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Abstract
Stress position in English words is well-known to correlate with both their mor-
phological properties and their phonological organisation in terms of non-segmental,
prosodic categories like syllable structure. While two generalisations capturing this
correlation, directionality and stratification, are well established, the exact nature of
the interaction of phonological and morphological factors in English stress assign-
ment is a much debated issue in the literature. The present study investigates if and
how directionality and stratification effects in English can be learned by means of
Naive Discriminative Learning, a computational model that is trained using error-
driven learning and that does not make any a-priori assumptions about the higher-
level phonological organisation and morphological structure of words. Based on a
series of simulation studies we show that neither directionality nor stratification need
to be stipulated as a-priori properties of words or constraints in the lexicon. Stress
can be learned solely on the basis of very flat word representations. Morphological
stratification emerges as an effect of the model learning that informativity with regard
to stress position is unevenly distributed across all trigrams constituting a word. Mor-
phological affix classes like stress-preserving and stress-shifting affixes are, hence,
not predefined classes but sets of trigrams that have similar informativity values with
regard to stress position. Directionality, by contrast, emerges as spurious in our sim-
ulations; no syllable counting or recourse to abstract prosodic representations seems
to be necessary to learn stress position in English.
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1 Introduction

Stress position in English words is well-known to correlate with both their phonolog-
ical and morphological properties. For example, stress is often penultimate in mor-
phologically simplex nouns with a heavy penultimate syllable, as illustrated by the
word ‘agenda’ a.gén.da. In derived words with a so-called stress-preserving suffix,
stress is always on the same syllable as it is in the base word. For example, éffort-less
is stressed on the same syllable as éffort, in spite of the fact that the word effort-
less has a heavy penultimate syllable. By contrast, stress in derived words with so-
called stress-shifting suffixes may be on a different syllable than it is in the base word
(e.g. adópt – adopt-ée).1 In classic rule-based or constraint-based accounts within
(morpho-)phonological theory, the correlations just mentioned are usually interpreted
in terms of a causal relation within the grammatical architecture. Thus, stress algo-
rithms are assumed to be sensitive to the weight of the penultimate syllable, and to
the morphological status of suffixes. This presupposes that also lexical representa-
tions must explicitely code relevant information that the algorithm can refer to (or, in
an output-oriented framework like Optimality Theory, a function Gen that generates
a candidate set containing this information). For the examples just mentioned, this
means that lexical representations must encode:

– syllabification and weight information, generalising over different sounds by syl-
labic position;

– the morphological status of suffixes as stress-preserving or stress shifting.

With regard to both types of information, there is a rich literature about how these
properties are best formally represented (cf. e.g. Newell, 2021 for a recent summary
and proposal). The complexity and degree of abstraction of pertinent formalisations
has also provided a major problem for alternative, usage-based theories of linguistic
generalisation (Bybee, 2011, 2001, 2002), whose architectures do not refer to abstract
properties so much.

In the present paper we ask whether the encoding of abstract phonological and
morphological properties in lexical representations does indeed form the prerequisite
for any theory of how stress is assigned in English words. We will approach our
question by conducting a series of simulation studies with a computational model. To
reduce the complexity of the question, the focus of our study will be confined to two
descriptive generalisations that play a prominent role in virtually all formal accounts.

The first is the principle of directionality (Hayes, 1982; see Pater, 2000 for an
optimality-theoretic account for English; see Kager, 2012 for a typological overview
and a discussion of different modelling options within Optimality Theory and

1The distinction between ‘stress preserving’ and ‘stress shifting’ affixes (Fudge, 1984) is largely co-
referent with other dichotomies, such as that of ‘cohering’ – ‘non-cohering’, ‘class I’ – ‘class II’, ‘level I’ –
‘level II’, ‘stem-level’ – ‘word-level’ (Booij, 1983; Siegel, 1974; Booij & Rubach, 1987; Kiparsky, 1982a,
2015; Bermúdez-Otero, 2018).
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Table 1 Examples of stress
assignment in long English
words. Main stress is indicated
by an acute accent, syllable
boundaries are marked by ‘.’

a. Ka.la.ma.zóo

b. Mo.non.ga.hé.la

c. Ha.ma.me.li.dán.the.mum

Alber, 2020 for an overview on Germanic languages). Phonological generalisations
about stress position are usually thought to be directional in the sense that they count
syllables from a word edge. This also means that they crucially rely on word repre-
sentations that incorporate syllables as abstract units of prosodic organisation. The
relevant word edge in English is usually assumed to be a three-syllable window at the
right word edge.

The examples in Table 1 illustrate the principle. Main stress is indicated by an
acute accent, syllable boundaries are marked by ‘.’. A description of stress patterns
that is in line with the principle of right directionality will refer to stress as being
on the word-final syllable in (1a), on the penultimate syllable in (1b), and on the
antepenultimate syllable in (1c). This generalisation captures the fact that, with the
exception of compound words and many words bearing stress-preserving suffixes,
main stress in English words always lands on one of the last three syllables of the
word. However, the idea that main stress assignment is directional or even mono-
directional in nature is not without problems.

