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Abstract Previous game theoretical analyses of vaccinating behaviour have under-
scored the strategic interaction between individuals attempting to maximise their
health states, in situations where an individual’s health state depends upon the
vaccination decisions of others due to the presence of herd immunity. Here, we
extend such analyses by applying the theories of variational inequalities (VI) and
projected dynamical systems (PDS) to vaccination games. A PDS provides a dy-
namics that gives the conditions for existence, uniqueness and stability properties
of Nash equilibria. In this paper, it is used to analyse the dynamics of vaccinating
behaviour in a population consisting of distinct social groups, where each group
has different perceptions of vaccine and disease risks. In particular, we study pop-
ulations with two groups, where the size of one group is strictly larger than the
size of the other group (a majority/minority population). We find that a popula-
tion with a vaccine-inclined majority group and a vaccine-averse minority group
exhibits higher average vaccine coverage than the corresponding homogeneous
population, when the vaccine is perceived as being risky relative to the disease.
Our model also reproduces a feature of real populations: In certain parameter
regimes, it is possible to have a majority group adopting high vaccination rates and
simultaneously a vaccine-averse minority group adopting low vaccination rates.
Moreover, we find that minority groups will tend to exhibit more extreme changes
in vaccinating behaviour for a given change in risk perception, in comparison to
majority groups. These results emphasise the important role played by social het-
erogeneity in vaccination behaviour, while also highlighting the valuable role that
can be played by PDS and VI in mathematical epidemiology.
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1. Introduction

Population biology is an inherent part of voluntary vaccination policies. It has been
shown that whether or not an individual decides to vaccinate depends partly upon
the perceived probability of their becoming infected, which, in turn, depends upon
the level of disease prevalence (Goldstein et al., 1996; Chapman and Coups, 1999;
Bauch, 2005). Disease prevalence is, in turn, a function of the vaccine coverage
in the population (Anderson and May, 1991), which is the collective result of the
vaccination decisions of other individuals, if vaccination is voluntary. Hence, the
individuals in a given population are effectively engaged in a strategic interaction
(a ‘game’) with one another, mediated by transmission dynamics.

Vaccine scares are not uncommon and have occurred for various vaccines, in-
cluding those for polio, smallpox, pertussis, measles–mumps–rubella, and Hepati-
tis B (Gangarosa et al., 1998; Durbach, 2000; Albert et al., 2001; Poland and Jacob-
sen, 2001; Plotkin, 2002; Biroscak et al., 2003; Jansen et al., 2003). At high levels
of vaccine coverage, there is a reduced individual incentive to vaccinate, since un-
vaccinated individuals are already protected through herd immunity. If concerns
about the potential health risks of vaccination then develop, high vaccine coverage
levels may be prone to destabilise, and vaccine coverage can drop precipitously.

Several mathematical modelling studies have incorporated the effects of human
behaviour under a voluntary policy, either explicitly or implicitly, using game theo-
retical or other techniques (Fine and Clarkson, 1986; Geoffard and Philipson, 1997;
Bauch et al., 2003; Bauch and Earn, 2004; Bauch, 2005). However, epidemiological
studies, which are usually concerned with individual risk factors or particular fo-
cus populations, do not account for this population biological context (Asch et al.,
1994; Roberts et al., 1995; Lashuay et al., 2000; Evans et al., 2001; Schmitt, 2002;
Smailbegovic et al., 2002; Bellaby, 2003). It is increasingly recognised that incor-
poration of human behaviour into epidemic models is an important, if challenging,
goal (Fischhoff, 2003; McKenzie and Roberts, 2003). The example of strategic in-
teractions under a voluntary vaccination policy is a case in point.

Recent studies explore the application of game theory to vaccinating behaviour
under voluntary policies for childhood diseases (Bauch and Earn, 2004; Bauch,
2005), such as measles, mumps, chickenpox, pertussis and rubella (Anderson
and May, 1991). In these papers, the authors assume a homogeneous population
where all individuals share the same perception of risk. However, in real popula-
tions, risk perception can vary significantly across distinct social groups (Durbach,
2000; Lashuay et al., 2000). Many countries with high overall vaccine coverage
have minority social or religious groups that vaccinate rarely or never, and which
are, therefore, prone to outbreaks. Canada and The Netherlands, for instance,
maintain high coverage rates for rubella vaccine but have recently seen rubella
outbreaks in minority religious communities with almost no vaccine coverage
(Eurosurveillance, 2005). Since the actions of even a small group of nonvaccinators
can have a significant impact on disease prevalence when vaccine coverage levels
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are high, it is important to understand the influence of social heterogeneity on the
dynamics of vaccinating behaviour.

In previous vaccine game studies, individuals implicitly understand the existence
of a critical coverage level provided by herd immunity, such that a disease can
be eradicated without vaccinating everyone. This has been shown to result in a
“Prisoner’s Dilemma,” whereby high coverage levels are unstable due to non-
vaccinating behaviour (Bauch et al., 2003; Bauch, 2005). By comparison, in the
present study, we assume that individuals do not perceive a critical coverage level.
Rather, they perceive a possibility of being infected even when vaccine coverage
is very high. In such a situation, we wish to determine whether non-vaccinating be-
haviour can still occur in some groups while other groups maintain high coverage
levels.

Here we study the dynamics of vaccinating behaviour in a population divided
into k social groups, each having a different perceived risk of infection and vac-
cination, and where vaccination is purely voluntary. We assume an infectious dis-
ease for which vaccination can take place only shortly after birth, where parents
decide on a voluntary basis to vaccinate their children, and in which individu-
als (children) can be either susceptible, infectious or recovered (immune). These
are known as Susceptible–Infectious–Recovered (SIR) models, and have been
well-validated and widely applied in infectious disease epidemiology (Anderson
and May, 1991).

The mathematical approach used here for deriving the dynamics is that of pro-
jected dynamical systems (PDS), via variational inequalities (VI). This approach is
widely used in operations research, economic theory, finance and network analysis
and mathematical physics (see, for example Dupuis and Nagurney, 1993; Nagurney
and Zhang, 1996; Nagurney and Siokos, 1997; Isac and Cojocaru, 2002; Cojocaru,
2005; Cojocaru et al., 2005, the references therein).

