., Kot, M., 2003. Spreading diseases: Integro-differential equations new and old. Math. Biosci. 184, 201–222.

    Article  MATH  MathSciNet  Google Scholar 

  • Metzler, R., Klafter, J., 2000. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Murdoch, W., Briggs, C., Nisbet, R., 2003. Consumer-Resource Dynamics. Monographs in Population Biology. Princeton University Press.

  • Neubert, M.G., Kot, M., Lewis, M.A., 1995. Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48(1), 7–43.

    Article  MATH  Google Scholar 

  • Nisbet, R., Lutscher, F., Pachepsky, E., in preparation. Population persistence in the face of advection.

  • Pachepsky, E., Lutscher, F., Nisbet, R., Lewis, M.A., 2005. Persistence, spread and the drift paradox. Theor. Popul. Biol. 67, 61–73.

    Article  MATH  Google Scholar 

  • Petrov, V., 1975. Sums of Independent Random Variables. Springer, Berlin.

    Google Scholar 

  • Pielaat, A., Lewis, M., Lele, S., de Camino-Beck, T., 2005. Sequential sampling design for catching the tail of dispersal kernels. Ecol. Model. 190, 205–220.

    Article  Google Scholar 

  • Siegel, D., Kinlan, B., Gaylord, B., Gaines, S., 2003. Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 260, 83–96.

    Google Scholar 

  • Taylor, R., 1978. The relationship between density and distance of dispersing insects. Ecol. Entomol. 3, 63–70.

    Google Scholar 

  • Tufto, J., Ringsby, T.-H., Dhondt, A., Adriaensen, F., Matthysen, E., 2005. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26.

    Article  Google Scholar 

  • van den Bosch, F., Hengeveld, R., Metz, J., 1992. Analysing the velocity of animal range expansion. J. Biogeography 19, 135–150.

    Article  Google Scholar 

  • Weinberger, H.F., 1982. Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frithjof Lutscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutscher, F. A Short Note on Short Dispersal Events. Bull. Math. Biol. 69, 1615–1630 (2007). https://doi.org/10.1007/s11538-006-9182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9182-9

Keywords

Navigation