For example, Hammond (1999, 318ff) and McCully (2003) argue that both right
alignment and left alignment play a role for main stress assignment in English. Fur-
thermore, attempts to empirically verify edge alignment face the problem that the
number of English morphologically simplex words that are longer than three sylla-
bles is rather low. Another problem is that different affixes require different adjust-
ments to the syllable counting generalisation about stress position. This phenomenon,
among others, has led scholars to assume that the English lexicon is stratified, with
the different strata representing different morphological categories. A final problem
with directionality is that stress generalisations based on syllable counting from a
word edge are not without exceptions. In English, for example, words like állegory
and árbitrary, which do not contain any stress-preserving suffixes, are exceptions to
the generalisation that main stress is assigned to one of the three syllables at the right
word edge (e.g. Burzio, 1994; Trevian, 2007).

Morphological stratification in this sense is the second generalisation that we will
be concerned with in this article. Specifically, we will focus on suffixal strata, often
referred to as ‘stress-preserving’ and ‘stress-shifting’. Stress-shifting suffixes fall into
two different subgroups: those which themselves attract stress (often called ‘auto-
stressed’) and those which do not; most of the latter suffixes are ‘pre-stressing’, which
means that main stress is on the syllable immediately preceding the suffix. Table 2
provides examples of all three classes. The suffixes -ness and -ly are examples of
stress-preserving suffixes (2a, but cf. Trevian, 2007 for some cases of stress shift
with -ly), -ity and -ical are pre-stressing stress-shifting suffixes (2b), and -ee and -ese
are auto-stressed stress-shifting suffixes.

The existence of stress-preserving and stress-shifting suffixes has prominently
been used as evidence in favour of stratal approaches to morphology-phonology in-
teraction such as Lexical Phonology and Morphology (Kiparsky, 1982b) and Stratal



436 S. Arndt-Lappe et al.

Table 2 Examples of
a) stress-preserving,
b) stress-shifting and
c) auto-stressed suffixation. The
accent indicates the stressed
syllable

Derivative Base

a. háppiness háppy

políteness políte

símilarly símilar

prodúctively prodúctive

extrémely extréme

b. similárity símilar

productívity prodúctive

verbósity verbóse

metaphórical métaphor

symmétrical sýmmetry

c. interviewée ínterview

adoptée adópt

Portuguése Pórtugal

Japanése Japán

Phonology (Bermúdez-Otero & McMahon, 2006; Bermúdez-Otero, 2012, 2018).
These approaches assume that English morphology is organised into two (or more)
different strata, with interleaving phonological and morphological modules. The dif-
ference between stress preserving and stress shifting suffixes is then modelled in
terms of the point in time when a suffix is attached to its base word or stem. So-called
stress-shifting suffixes are attached before phonological stress rules have applied,
stress-preserving suffixes are attached after stress rule application. Other approaches
model the stress behaviour of different types of affixes in terms of affix-specific rule
or constraint systems (cf. e.g. Stanton & Steriade, 2014). However, the exact nature
of the interaction of phonological and morphological factors in a stratified lexicon
is a much debated issue in the literature. Empirically, it is well-known that exist-
ing proposals (stratal or non-stratal) integrating phonological and morphological fac-
tors fall short of convincingly predicting stress position when tested on data sets of
words, both actual and nonce words. Furthermore, attempts to quantify accuracy of
predictions are comparatively rare, often limited to subsets of the lexicon and opera-
tionalised in such way that they cannot be compared. In the following, we will discuss
these studies.

Zamma (2012) developed a model that includes variable constraint ranking. Ac-
curacy is measured in terms of the number of predicted rankings that conform to at-
tested words (cf. Zamma, 2012, chpt. 6 for discussion). Domahs et al. (2014) provide
a statistical analysis of the predictive power of syllable structural factors in morpho-
logically simplex words, both nonce words and existing words. Simplex words are
also studied by Moore-Cantwell (2016, chpt. 4); the study investigates the match be-
tween a constraint-based MaxEnt model (Goldwater & Johnson, 2003) that includes
lexically specific constraints, and lexical distributions. Dabouis et al. (2017) investi-
gate the predictive power of both phonological and morphological factors for stress
in some 5,000 verbs extracted from Jones (2006)’s English Pronouncing Dictionary.
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All works cited show that the phonological and morphological factors they use in
the analysis can explain a large portion of the data, but also admit to considerable
leakage. In all pertinent accounts, it is thus assumed that stress assignment is sub-
ject to lexical idiosyncracy to some extent (cf. Alber, 2020 for a recent overview of
the literature on stress in Germanic languages, including English). It is also unclear
how these studies can be compared, since all of them use different kinds of baselines,
constraints and evaluation metrics.

Another open question concerns how language users become aware of these prin-
ciples. One suggestion is that learning of stress takes into account abstract represen-
tations of the prosodic and morphological structure of words, and on the basis of
constraints that operate on the basis of those abstract representations (cf. e.g. Moore-
Cantwell, 2016 for a recent OT model; cf. Pearl et al., 2016 for a comparison of the
learnability of classic pertinent approaches). Abstract representations include sylla-
bles, morae, metrical feet, and the morphological stratum affiliation (e.g. level 1 or
level 2) of affixes. Constraints include constraints on edge alignment, on the relation
between syllable weight and stress, on extrametricality, as well as on the stressability
of affixes. While some researchers suggest that these representations and constraints
are innate, there is evidence that they themselves are the result of learning.