A PDS is a dynamical system whose flow is constrained to evolve on a closed
and convex subset, generically denoted by K, of the ambient space. In this pa-
per, we consider the ambient space to be the Euclidean space R

k and we consider
the constraint set K to be a k-dimensional cube in R

k. In general, a PDS is pro-
duced by projecting the velocity field of an ordinary differential equation onto the
boundary of the constraint set K whenever the velocity is not pointing inside the
tangent cone to K. Hence, a PDS essentially solves a control problem, namely that
of keeping all trajectories of the projected velocity within the set K (in the interior
as well as on its boundary). A PDS could be considered a topological dynamical
system, since its flow is continuous, but there is little resemblance to the classical
dynamical systems theory since a projected system has a nonlinear, discontinuous
velocity. The results present in the PDS literature (both on Euclidean space and
on more general Hilbert spaces) are based on nonlinear and convex analysis and
differential inclusions (see, for example Henry, 1973; Aubin and Cellina, 1984; Isac
and Cojocaru, 2002; Cojocaru and Jonker, 2004; Cojocaru, 2006).

The ability to use a projected dynamics means that we are able to handle
boundary phenomena (like boundary critical points, their stability, etc.), along-
side interior ones, with ease. This is especially useful for modelling vaccinating be-
haviour in a socially heterogeneous population, since small minority groups adopt-
ing pure nonvaccinator behaviour (zero vaccine uptake) correspond to boundary
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equilibria. The PDS theory contains existence, uniqueness and local and global
stability results for equilibria and periodic solutions of constrained problems, no
matter where they occur in K. In short, a projected dynamics is very useful for
studying the time evolution of constrained phenomena.

There exists an intimate relation between PDS and variational inequality (VI)
problems. In general, a VI problem is a unifying mathematical tool used to re-
formulate equilibrium problems from diverse fields in a mathematically consistent
and solvable way (see, for example Minty, 1978; Kinderlehrer and Stampacchia,
1980; Baiocchi and Capello, 1984; Isac, 1992, and Isac et al., 2002). Initially, VI
problems were introduced (in 1963–1964) in order to help solving boundary value
problems; later they were shown to represent mathematical formulations of cer-
tain classes of equilibrium problems in applied mathematics (elastic problems in
mechanics, differential optimization problems, Nash games), economics (spatial
price equilibrium and financial equilibrium problems), operations research and en-
gineering (human migration, transportation and electrical networks problems).

In this paper, we use the finite-dimensional theories of VI and PDS because
of the intrinsic relation between certain Nash games and variational inequalities.
In fact, the solutions to a VI problem are exactly those of the underlying game
and vice versa. Moreover, to each VI problem, one can associate a PDS. The two
extremely useful characteristics of such an association are: the critical points of the
PDS are the same as the solutions to the associated VI, hence, they coincide with
the solutions of the Nash game; the flow of the PDS remains in the constraint set
of interest at all times, thus enabling an accurate description of how the system
(in our case, the vaccination strategies of various groups within the population)
reaches a steady state. All these are exposed in detail in Section 3.

By using the PDS approach, we thus gain greater analytic capabilities, such as
the ability to visualise the structure of the game dynamics through theoretical anal-
ysis, and to compute the optimal strategy and the respective equilibrium vaccina-
tion coverage. We are also able to show robust stability properties of our optimal
strategy under perturbations. To our knowledge, this is the first application of VI
and PDS theories in mathematical epidemiology.

Our goals in this paper are twofold. First, we wish to use vaccination games
to explore the impact of social heterogeneity on vaccinating behaviour. Second,
we wish to illustrate the usefulness of VI and PDS techniques for problems in
epidemic modelling. In Section 2, we describe the vaccination game. In Section 3,
we give a brief introduction to the theories of PDS and VI and their relation to
game theory, and we list the mathematical results that are used here. In Section 4,
we analyse the dynamics of vaccination strategies, show that equilibria (optimal
strategies) exist and are unique and discuss the structure of this dynamics under
perturbations. In Section 5, we compute such equilibria in a general setting. In
Section 6, we present numerical results, while Section 7 discusses these results.

2. The vaccination game

In this section, we present in brief the vaccination game, using similar notations as
in previous publications (Bauch and Earn, 2004). We consider a population con-
sisting of various social groups, where each group may have a different perception
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of risks and, therefore, may adopt different strategies. We consider a disease for
which there is lifelong natural immunity, and in which individuals are typically
infected early in life in the absence of vaccination (this describes the so-called pae-
diatric infectious diseases, such as measles, mumps, rubella, pertussis and chicken-
pox) (Anderson and May, 1991). Likewise, we consider a vaccine that is adminis-
tered primarily in the youngest age classes, and in which vaccination coverage is
typically low later in life.

As discussed in the Introduction, the decision to vaccinate depends partly upon
the perceived risks associated with infection and vaccination. The perceived prob-
ability of significant morbidity due to vaccination is denoted by rv. The perceived
probability of becoming infected given that a proportion p of the population is
vaccinated, is denoted by πp and the perceived probability of significant morbidity
upon infection is denoted by rinf. The overall perceived probability of experienc-
ing significant morbidity because of not vaccinating is thus πprinf. We denote by
r := rv/rinf the relative (perceived) risk of vaccination versus infection. We assume
that all individuals within a group share a common assessment of the risks involved
with vaccination and infection, but different groups have different relative risk as-
sessments.

Suppose that the strategy set for all individuals in group i is {Pi |Pi ∈ [0, 1P]},
where 1P < 1 but large enough and Pi is the probability that a child in group i is
vaccinated. We wish to find a Nash equilibrium strategy P∗ := (P∗

1 , P∗
2 , . . . , P∗

k ),
such that when everyone in group i plays P∗

i , no sufficiently small subset of indi-
viduals in any group can achieve a higher utility (payoff) by switching to a different
strategy Pi �= P∗

i . At P∗
i , there is no incentive to switch strategies, so such strate-

gies should be stable equilibrium solutions of our game. In Sections 3 and 4, we
derive a dynamics of the vaccination game that establishes existence and stability
properties of such optimal strategies.

The utility function in a group where the perceived relative risk is r , and where
the vaccine coverage in the population as a whole is p, is given by

u(Pi , p) = −r Pi − πp(1 − Pi ) subject to Pi ∈ [0, 1P], (1)

after suitable rescaling. The players in a given round of the game are the parents of
a given cohort of children, who play the game only once (they can decide only once
whether or not to vaccinate their child). Future rounds of the game are played by
the parents of later cohorts.