For example, Jarmulowicz and colleagues (Jarmulowicz, 2006; Jarmulowicz et al.,
2008) found in elicited production experiments that school children aged 7–9 years
reached surprisingly low accuracy rates for derived words with the pre-stressing
suffixes -ity and -ic (between 24% for nonce words and 70% for high-frequency
words), but not for derived words with the pre-stressing suffix -ion (between 74% for
nonce words and 93% for high-frequency words). Adult control groups performed
at ceiling level in the same experiments (cf. Jarmulowicz et al., 2008, 222, Table 2).
These findings demonstrate that, despite the uniformity of stress among words with
pre-stressing suffixes and the hypotheticised categorical nature of phonological con-
straints often presupposed in the literature, the learning task is far from trivial. More-
over, this finding also suggests that at least some morphological stress alternations
are acquired rather late, with learner productions heavily correlated with frequency
and, hence, storage in the Mental Lexicon. It is at present unclear how especially the
latter can be accounted for under the assumption that learning of stress takes place on
the basis of abstract phonological and morphological principles, which should be in
place, once acquired.

In the present paper, we will test if an alternative answer is viable, which is in line
with usage-based theories of linguistic generalisation (Bybee, 2011, 2001, 2002). By
‘usage-based’ approaches we mean a group of theories that share the assumption
that properties such as stress are associated with and may even emerge from the
distributional characteristics of words and sub-word units in the Mental Lexicon. For
stress assignment, this means that language users store words that they encounter
with their stress pattern, and assign stress to words they have not encountered before
on the basis of the distribution of stress patterns among stored words.

So far, only few attempts have been made to test this idea on stress assignment data
with the help of computational implementations of usage-based models. One notable
exception is Daelemans et al. 1994’s study of stress position in Dutch monomor-
phemes. A key challenge for a usage-based model of stress assignment is the defi-
nition and selection of input features provided to the computational model. Unlike
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formal phonological theory, computational modelling approaches usually rely on flat
and non-nested structures. This does not seem compatible with generalisations about
stress assignment, which, as we have seen above, rely on abstract and elaborate repre-
sentations of phonological and morphological structure. Daelemans et al. 1994 used
an Instance-Based Learning algorithm (Aha et al., 1991) to successfully predict stress
in a large database of Dutch monomorphemic words. Comparing different encod-
ings of input features at different levels of phonological abstraction, they find that
the model performed best when trained on actual phonemic representations, as com-
pared to a more abstract coding of syllable weight or of syllabic constituents (rhymes)
deemed relevant in the formal literature. Still, their implementation shares some basic
assumptions with the formal literature. Thus, directionality was implemented in the
model by aligning words in the input coding at their right word edge and by defining
stress categories in terms of the position of the stressed syllable from the right word
edge (i.e. the final, penultimate, or antepenultimate syllable). Also, morphological
structure was eliminated as a potential confound as complex words were excluded
from their dataset.

The present paper will take a more radical approach, presenting a computational
model with the plain form of words without any explicit, higher-level information
about potential positions of stress or morphological structure. Our interest is to see if
and how directionality and morphological stratification in English can be learned by
such a model. The particular implementation that we will use is Naive Discriminative
Learning (‘NDL’, Arppe et al., 2018, cf. Baayen et al., 2011 for the theoretical under-
pinnings). The advantage of using this model is that it is a relatively simple algorithm
(a two-layer network), whose output can be analysed in a way that is meaningful
for linguistic research. Another advantage is that NDL is trained using a cognitively
plausible learning rule (‘Discriminative Learning’, cf. below for details). Based on a
series of simulation studies we will show that neither directionality nor stratification
need to be assumed to be a-priori properties of words or constraints in the lexicon.
Stress can be learned solely on the basis of very flat word representations in terms of
trigrams, by a system that is not given any explicit information about directionality or
the morphological class affiliation of constituent affixes. Instead, morphological strat-
ification emerges as an effect of the model learning that informativity with regard to
stress position is unevenly distributed across all trigrams constituting a word. Mor-
phological affix classes like stress-preserving and stress-shifting affixes are, hence,
not predefined classes but sets segmental strings that have similar informativity val-
ues with regard to stress position. Directionality, by contrast, emerges as spurious in
our simulations; no syllable counting or recourse to abstract prosodic representations
seems to be necessary to learn stress position in English.

The paper is structured as follows. We will first introduce our computational
framework in Sect. 2. Sect. 3 will explain the methodology of our simulation ex-
periments. The simulations will then be discussed in Sect. 4, in two steps. We will
first be concerned with directionality (Sect. 4.1), and then with morphological strata
(Sect. 4.2). In each section, we will present both general simulation outcomes and
an in-depth analysis of our experiments, which shows why the algorithm makes the
predictions it does. The paper ends with a summary and conclusion in Sect. 5, which
will also discuss the implications for linguistic theory.
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2 Discriminative learning and the error-driven learning rule

Different approaches to training a neural network are available. Due to hidden layers
or complex learning algorithms, as is the case in deep neural networks and recurrent
neural networks (Graves & Schmidhuber, 2005; Graves et al., 2013), such trained net-
works are usually hard to interpret from a cognitive perspective. We therefore used
a two-layer neural network that is trained with a simple error-driven learning rule
(Rescorla & Wagner, 1972; Rescorla, 1988; Ng & Jordan, 2002; Widrow & Hoff,
1960), implemented in Naive Discriminative Learning (the package ‘NDL’ as imple-
mented in R, Arppe et al., 2018).

The error-driven learning rule mathematically formalizes general cognitive mech-
anisms assumed by the cognitive theory of Discriminative Learning (Ramscar &
Yarlett, 2007; Ramscar et al., 2010, 2013a). According to this theory, learners build
cognitive representations of their environment by establishing associations between
events in their environment on the basis of prediction and prediction error. The al-
gorithm formalizes this by establishing association weights between input features
(henceforth cues) and classes or categories (henceforth outcomes) that co-occur in
events. To name an example, in English the word final letter sequence ‘-ize’ serves as
a cue to the outcome ‘verb’, and the word final letter sequence ‘-ical’ serves as a cue
to the outcome ‘adjective’.

According to Discriminative Learning theory, learning is shaped by prediction and
prediction error. Learning leads to an increase in association weights between a cue
and an outcome every time that the predicted outcome co-occurs with a cue (such as
‘-ize’ in the word ‘conceptualize’, which is a verb). By contrast, error is negative and
decreases association weights whenever the predicted outcome does not occur (such
as ‘ize’ in the noun ‘size’). As a result, weights and associations (and the resulting
representations) are constantly updated on the basis of new experiences. The strength
of the adjustment depends a) on the number of cues that are present in a learning event
and b) on the size of the error between the prediction emerging from the cues and
the actual outcome in the learning event. This gives rise to cue competition, during
which cues compete for being informative about an outcome. As a result of learning
through continuous prediction and error, cognitive representations emerge. An in-
depth description of the theory can be found in (Ramscar et al., 2013a; Linke &
Ramscar, 2020; Ramscar, 2021); a description of the NDL model can be found in
Baayen et al. (2011); an overview of how different cue-to-outcome structures affect
learning can be found in Hoppe et al. (2022).2

The error-driven learning rule has been shown to successfully model and predict a
number of important effects observed in animal learning (Rescorla, 1988) and human
learning. In human experiments, this has been accomplished by training simple two-
layer neural networks using the error-driven learning rule. Subsequently, network
measures such as activations were computed the basis of the networks and used as

2This formalization of learning differs from other theories of learning, such as Bayesian models (Klein-
schmidt & Jaeger, 2015), or distributional learning models (Wanrooij et al., 2014, 2015; Werker et al.,
2012; Terry et al., 2015). The latter class of models assumes that learners learn the frequency of occur-
rence of co-occurrences and the resulting distributions. For a review of the differences between distribu-
tional learning and error-driven learning in different linguistic contexts see Kapatsinski (2018).



440 S. Arndt-Lappe et al.

predictors for human behavior. For example, Ramscar et al. (2010) demonstrated how
the presentation order of cues and predicted events during learning affects the strength
of learning. Learning is more effective when, for example in ‘wug’ experiments, the
orthographic (or acoustic) word precedes the corresponding picture than when the
picture precedes the word. This effect was also reported for phonetic learning (Nixon,
2020) and inflectional learning (Hoppe et al., 2020). Nixon (2020) demonstrated that
a new cue for an outcome is blocked from learning, once another cue has already been
learned as informative about an outcome. This finding mirrors the ‘blocking effect’
in animal learning studies first demonstrated by Kamin (1968).

In addition, the error-driven learning rule successfully models aspects of child
language acquisition (Ramscar et al., 2010, 2011, 2013b,a), acquisition and us-
age of allomorphic suffixes (Divjak et al., 2021), reaction times in lexical deci-
sion tasks (Baayen et al., 2011; Milin et al., 2017b), self-paced reading (Milin
et al., 2017a), phonetic characteristics depending on their morphological function
(Tomaschek et al., 2019; Saito et al., 2020; Tomaschek & Ramscar, 2022; Schmitz
et al., 2021), auditory comprehension (Baayen et al., 2016; Arnold et al., 2017) and
acoustic single-word recognition (Shafaei-Bajestan & Baayen, 2018). Furthermore, it
was applied in modelling early phonetic learning (Nixon & Tomaschek, 2021, 2020)
and morphological processes of pluralization in Maltese (Nieder et al., 2022a,b).

To summarize, the association weight between a cue and an outcome is formed
through the experience with other cues and outcomes that have been encountered dur-
ing the learning history in both production and comprehension. The weight represents
the support which a specific cue can provide for a specific outcome. Cognitive rep-
resentations of grammatical structures emerge from the association weights between
every encountered cue and every encountered outcome. In this model principles like
the principle of directionality and stratification have no independent status as con-
straints on representations or grammatical outputs. The question then arises if and
how the model can emulate and explain the empirical effects that have traditionally
been ascribed to these mechanisms.