In order to find a mathematical expression for πp, one approach is to use equi-
librium solutions of a deterministic SIR compartmental model and assume that
individuals have perfect knowledge of their probability of eventually becoming in-
fected (Bauch and Earn, 2004). However, individuals do not have perfect knowl-
edge of their probability of being infected. One could, for instance, assume that the
perceived probability of eventually becoming infected increases linearly with the
current prevalence of disease in the population (Bauch, 2005). Here, we assume
for ease of analysis that πp is a decreasing function of p given by πp = b/(a + p).
This expresses the fact that disease prevalence is implicitly a function of how
many individuals have been vaccinated, and that greater perceived coverage in the
population means a reduced perceived infection risk for susceptible individuals.
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Individuals also do not perceive a critical coverage threshold beyond which the dis-
ease is eradicated, as discussed in the Introduction. Unfortunately, because appro-
priate data are generally lacking on perceived risks of vaccination and infection,
the validity of this function cannot be tested. However, we use values of a and b
that are guided by epidemiologic constraints to ensure plausible results (discussed
in Section 6).

Other expressions for πp can be considered; we address this point in detail in
Remark 4.2 of Section 4 later. We also note that time lags may be relevant
here, since transmission dynamics can take several years to respond to changes
in vaccine coverage. However, for highly transmissible childhood diseases such as
measles and pertussis, we assume the effect of this lag to be small, since most vac-
cination and disease transmission occurs in the youngest age classes.

3. Game theory, variational inequalities and projected dynamical systems

3.1. Games and VI

In this section, we show that a Nash game setting is readily applicable to our study
of vaccination behaviour in heterogeneous populations. Historically, the first to
study noncooperative behaviour was Cournot in 1838 (Cournot, 1838). Nash for-
malised and generalised these ideas in Nash (1950, 1951). Here, we reformulate
a Nash game as a variational inequality problem, using the setting in Nagurney
and Siokos (1997). To this VI, we associate a projected dynamical system whose
(mathematical) equilibria are exactly the solutions of the Nash game. There are
important consequences for introducing this new way of thinking for the mathe-
matical modelling of the vaccination strategies game, as outlined in the Introduc-
tion. The most important is that we are now in possession of a dynamics that gives
the conditions for existence, uniqueness and stability properties of equilibria for a
game between population groups with heterogeneous risk perceptions.

In this paper, we limit ourselves to the use of VI and PDS theories on the Eu-
clidean space R

k. By a convex subset K ⊂ R
k, we understand a set with the prop-

erty that for any x, y ∈ K and any λ ∈ [0, 1], the point λx + (1 − λ)y ∈ K; the set K
is closed if any sequence with elements from K has a limit in K. Finally, a mapping
f : K → R

k is called convex if, for any x, y ∈ K and any λ ∈ [0, 1], we have

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

Definition 3.1. Let K ⊂ R
k be a closed, convex, nonempty set and F : K → R

k

be a mapping. A variational inequality problem given by F and K is that of:

finding x ∈ K so that 〈F(x), y − x〉 ≥ 0, for all y ∈ K, (2)

where 〈·, ·〉 is the inner product on R
k, defined by 〈x, y〉 = ∑k

i=1 xi yi , for any x, y ∈
K.
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As discussed in the previous section, it has been shown that Nash equilibria
satisfy a VI whenever F is a gradient map (Gabay and Moulin, 1980). In general,
we consider a Nash game with m players, each player i having at his/her disposal a
strategy vector xi = {xi1, . . . , xin} selected from a closed, convex set Ki ⊂ R

n, with
a utility (or pay-off) function ui : K → R, where K = K1 × K2 × · · · × Km ⊂ R

mn.
The rationality postulate is that each player i selects a strategy vector xi ∈ Ki that
maximises his/her utility level ui (x1, . . . , xi−1, xi , xi+1, . . . , xm) given the decisions
(xj ) j �=i of the other players. In this framework one then has:

Definition 3.2 (Nash Equilibrium). A Nash equilibrium is a strategy vector x∗ =
(x∗

1 , . . . , x∗
m) ∈ K such that

ui (x∗
i , x̂∗

i ) ≥ ui (xi , x̂∗
i ), ∀xi ∈ Ki , ∀i, where x̂∗

i = (x∗
1 , . . . , x∗

i−1, x∗
i+1, . . . , x∗

m).

This model is used, for example, in market analysis (Nagurney and Siokos, 1997)
where m represents the number of investors and n the number of financial instru-
ments. A game of this form can be formulated as a VI as follows (for a proof, see
Gabay and Moulin (1980)).

Theorem 3.1. Provided the utility functions ui are of class C1 and concave (mean-
ing —ui is convex) with respect to the variables xi , then x∗ ∈ K is a Nash equilibrium
if and only if it satisfies the VI

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ K, (3)

where F(x) = (−∇x1 u1(x), . . . ,−∇xmum(x)) and ∇xi ui (x) = ( ∂ui (x)
∂xi1

, . . . ,
∂ui (x)
∂xin

).

3.2. PDS and VI

In general, the theories of PDS and VI are developed on more general spaces
(Hilbert, Banach). Hence, the results cited in this subsection are, in fact, formu-
lated on these spaces. However, since we only need to consider the Euclidean
space, we present everything in this context.

Let K ⊂ R
k be a non-empty, closed, convex subset. We assume the reader is

familiar with the concepts of tangent cone to K at x ∈ K, TK(x), and normal cone to
K, NK(x) at x ∈ K, defined, respectively, by TK(x) = ∪h>0(K − x)/h, and NK(x) =
{n ∈ R

k | 〈n, x − y〉 ≥ 0, ∀y ∈ K} (otherwise, see, for example, Aubin and Cellina
(1984) for an introduction and/or more details). The projection operator of R

k onto
K, denoted by PK : R

k → K is given by z �→ PK(z), where PK(z) satisfies

||PK(z) − z|| = inf
x∈K

||x − z||.

The operator PK is perhaps better known as the closest element mapping, meaning
for each z ∈ R

k, PK(z) is the vector in K which realises the minimum distance
between the vector z and the set K.
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The properties of the projection operator are well-known (see, for instance,
Zarantonello (1971) or Kinderlehrer and Stampacchia (1980)). However PK is not
differentiable in the usual (Frechet) sense; in turn, we can estimate its one-sided
directional derivative, for any x ∈ K and any direction v ∈ R

k, as the limit (for a
proof, see Shapiro (1994), Lemma 4.6):

�K(x, v) := lim
δ→0+

PK(x + δv) − x
δ

; moreover �K(x, v) = PTK(x)(v),

hence, �K(x, v) is another projection operator, this time projecting v onto the
tangent cone to K at x.