3 Methods

For our simulation experiments, we trained NDL to discriminate stress positions and
then used the trained network to predict stress positions. The material for the simula-
tions (N = 33,407 lemmas, i.e. word types3) was obtained from the CELEX lexical
database of English (Baayen et al., 1993). This data set served as both the training
set and the test set. We performed our analysis in two steps. In a first step we focused
on directionality and investigated which cue structure best predicts the attested stress
patterns. In a second step, we focused on morphological stratification and studied
if and how exactly morphological strata emerged in our model. All data and scripts
underlying the analysis presented in this paper are available online, at https://osf.io/
8nbyj/. In what follows we discuss the methodological details of our modelling ap-
proach.

3Lemmas were extracted from the epl.cd file in CELEX.

https://osf.io/8nbyj/
https://osf.io/8nbyj/
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The input cues on which we trained our models were bigrams and trigrams, de-
rived from the orthographic representations of all lemmas in CELEX. Using ortho-
graphic representations as input thus means that our simulations may be conceived of
as reading experiments in which readers are pronouncing English words, except that
we abstract away from different word forms. Still, the choice of orthographic bigram
and trigram cues clearly deserves discussion, as orthographic bigrams and trigrams
per se are not cognitively plausible form representations of words in the Mental Lex-
icon. We use them here as proxies for word representations that make the fewest
possible a priori assumptions about abstract representational units.

Bigram and trigram representations encode orthotactic information, i.e. sequential
information about adjacent letters in words, without including formally defined syl-
lables or syllable positions (cf. e.g. Baayen et al., 2011, 2016; Milin et al., 2017b;
Tomaschek et al., 2019, for modelling approaches following a similar rationale). We
tested which kind of cue structure best predicted stress position: letter bigrams (BG),
or trigrams (TG), or both together (BGTG).4

Using orthographic rather than phonetic transcriptions allowed us to avoid the
problem that in many English words, knowing the vowel quality is already predic-
tive of stress, and at the same time to avoid making any potentially controversial
assumptions about underlying phonological vowel qualities. This is because only
a very restricted set of vowels can occur in surface realisations of unstressed En-
glish syllables, a phenomenon that is usually accounted for in terms of phonological
processes (‘vowel reduction’). The most common reduced vowel, schwa, is even re-
stricted to exclusively occurring in unstressed syllables. For example, a common pro-
nunciation of the word ‘America’ is [@mEr@k@]. Given this sound structure, it is clear
that the stress can only be on [E], the only full vowel. Given the orthographic string
<America>, however, all syllables are potentially stress-bearing. Providing the com-
putational model with orthographic cues rather than with actual pronunciations, thus,
serves to make its task more difficult.

The main conceptual problem with using orthographic cue representations, how-
ever, is that it seems to run counter the well-established idea that the assignment
of stress is based on phonological, not orthographic representations. Apart from its
methodological motivation, the cue structure we use in our experiment also provides
an interesting test case for evidence documented in the literature that, contrary to
what might be expected, phonological computation is not independent of orthog-
raphy in English (cf. Montgomery, 2001, 2005; Giegerich, 1992, 1999; on English
word stress cf. esp. Guierre, 1979, et seq., Arciuli & Cupples, 2006; Arciuli et al.,
2010; Dabouis et al., 2018; Dabouis, 2022; Deschamps, 1994). Also the high error
rates that Jarmulowicz and colleagues found in 7–9 year-old children’s productions of
complex words indicate that acquisition of morphological constraints on word stress
(specifically: stress shift) is not completed before literacy (Jarmulowicz et al., 2008;
Jarmulowicz, 2006, discussed in Sect. 1 above). We take this to mean that an influ-

4Theoretically, we could also use higher-order n-grams such as 4-grams or lower-order monographs. How-
ever, the longer the n-gram, the stronger the model is faced with a one-to-one mapping between cues and
outcomes, which results in smaller cue-competition during training. By contrast, letter monographs miss
out on orthotactic information.
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ence of orthographic representations on the acquisition of stress patterns cannot be
precluded.

We conclude that the jury is still out on what role exactly orthographic represen-
tations play as a cue to stress position in English. The fact that, as we will see below,
orthographic cues are indeed very good predictors of stress position in English lends
additional support to this being a topic worth pursuing in future research.

Stress position was coded as outcomes in our simulations. We implemented three
different types of outcome structures. The first is a representation of the traditional ac-
count that the stress position in a word is counted from the offset of the word (hence-
forth count from right (e.g. Hayes, 1982; Pater, 2000; Alber, 2020, as discussed in
Sect. 1 above). In order to examine the validity of this claim, we also tested two other
ways of representing stress as outcomes in our model. The first is to count the stress
position from the onset of the word (henceforth count from left). The second is to se-
lect the vowel letter present in the stressed syllable (henceforth vowel). The value of
count from right varied between one and seven. count from left contained six values,
ranging between stress on syllable number one and stress on syllable number six.
vowel did not differentiate in which syllable the vowel was located and contained 59
different values in total. The high number of different values results from the fact that
English orthography encodes vowels also by means of digraphs or trigraphs which
are taken into account here.5 Stress representations that involved syllable counting
(count from right and count from left) were based on the phonetic transcription and
syllabification provided in CELEX.

Take the word ‘reluctantly’ as an example. Its letter bigram cues are #r,
re, el, lu, uc, ct, ta, an, nt, tl, ly, y#, its letter trigrams
are #re, rel, elu, luc, uct, cta, tan, ant, ntl, tly, ly#
(where # represents the word boundary). Crucially, the model is unaware what phone
sequences the letter n-grams represent. The outcomes of the models, – called ‘out-
puts’ in the terminology of neural networks – represent the position of the stress. For
‘reluctantly’, this means that count from left is: 2; count from right is: 3, and vowel
is: ‘u’.

We compared nine different networks in terms of how well they predict stress
in our data set. Each network was trained on a different combination of cue and
outcome structures (3×3, i.e. bigram cues, trigram cues, and a combination of bigram
and trigram cues with the outcome count from left, the outcome count from right,
and the outcome vowel). We use the Danks Equilibrium Equations (Danks, 2003) to
train the model, as implemented in the NDL package. After training, the network is
evaluated in terms of whether it is able to discriminate among the outcomes on the
basis of presented cues (typically from a word of interest). Thus, it is presented by
a set of cues, e.g. #re, rel, elu, luc, uct, cta, tan, ant, ntl,
tly, ly#, and has to select which of the potential outcomes (e.g. for count from
right 1, 2, 3, 4, 5, 6, or 7) is best predicted by the cue set. This is achieved by means
of an activation vector, summing up the association weights between the presented
cues for each of the possible outcomes in the network. The outcome with the highest
activation is the winner of the classification, thus the predicted stress position.

5Note that a small number of these vowel graphemes may in fact be heterosyllabic in some words.
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One aspect in which the classification procedure just described seems to depart
from a cognitively plausible procedure is that the set of possible outcomes is defined
on the basis of the whole data set, not on the basis of a given input. This is different
e.g. from formal approaches such as Optimality Theory (e.g. Pater, 2000; Zamma,
2012; Moore-Cantwell, 2016), in which the selected outcome is one of the candidate
outputs given to the procedure for a specific input. The problem can be best exempli-
fied with the help of monosyllabic words. Naively, it should not be too hard to find
the stressed position in monosyllabic words. Whereas this line of thought is of course
plausible in the real world, it is not necessarily in our model. This is because this kind
of reasoning follows the misconception that the model takes into account the number
of syllables in the cue set that is presented during the classification procedure when
computing a predicted outcome. This is not the case in the simulations presented in
this paper, at least not in a direct way. It is therefore even possible that due to cue
competition and due to the distribution of weights, the network predicts a stress po-
sition which is incompatible with the true number of syllables in the presented word.
For example, it is possible that the network erroneously predicts stress on the penul-
tima for a monosyllabic word. The task that the model faces to find the right stress
position is therefore more difficult in a way than what is plausible from a cognitive
perspective. As we will see in Sect. 4.2, however, the number of cases in which NDL
actually predicts stress to land on a non-existent syllable is very low in practice.

4 Results

4.1 Classification accuracy by cue-outcome structure

Each of our nine networks (cf. Sect. 3 above) was set the task of predicting stress po-
sition in all words from CELEX. As can be seen in Table 3, classification accuracies
for all cue-and-outcome combinations range between 59.0% and 84.9%, i.e. highly
above chance. As is clear from the table, the use of letter bigrams consistently yields
a lower classification accuracy than the use of letter trigrams. Also, a combination of
bigrams and trigrams did not improve classification accuracy. This means that letter
trigrams are sufficiently informative about stress positions.6

Given that letter trigrams yield better classification accuracy, we focus on this cue
structure in all subsequent analyses. We now inspect how it was used by the network
to classify stress positions given different assumptions about directionality. Table 3
demonstrates that stress can be learned without syllable counting. The model trained

6The question arises why trigrams yield a higher accuracy than bigrams. Given that trigrams capture a
larger portion of a word than bigrams, the uncertainty about the relation between cues and the stress
position should be lower for trigrams than for bigrams. We assessed this uncertainty by calculating the
entropy (Shannon, 1948) for each bigram and for each trigram in relation to the stress position. To obtain
the entropy for each n-gram cue, we assessed how often each n-gram occurs with each stress position. To
calculate entropy, we calculated the co-occurrence probability by dividing a cue’s co-occurrence frequency
with a particular stress position by the summed frequencies of that cue and all stress positions. This then is
a measure of how informative a cue is w.r.t. stress position. We found that the average entropy in relation
to stress position is significantly lower for trigrams (H = 0.84) than for bigrams (H = 1.48, δH = 0.64,
t = 24.54, df = 844.83, p-value < 0.001).
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Table 3 Percentage of correctly
categorised stress positions in
whole data set