Let �K : K × R
k → R

k be the operator given by (x, v) �→ �K(x, v). Note that
�K is discontinuous on the boundary of the set K. Detailed characterizations of
�K are given in Dupuis and Ishii (1990) and Isac and Cojocaru (2003). One charac-
terization we are using here is a consequence of Moreau’s Theorem (see Cojocaru
and Jonker, 2004, for a proof): there exists n ∈ NK(x) such that

v = �K(x, v) + n. (4)

The following result gives the existence of PDS.

Theorem 3.2. Let K ⊂ R
k be a non-empty, closed, convex subset. Suppose x0 ∈ K

and assume one of the following conditions hold:

a) F : K → R
k is a Lipschitz continuous vector field;

b) K is a convex polyhedral set and F is a vector field with linear growth (i.e. there
exists M > 0 so that for all x ∈ K, ||F(x)|| ≤ M(1 + ||x||)).

Then, the initial value problem

dx(τ )
dτ

= �K(x(τ ),−F(x(τ ))), x(0) = x0 ∈ K, (5)

has a unique absolutely continuous solution on the interval [0,∞).

For a proof, see Cojocaru and Jonker (2004) for a) and Dupuis and Nagurney
(1993) for b).

Definition 3.3. A projected dynamical system is given by a mapping φ : R+ ×
K → K given by (τ, x) �→ φx(τ ) which solves the initial value problem (5) with
φx(0) = x ∈ K.

Hence, a PDS is a dynamical system forced to evolve only within the set K (inte-
rior as well as boundary). Another important feature of a PDS like the one given
earlier is the following (for a proof, see Cojocaru and Jonker, 2004):

Theorem 3.3. The critical (or equilibrium) points of (5) coincide with the solutions
to the problem represented by (2) and vice versa.
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We note here the alternate sign convention used in the literature for the vector
field F in the VI (2) and the PDS (5). In general, the critical points of the PDS (5)
are defined as solutions to the equation �K(x,−F(x)) = 0. In the case of PDS, as
a consequence of (4), we get the following equivalent definition:

Definition 3.4. All critical points of the PDS (5) are solutions of the inclusion:

find x ∈ K so that − F(x) ∈ NK(x).

4. Dynamics of vaccination strategies

Using the setup in Section 2 and the theory outlined in Section 3, we model the
vaccination game as follows. We consider a population with N individuals divided
into k distinct groups. The division is made according to the assumption that all in-
dividuals within a group share the same relative risk perception. However, distinct
groups have distinct relative risk perceptions. Thus, in the language of Section 3,
we consider a game with k players where each player has a 1-dimensional vacci-
nation strategy vector. We denote by Pi , i ∈ {1, 2, . . . , k} the vaccination strategy
corresponding to the i-th group and by εi N the number of individuals in group i
choosing strategy Pi . In this context, we have

εi ∈ (0, 1) and
k∑

i=1

εi = 1.

Remark 4.1.

1) We remark here that we are not interested in εi = 0. For if this is true for some
i ∈ {1, 2, . . . , k}, then the problem is reduced to a population with k − 1 or less
distinct groups.

2) We also note that if there exists i with εi = 1, then the problem is reduced to
that of a population where all individuals share the same risk assessment. This
reduces to the social homogeneous case considered in previous work (Bauch
and Earn, 2004).

3) We denote by ri the relative risk assessment for the i-th group. We are inter-
ested in the case ri �= r j , ∀i, j ∈ {1, 2, . . . , k}, otherwise, the problem reduces
to the case of a population with k − 1 or less distinct groups.

Under these hypotheses, the vaccination coverage level of the entire population
is assumed to be p = ∑k

i=1 εi Pi . Following Section 2 and Bauch and Earn (2004),
the expected payoff (utility) function for a player is given by

ui (Pi , p) = −ri Pi − πp(1 − Pi ), ∀i ∈ {1, 2, . . . , k}, (6)

where πp is assumed to be of the form πp = b/(a + p) = b/(a + ∑
εi Pi ).
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Let K := {P := (P1, . . . , Pk) | Pi ∈ [0, 1P]} and let the mapping u : K → R
k be

given by u(P) = (u1(P1, p), . . . , uk(Pk, p)). This game can be formulated, follow-
ing Theorem 3.1, as the variational inequality problem

find P∗ ∈ K s.t.
k∑

i=1

〈

−∂ui (Pi , p)
∂ Pi

|P∗
i
, Pi − P∗

i

〉

≥ 0, ∀ P = (P1, . . . , Pk) ∈ K,

since each ui is of class C1 and concave with respect to Pi . This VI is further equiv-
alent to

find P∗ ∈ K s.t.
k∑

i=1

〈

ri − πp |P∗ − bεi (1 − Pi )
(
a + ∑k

i=1 εi Pi
)2 |P∗ , Pi − P∗

i

〉

≥ 0,

∀ P ∈ K. (7)

Following Section 3, in order to study the proposed vaccination dynamics, we let
F : K → R

k with F(P) = (− ∂u1
∂ P1

, . . . ,− ∂uk
∂ Pk

) and we associate to the VI problem
(7) the projected dynamical system given by �K(P,−F(P)) = PTK(P)(−F(P)),
namely:

dP(τ )
dτ

= PTK(P(τ ))

(

πp(τ ) + bε1(1 − P1(τ ))
(
a + ∑k

i=1 εi Pi (τ )
)2 − r1, . . . , πp(τ )

+ bεk(1 − Pk(τ ))
(
a + ∑k

i=1 εi Pi (τ )
)2 − rk

)

, with P(0) ∈ K. (8)

According to Theorem 3.3, the stationary points of PDS (8) should coincide with
the solutions of the Nash game. Moreover, to study the question of stability of
these game solutions under perturbations, we need to introduce

Definition 4.1. A mapping f : K → R
k is called monotone if

〈 f (P) − f (Q), (P − Q)〉 ≥ 0, for all P, Q ∈ K,

and is called strictly monotone if

〈 f (P) − f (Q), (P − Q)〉 > 0, for all P �= Q ∈ K.

Monotonicity is a central concept in nonlinear and convex analysis and it has
been used and generalised extensively (Henry, 1973; Minty, 1978; Kinderlehrer
and Stampacchia, 1980; Aubin and Cellina, 1984; Krasnosleskii and Zabreiko,
1984; Karamardian and Schaible, 1990; Nagurney and Zhang, 1996; Isac and Cojo-
caru, 2002; Cojocaru and Jonker, 2004; Cojocaru, 2006). As defined and used here
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(or in any of the cited references), one should note that monotonicity is a gener-
alization of the usual notion of a monotone real function of one variable. In the
theory of PDS, monotonicity and its extensions, like strict monotonicity explained
earlier, play a central role in the sense that they give information about the be-
haviour of perturbed equilibria, as well as about existence of periodic cycles. One
of these results states that a PDS with a strictly monotone field F can only have a
unique equilibrium and that all solutions are monotonically attracted to this point.
The attraction can happen for solutions starting in a neighbourhood of the equi-
librium, or can extend to all solutions starting anywhere in the set K.

Definition 4.2. Let x∗ be a critical point of the projected equation (5). Then x∗

is a local strict monotone attractor if there exists a neighbourhood N (x∗) ⊂ K
of x∗, so that for any trajectory x(τ ) of (5) starting at x0 ∈ N (x∗), the function
τ �→ ||x(τ ) − x∗|| is decreasing.

Moreover, x∗ is a global strict monotone attractor if the definition above is sat-
isfied for trajectories of (5), starting at any point x0 ∈ K.

We must note at this point that a (strict) monotone attractor is different than an
attractor in the sense of the classical dynamical systems theory. We are now able
to prove the most important result of this paper.

Theorem 4.1. The Nash game introduced earlier has a unique solution. This solu-
tion is a global strict monotone attractor for the vaccination strategies dynamics.

Proof: Step 1. We show first that the field F : K → R
k is strictly monotone on K.

This is relatively easy to see if we keep in mind that for differentiable functions
like F , strict monotonicity is equivalent to (see Nagurney and Zhang, 1996)

PT(∇F)P > 0, for all P �= 0 ∈ K. (9)

In this case,

∇F = b
(
a + ∑k

i=1 εi Pi
)2

⎡

⎣
2ε1 ε2 . . . εk

. . . . . . . . . . . . .

ε1 ε2 . . . 2εk

⎤

⎦

+ 2b
(
a + ∑k

i=1 εi Pi
)3

⎡

⎢
⎣

ε2
1 (1 − P1) ε1ε2(1 − P1) . . . ε1εk(1 − P1)

. . . . . . . . . . . . .

ε1εk(1 − Pk) ε2εk(1 − Pk) . . . ε2
k(1 − Pk)

⎤

⎥
⎦ .
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Since Pi ∈ [0, 1P], 1P < 1, then

PT(∇F)P = b
(
a + ∑k

i=1 εi Pi
)2

[
k∑

i=1

εi P2
i +

(
k∑

i=1

Pi

) (
k∑

i=1

εi Pi

)]

+ 2b
(
a + ∑k

i=1 εi Pi
)3

(
k∑

i=1

εi Pi

)

× (ε1(1 − P1)P1 + · · · + εk(1 − Pk)Pk) > 0, ∀P �= 0.

Hence, F is strictly monotone on K.
Now, by Kinderlehrer and Stampacchia (1980) game (7) has a unique solution.
Step 2. We show next that −F : K → R

k is a vector field with linear growth, i.e.
there exists M > 0 so that

||−F(P)|| ≤ M(1 + ||P||), ∀P ∈ K.

Then, by Theorem 3.2, PDS (8), is well-defined and by Theorem 3.3, its criti-
cal points are the solutions of our Nash game. By Nagurney and Zhang (1996),
Cojocaru (2002), and Isac and Cojocaru (2002), this solution is a strict monotone
attractor for the game dynamics.

To see that −F has linear growth, we choose P ∈ K, we set ε := max{ε1, . . . , εk},
and we evaluate ||F(P)||, where −F = −( f + g1 + g2), with

f (P) =
(

b

a + ∑k
i=1 εi Pi

− r1, . . . ,
b

a + ∑k
i=1 εi Pi

− rk

)

,

g1(P) =
(

bε1

(a + ∑k
i=1 εi Pi )2

, . . . ,
bεk

(a + ∑k
i=1 εi Pi )2

)

,

and

g2(P) =
(

− bε1 P1
(
a + ∑k

i=1 εi Pi
)2 , . . . ,− bεkPk

(
a + ∑k

i=1 εi Pi
)2

)

.

Then

|| f (P)|| =
⎡

⎣
k∑

i=1

b2

(
1

a + ∑k
i=1 εi Pi

)2
⎤

⎦

1
2

+ ||(r1, . . . , rk)|| ≤ b
√

k
a

+ ||r ||.
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Similar to our computation earlier, next we have

||g1(P)|| =

⎡

⎢
⎣b2(ε2

1 + · · · + ε2
k

)

⎛

⎜
⎝

1
(

a + ∑k
i=1 εi Pi

)2

⎞

⎟
⎠

2⎤

⎥
⎦

1
2

≤ bε
√

k
a2

and

||g2(P)||2 = b2
k∑

i=1

ε2
i

(
Pi

(
a + ∑k

i=1 εi Pi
)2

)2

≤ b2ε2k
k∑

i=1

P2
i

(
a + ∑k

i=1 εi Pi
)4

=⇒ ||g2(P)|| ≤ bε
√

k

[
1

(
a + ∑k

i=1 εi Pi
)4

k∑

i=1

P2
i

] 1
2

≤ bε
√

k
a2

||P||.

Finally,

||−F(P)|| ≤ b
√

k
a

+ ||r || + bε
√

k
a2

+ bε
√

k
a2

||P|| ≤ M(1 + ||P||),

where M := (b
√

k/a + ||r || + bε
√

k/a2). The proof is complete. �

Remark 4.2. We remark that other expressions for πp can be considered, for ex-
ample, given suitable constants a, b, let πp := ae−b

∑
εi Pi . Then VI problem (7)

would be given by a mapping F with components Fi := ri − πp(1 + bεi (1 − Pi )),
∀i ∈ {1, . . . , k}. If this mapping F satisfies the hypotheses of Theorem 4.1, then we
obtain again the existence and uniqueness of a Nash game equilibrium for this
new setup. Hence, our methodology up to this point can be applied under other
assumptions for the form of πp.