Cue structure Left Right Vowel

letter bigrams 71.4 59.0 72.1

letter trigrams 80.7 74.9 84.9

both together 80.6 74.9 84.8

to predict stress in terms of the orthographic vowel has the highest classification
accuracy, followed by the model that was trained to predict stress from the left word
edge. The weakest model is the one that was trained to predict stress from the right
word edge. All differences between model accuracies are significant (count from left
vs. count from right: χ2 = 246.4, df = 1, p < 0.001; vowel vs. count from left:
χ2 = 961.5, df = 1, p < 0.001). Using trigrams as cues, we tested the count from
left and vowel models in twenty cross-validation runs. In each run, we trained the
models on 70% of the data that were randomly selected and tested on the remaining
unseen 30% of the data. The average classification accuracy was 71.6% (sd = 0.005)
in the count from left model and 75.8% (sd = 0.003) in the vowel model. Thus, even
if the model has not encountered a word, it was able to predict its stress position with
a fairly high accuracy.

Since the model had no a-priori information about morphological structure, and
since suffixing influences stress position in English, it is not surprising that the count
from right model showed only weak performance. This is because the descriptive
generalisation that English stress always lands in a three-syllable window at the
right edge is not true for complex words with so-called stress-preserving suffixes
(cf. Sect. 1 above for discussion).7 What is surprising, however, is that stress is best
predicted by the vowel model, as none of the existing theories predicted this finding.8

Looking only at prediction accuracies, however, does not tell us much about why
the models performed as well as they did. With regard to the vowel model, a very

7Readers might wonder why the stress from left model performed so well, given that prefixes should
also have an influence on stress assignment, similar to that of suffixes. One might expect prefixes to be
a problem because most English prefixes are ‘stress-preserving’ in the sense that, like stress-preserving
suffixes, they neither attract main stress onto the prefix, nor do they cause main stress in the complex word
to land on some syllable other than the syllable that is main-stressed in the base word. The fact that the
presence of prefixes does obviously not lead to weaker classification accuracy in our models may be due to
the fact that when a word is prefixed with one prefix it typically reoccurs with other, prosodically similar
prefixes. For example, the adjective interpretable occurs with un-, re-, and mis-. In all cases, the prefixed
word has the third stress position, which provides the model with strong support for this third position.
Analogous to what we show for words with stress-preserving suffixes in Sect. 4.4, this support is most
likely based on high activations of the bigram or trigram cues that represent the word stem rather than
the individual prefix. In our example, this third position is the ‘stress-preserving’ position. A systematic
analysis of stress predictions for prefixed words, however, is beyond the scope of this paper.
8As an anonymous reviewer pointed out, it might be likely that the higher classification accuracy in the
vowel was due to repeated vocalic letters (e.g. <e> in ‘elephant’) and double-vocalic graphemes (e.g.
<ea> in ‘read’ or <oo> in ‘tool’). We tested this hypothesis by running additional control models in
which we excluded words with a) double-vocalic graphemes indicating a stressed position, b) repeated
vowels and c) a and b simultaneously from the training set. In all three cases, the models performed
systematically better than our initial model, reflected by an increase of 2% to 8% of model accuracy
(depending on the cues). Thus, double-vocalic graphemes and repeated vowels have a negative effect on
classification accuracy.
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likely confounding factor is that orthographic vowels may occur multiple times in
words. It is thus unclear whether the high classification accuracy of the vowel model
results from the fact that vowel repetition increases the probability of finding the
correct stress position. In the following section, we turn to a more detailed statisti-
cal analysis of our three models with aim in mind to learn more about the potential
confounding factors mentioned.

4.2 Word length and repeated vowels

In this section, we want to inspect how classification accuracy varies with structural
and morphological information. To do so, we will focus on the models trained with
trigram cues. One interesting question is how the models predict stress in words of
different length. This is a crucial issue for our assessment of the directionality pre-
diction. The average accuracy scores presented in the previous section suggest that
stress position may indeed be learned without resorting to directionality. However, the
distribution of different word lengths across the lexicon may constitute an important
confound here, in two ways.

One is that the vast majority of English words are short, with monosyllables hav-
ing a particularly large share in the vocabulary. Model accuracy on short words will
therefore also have a large share in the general accuracy score. Recall that NDL does
not have explicit information about word length in our dataset and, hence, it is, in
principle, possible that a monosyllabic word is predicted to be stressed in other po-
sitions than the first. However, word length is correlated with the number of cues
which are going to compete for influence in stress classification. As a consequence,
there will be less competition between cues in short words than in long words. Espe-
cially monosyllables will also profit from the additional advantage that most of the
time their cues will contain the vowel that is stressed, and there will be no competi-
tion from other cues containing vowels. We thus expect that classification accuracy
will be very high for short words and will decrease in words with a greater number
of syllables.

Another potential confound especially concerns the vowel model: Since the out-
comes in this model do not differentiate in which syllable a vowel is located, a model
prediction was counted as ‘correct’ when the prediction matched the vowel that is
observed to be stressed in the word, independent of where in the word the vowel is
located. As a consequence, the probability that the model correctly predicts stress
is higher, when a word contains repetitions of the same vowel in different places
(captured by repeated vowels in what follows). Accordingly, we expect classification
accuracy to be higher when the word contains multiple instances of the same ortho-
graphic vowel rather than different vowels. Repeated vowels may, however, also af-
fect the other models, count from left and count from right. This is because repetition
of vowels will also reduce cue competition in these models.