5. Optimal strategy computation

Given the proposed dynamics, we can theoretically find the structure of the so-
lution of our vaccination game. By Definition 3.4 in Section 3 and Theorem 4.1
earlier, we have that the unique optimal strategy is the point P∗ ∈ K where P∗ is
the solution of the inclusion −F(P) ∈ NK(P). To simplify solving this inclusion,
we notice that (see Aubin and Cellina (1984)) the projected equation in Eq. (8) is
equivalent to the following system of projected equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dP1(τ )
dτ

= PT[0,1P ](P1(τ ))(−F1(P(τ )))

. . .
dPk(τ )

dτ
= PT[0,1P ](Pk(τ ))(−Fk(P(τ )))
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Hence, the optimal strategy P∗ = (P∗
1 , . . . , P∗

k ) for our game is that each P∗
i is a

critical point of the respective ith projected equation of the system shown earlier;
in other words, P∗

i uniquely solves −Fi (P) ∈ N[0,1P](Pi ), for all i ∈ {1, . . . , k}.
But for each fixed i ∈ {1, . . . , k}, the inclusion −Fi (P∗) ∈ N[0,1P](P∗

i ) is equiva-
lent to the following system

⎧
⎪⎨

⎪⎩

P∗
i ∈ (0, 1P) is an equilibrium if − Fi (P∗) = 0

P∗
i = 0 is an equilibrium if − Fi (P∗) < 0

P∗
i = 1P is an equilibrium if − Fi (P∗) > 0

. (10)

Since solvability of (10) depends on the sign of the quantity

−Fi (P) := b
a + ∑

εi Pi
+ bεi (1 − Pi )

(
a + ∑

εi Pi
)2 − ri ,

the following scenarios are possible for the unique optimal strategy.

Case 1: The game dynamics could be monotonically attracted to the equilibrium
strategy P∗ = 0; this means that at equilibrium, we have

−Fi (P∗) |0< 0 ⇔ b
a

(
1 + εi

a

)
< ri , for all i ∈ {1, . . . , k}.

Case 2: The game dynamics could be monotonically attracted to the equilibrium
strategy P∗ = (1P, . . . , 1P); this means that at equilibrium

Fi (P∗) |1P > 0 ⇔ b
a + 1P

+ bεi (1 − 1P)
(a + 1P)2

> ri , for all i ∈ {1, 2, . . . , k}.

Case 3: Without loss of generality, let i ∈ {1, . . . , s}, s < k. The game dynamics

could be monotonically attracted to the equilibrium strategy P∗ = (
s times

0, . . . , 0,
k−s times

1P, . . . , 1P).
Case 4: The game dynamics could be monotonically attracted to an equilibrium

strategy P∗, where there exists at least one group i whose strategy P∗
i ∈

(0, 1P).

As we see in the next section, in order to find such solutions, depending on the
values of the parameters εi , ri , a, b, etc., we may need to compute approximate
trajectories of Eq. (8), following the method in the constructive proof of Theo-
rem 3.2 (see Cojocaru (2002); Cojocaru and Jonker (2004) where we showed that
each trajectory of Eq. (5) is approximated by a linearly piecewise function). For
computations and figures, we used MAPLE 8.
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6. Results

We consider here examples with 1, 2 and 3 population groups, in order to deter-
mine the impact of social heterogeneity in risk perception on vaccine coverage
under a voluntary vaccination policy. Before we begin, we remark that accord-
ing to Theorem 4.1, in all examples there is a unique optimal strategy which is
globally monotonically attracting for all time-dependent strategies starting any-
where in the constraint set K. Moreover, we define a and b in the expression for
πp as follows: the parameter a determines the sensitivity of the perceived prob-
ability of infection to the vaccine coverage, i.e. large values of a imply a popula-
tion where the perceived probability of infection depends weakly upon the vac-
cine coverage, whereas small values of a imply strong dependence. The param-
eter combination a

b is the maximum possible perceived probability of infection,
achieved at p = 0. Clearly, we must have 0 < b < a so that π0 < 1. For a dis-
ease such as measles, the probability that an individual eventually gets infected
in the absence of any vaccination programme is close to 90% (Anderson and
May, 1991). Hence, when p = 0, we set π0 = b/a = 0.90. Likewise, when p ≈ pcrit,
where pcrit is the critical coverage level required to eradicate a disease, then
πpcrit ≈ 0, hence we require that a � pcrit, and b � pcrit. For measles, pcrit ≈ 0.9.
With a = 0.1, and b = 0.09, we are consistent with these restrictions. Significantly
smaller values for a and b would yield unrealistic behaviour for intermediate val-
ues of p. We use a = 0.1, b = 0.09 and 1P := 0.9 throughout in our numerical
results.

6.1. One group model

Let us consider a 1 group model, so that ε = 1 and all individuals share the same
relative risk assessment r . In this case πp = b/(a + P) and p = P. According to
the previous section, we search first for points 0 < P∗ < 1 such that

b
a + P∗ + b(1 − P∗)

(a + P∗)2
= r =⇒ P∗ = −a +

√
b(a + 1)

r
.

Clearly, as r decreases, the equilibrium coverage increases. We deduce that for a =
0.1, b = 0.09, 1p := 0.9, and consequently r ∈ (0.099, 9.9), we have p∗ ∈ (0, 0.9).
For all r ≥ 9.9, the coverage is 0, and for r ≤ 0.099 the coverage p∗ = 0.9. This re-
sult is intuitive, since it means more people vaccinate as the vaccine is perceived to
be increasingly less risky than the disease. Previous work also predicted the exis-
tence of a threshold in perceived risk, below which vaccinating behaviour becomes
increasingly prevalent and above which no one vaccinates (Bauch and Earn, 2004).

6.2. Two groups model

Here, we study a population consisting of a majority group (of proportion ε1)
which is relatively more inclined to vaccinate, and a minority group (of propor-
tion ε2 < ε1) which is relatively less inclined to vaccinate (r2 > r1). We determine
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the impact of social heterogeneity by comparing the 1 group case to several 2 group
cases (for various values of ε1, ε2, r1, r2). We wish to determine whether vaccine
coverage is higher or lower in the 2 group cases with average relative risk assess-
ment

r := ε1r1 + ε2r2, (11)

compared to the 1 group case with the same value of r . The following analysis
shows that social heterogeneity generally leads to higher vaccine coverage.

Let us take a = 0.1, b = 0.09 and 1P := 0.9 (as justified above). Figures 1
and 2 illustrate the effects of heterogeneity in two cases. Figure 1 shows
the average vaccine coverage p∗(r) = ε1 P∗

1 (r) + ε2 P∗
2 (r) versus r with r1 =

0.7r , r2 = r(1 − 0.7ε1)/ε2, for various values of ε1 and ε2. In general, the pos-
sible values of the vector of equilibrium strategies are P∗ = (P∗

1 , P∗
2 ), P∗

i ∈
[0, 0.9]. In the examples of Fig. 1 we obtained only five values, namely
(0.9, 0.9), (0.9, P∗

2 (r)), (0.9, 0), (P∗
1 (r), 0), (0, 0). For each of these, we computed

and graphed the corresponding equilibrium vaccine coverage p∗(r). The r values at
which vaccine coverage is equal or higher in the heterogeneous population than in
the homogeneous population for the four cases considered in Fig. 1 are described
by the following table:

group sizes r values for which p∗(r) ≥ p∗(r, 1 group)
ε1 = 0.9, ε2 = 0.1 r ∈ (0, 0.027] and r ≥ 0.1195
ε1 = 0.8, ε2 = 0.2 r ∈ (0, 0.049] and r ≥ 0.1472
ε1 = 0.7, ε2 = 0.3 r ∈ (0, 0.068] and r ≥ 0.1857
ε1 = 0.6, ε2 = 0.4 r ∈ (0, 0.086] and r ≥ 0.2416

Figure 2 shows p∗(r) versus r for the case ε1 = 0.9 and ε1 = 0.1, but using
various degrees of difference in risk perception between the majority and the
minority groups (see table shown later and Fig. 2). Again, we obtained only five
equilibrium values, namely (0.9, 0.9), (0.9, P∗

2 (r)), (0.9, 0), (P∗
1 (r), 0), (0, 0). For

each of these, we computed and graphed the corresponding equilibrium vaccine
coverage p∗(r). The r values at which vaccine coverage is equal or higher in the
heterogeneous population than in the homogeneous population for the five cases
considered in Fig. 2, are described by the following table:

relative risks perceptions r values for which p∗(r) ≥ p∗(r, 1 group)
r1 = 0.9r, r2 = 1.9r r ∈ (0, 0.0516] and r ≥ 0.1195
r1 = 0.8r, r2 = 2.8r r ∈ (0, 0.035] and r ≥ 0.1195
r1 = 0.7r, r2 = 3.7r r ∈ (0, 0.0265] and r ≥ 0.1195
r1 = 0.6r, r2 = 4.6r r ∈ (0, 0.0213] and r ≥ 0.1195
r1 = 0.5, r2 = 5.5r r ∈ (0, 0.0178] and r ≥ 0.1195

Figures 1 and 2 show that, generally speaking, vaccine coverage is higher in pop-
ulations with social heterogeneity and where there is a majority group and a mi-
nority group that is more risk-averse. An exception occurs at lower values of r
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Fig. 1 Equilibrium coverage p∗(r) where r1 = 0.7r and r2 = r − 0.7rε1/ε2, for one group and
several two group cases.

(where the vaccine is perceived to be substantially less risky than the disease): in
these cases, the situation is often reversed.

Figure 3 presents surface plots of P∗
1 and P∗

2 as functions of r1 and r2, for the
case ε1 = 0.8, ε2 = 0.2. This figure shows that an increasing perception of vac-
cine risk in the majority group (r1) has a proportionate impact on vaccine cov-
erage in that group. By comparison, an increasing perception of vaccine risk in
the minority group (r2) has a more dramatic effect, with a sharp transition to pure
nonvaccinating behaviour occuring at a low value of r2. This suggests that minority
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Fig. 2 Equilibrium coverage p∗(r) where ε1 = 0.9 and ε2 = 0.1, for one group and several two
group cases.

groups with differing risk perceptions will tend to exhibit more extreme vaccina-
tion behaviour than the majority groups.

Figure 4a (resp. Fig. 5a) shows the convergence of a 2-group population with a
0.9 majority and 0.1 minority to the Nash equilibrium (0.9, 0) with average cover-
age p∗ = 0.81 (resp. to (0.9, 0.434) with average coverage p∗ = 0.853) correspond-
ing to low values of r . Figure 4b (resp. Fig. 5b) shows what happens when r is
increased by 10%, as might occur during a vaccine scare. After the shift in r , the
population converges to a new Nash equilibrium (0.697, 0) with a reduced vac-
cine coverage of p∗ = 0.6273 (resp. to (0.894, 0) with a reduced vaccine coverage
p∗ = 0.8046).



Dynamics of Vaccination Strategies via Projected Dynamical Systems 1471

Fig. 3 The equilibrium group coverages P∗
1 = P∗

1 (r1, r2) and P∗
2 = P∗

2 (r1, r2) represented as sur-
faces in R

3 in a two group population with ε1 = 0.8 majority and ε2 = 0.2 minority. P∗
1 (r1, r2) is the

green–blue surface and P∗
2 (r1, r2) is the yellow–red surface. We see here that the minority group

exhibits a more extreme vaccination behaviour than the majority group, for a given change in risk
perception.

6.3. Three groups model

Here, we study an interesting example of the case with three social groups. We
consider a population consisting of three equally-sized groups (ε1 = ε2 = ε3 = 1

3 ),
all of which perceive the vaccine to be less risky than the disease (r1 = 3/4, r2 =

Fig. 4 Effect of a change in average perceived relative risk r on average vaccine coverage level
p∗(r), in a population with two social groups (ε1 = 0.9, ε2 = 0.1 ). The left panel shows the
phase portrait of the time-dependent group strategies P1(τ ), P2(τ ) given by the projected sys-
tem (8), corresponding to r1 = 0.07 and r2 = 0.37. The red curve evolves from the initial strate-
gies (P1(0), P2(0)) = (0.7, 0.3) to the Nash equilibrium (0.9, 0), whose overall coverage is p∗ =
ε1 P∗

1 + ε2 P∗
2 = 0.81. The right panel shows how the strategies converge from the former equilib-

rium state (0.9, 0) to a new Nash equilibrium (0.697, 0) with a reduced coverage p∗ = 0.6273 after
a sudden increase of 10% (to r1 = 0.17 and r2 = 0.47) in relative risk perception, which models
the effects of a vaccine scare. The Nash equilibrium points are marked with a diamond symbol.
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Fig. 5 Effect of a change in average perceived relative risk r on average vaccine coverage lev-
els p∗(r), in a population with two social groups (ε1 = 0.9, ε2 = 0.1 ). The left panel shows the
phase portrait of the time-dependent group strategies P1(τ ), P2(τ ) given by the projected sys-
tem (8), corresponding to r1 = 0.01 and r2 = 0.085. The red curve evolves from the initial strate-
gies (P1(0), P2(0)) = (0.7, 0.3) to a Nash equilibrium P∗ = (0.9, 0.434) whose overall coverage is
p∗ = ε1 P∗

1 + ε2 P∗
2 = 0.853. The right panel shows how the population converges from the former

equilibrium state (0.9, 0.434) to a new Nash equilibium P∗ = (0.894, 0) with coverage p∗ = 0.8046
after a sudden increase of 10% (to r1 = 0.1 and r2 = 0.185) in relative risk perception, which mod-
els the effects of a vaccine scare. The Nash equilibrium points are marked with a diamond symbol.

1/6, r3 = 1/5). With these values,

πp = 0.09

0.1 + P1+P2+P3
3

= 0.27
0.3 + P1 + P2 + P3

.

For initial conditions P1(0) = 0.7, P2(0) = 0.05, P3(0) = 0.4, we compute approx-
imate solutions for the PDS (8) and obtain that the equilibrium point is P∗ =
(0, 0.893, 0.528) (Fig. 6). Based on Theorem 4.1, this is the unique equilibrium
point and all solutions starting at any initial point P(0) ∈ K are monotonically at-
tracted to it.

Interestingly, the first group does not vaccinate at all, even though they perceive
the vaccine as being less risky than the disease (r1 = 3/4). This group is taking ad-
vantage of the herd immunity afforded by the other two groups which have even
lower perceived relative risk. Moreover, the difference in perceived risk between
groups 2 and 3 is not very large (r2 = 1/6, r3 = 1/5) and yet group 2 adopts a sig-
nificantly higher level of vaccination than group 3. This example illustrates how
individuals take into account not only their own perception of risk but also what
strategies other individuals are adopting, since this influences disease prevalence
and hence their own probability of becoming infected.

7. Discussion

This paper applies for the first time the theories and methodologies of PDS and VI
to epidemic modelling. There are several reasons why this approach is potentially
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Fig. 6 Game dynamics for a three group model where εi = 1
3 , ∀i ∈ {1, 2, 3} and r1 = 3

4 , r2 =
1
6 , r3 = 1

5 . The curve represents the time evolution of each of the three groups’ strategies, from the
initial state (P1(0), P2(0), P3(0)) = (0.7, 0.05, 0.4) to the Nash equilibrium P∗ = (0, 0.893, 0.526).
The Nash equilibrium point is marked with a diamond symbol.

valuable for biomathematics. First, the solutions of the heterogeneous Nash games
have boundary components, and hence a projected dynamics approach must be
used instead of a classical dynamical system approach. Second, with these tech-
niques, we have the ability to see the structure of the game solutions through the-
oretical analysis. We are able to compute the optimal strategy and the respective
equilibrium vaccination coverage with relatively little effort. Due to the constraint
set being a k-dimensional cube, the expression of the projection of the velocity
field F is easily found. The presence of monotonicity is obviously the main factor
in analysing the behaviour of the projected flow under perturbations. In this pa-
per, we presented 1, 2 and 3-dimensional examples, so one can readily visualise the
results. However, multidimensional (k > 3) examples can be computed as well.

It should be noted that these results depend upon our choice of the perceived
probability of infection πp. We expect that qualitatively similar choices for πp will
have qualitatively similar equilibria (Remark 4.2). A potentially interesting case
where the results may differ qualitatively is when πp exhibits an upper threshold
beyond which the perceived probability of infection is zero (Section 2) (Bauch and
Earn, 2004). This constitutes a topic for future work. When πp has a critical upper
threshold, then a “Prisoner’s Dilemma” may result in coverage levels below that
required to eliminate a disease (Introduction). Here we show that a “Prisoner’s
Dilemma” is not necessary for nonvaccinating behaviour to develop, at least in
certain social groups. Rather, nonvaccinating behaviour can develop due only to
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differences in the perception of risk, even if individuals perceive a nonzero risk at
arbitrarily high coverage levels.

In this paper, we explored the impact of social heterogeneity in risk percep-
tion on vaccine coverage under a voluntary vaccination policy. The PDS approach
proved to be particularly valuable here, since minority groups playing a pure non-
vaccinator strategy (or majority groups playing a pure vaccinator strategy) corre-
spond to boundary equilibria. In real populations, there are often distinct minor-
ity groups with very different perceptions of vaccine risks or vaccine desirability
(Eurosurveillance, 2005). We have shown that populations with two groups with
distinct risk perceptions tend to exhibit higher average vaccine coverage than the
equivalent homogeneous population, except when r is small (i.e. when the vaccine
is perceived to be substantially less risky than the disease). Hence, heterogeneous
populations should generally exhibit higher vaccine coverage, and perhaps greater
stability, in a vaccine scare situation (large r) than suggested by simpler, socially
homogeneous models (Bauch and Earn, 2004). Conversely, in situations when r
is large, homogenisation of risk perception among different social groups through
the influence of mass media may result in lower coverage levels unless there is a
systematic bias in favor of vaccines. However, we emphasise that these conclusions
may depend upon model assumptions. This model also illustrates how minority
and majority groups react differently to changes in risk perception. As illustrated
in Fig. 3, a majority group reacts in a relatively gradual way to a change in risk per-
ception, whereas the response of the minority group to a change in risk perception
is almost a step function.

Game theoretical models illustrate how vaccine scares and declining vaccine
coverage, especially in countries with voluntary vaccination policies such as the
United Kingdom, are not isolated historical events, but rather possible instances
of inherently unstable dynamics which can apply in any population under a vol-
untary vaccination policy. While mandatory vaccination would serve the public in-
terest by effectively eradicating diseases, there are also implications for individual
rights. Understanding and predicting long-term trends in population vaccination
behaviour via game dynamic models is, therefore, valuable for the development of
sound, evidence-based public health policy.
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