Figure 1 illustrates classification accuracy of the three different models (y-axis)
across the number of syllables in a word (x-axis) in interaction with repeated vow-
els. Accuracies were obtained by computing the appropriate contingency tables. The
three models are represented by different line types, with the solid lines representing
the vowel model. Black lines represent accuracies for the subset of words containing
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Fig. 1 Model accuracies as
function of number of syllables
in word. Model types are
encoded by line type

no repeated vowels, grey lines represent accuracies for the subset of words in which
identical vowels were repeated. We computed accuracy scores for all three models
(vowel, count from left, count from right) to allow readers to compare their perfor-
mance on the exact same dataset.

We observe that model accuracies decrease as the number of syllables increases.
Accuracy for monosyllabic words is highest (well above 95% in all subsets and mod-
els), which shows that, as predicted, NDL does hardly ever assign stress to non-
existent vowels or syllables in such words. Furthermore, even for four-syllable words,
model accuracy stays above 75% for the two top models (vowel, count from left),
which shows that, overall, prediction accuracy is highly satisfactory and clearly above
chance level. The relatively low accuracies for very long words might strike read-
ers versed in formal phonological theories as disappointing, especially because this
seems to indicate that the model does not generalise to longer and rare words. How-
ever, we have to take into account in our interpretation of model accuracies that the
model performs best for those types of words which it has seen most frequently. This
type of behaviour has been repeatedly shown to reflect human learning behaviour
in learning experiments (Ramscar et al., 2013a,b, 2010). One reason why accuracy
drops so strongly for longer words therefore clearly lies in the way words of different
length are distributed in our data set. The vast majority (roughly 95%) of all words
in our data set are not longer than four syllables. While there are roughly 12,000 di-
syllabic (37%) and 8,850 trisyllabic words (27%), there are only 312 words with six
syllables (1%), 40 words with seven syllables (0.12%), and only 6 words with eight
syllables (0.02%). The distribution in our data set faithfully reflects the well-known
distributional fact that the English vocabulary has a rather low proportion of long
words. The model therefore did clearly learn assignment of word stress in this data
set.
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As we can also learn from Fig. 1, the hypothesis that high overall classification ac-
curacy of the vowel model might be due to repeated vowels in the dataset is only par-
tially correct. For words without repeated vowels the count from left model (dashed
black line) performs equally well as the vowel model. By contrast, classification ac-
curacies become worse when repeated vowels are present in the word (dashed grey
line). Is this also the case in the count from right model? The answer to this question
is: no. We observe that classification accuracies in the count from right model are on
average worse across all word lengths than the other two models, even when words
contain no repeated vowels.

Regarding the confounding effect of repeated vowels in the vowel model, for short
words (two or three syllables) there is no difference in accuracy between words with
or without repeated vowels. Accuracy is slightly lower in four-syllable words when
no vowels are repeated, and strongly decreases in longer words in comparison to
when a repeated vowel is present. Thus, as expected, there is an advantage for the
classification when words contain repeated vowels in longer words. Note, however,
that the relatively strong decrease in accuracy for five- and six-syllable words without
repeated vowels is based on a very slim data set (86 five-syllable words, 3 six-syllable
words). Virtually all words in this subset for which NDL provides an incorrect clas-
sification (42 words) are suffixed. By far the most frequent suffix is adverbial -ly,
suffixed to adjectives ending e.g. in -ical (8x, e.g. methodically), -able (4x, e.g. im-
perturbably), -ory (2x, e.g. perfunctorily); other common suffixes in this set include
-ity (6x, e.g. jocularity), -ary (5x, e.g. rudimentary), and -ism (4x, e.g. obscurantism).
This is particularly interesting because long complex words ending in some of these
suffixes (-ly, -ary, -ism) are well-known to vary between stress-shifting and stress-
preserving behaviour in English (cf. e.g. Trevian, 2007, Bauer et al., 2013, chpts.
14, 15). Also, many erroneous NDL predictions do systematically pattern in ways
that are not entirely implausible. For example, NDL predicts méthodically, impér-
turbably, pérfunctorily, jócularity, rúdimentary, and obscúrantism. Predicted stress
in obscúrantism is actually a stress that is attested in English, but not in our database
(Wells, 2008, s.v.; similarly, NDL predicts attested círculatory where our database
has circulátory). Another relatively frequent type of error in this set is that stress
preservation is predicted with stress shifting suffixes (e.g. predicted jócularity, mé-
thodical(ly), stressed on the same vowel as the embedded words joke, méthod); this
occurs in 14 cases, in two of which the stresses predicted by NDL are listed as actual
pronunciation variants in the Longman Pronunciation Dictionary (Wells, 2008).

4.3 Learning morphological stratification

4.3.1 Model accuracies and morphological structure

In the upcoming analysis, we want to gain an understanding of how morphological
effects on stress assignment are represented by the model. The reasoning here is
that the model’s uncertainty about the relation between cues and outcomes should
systematically vary with morphological complexity, and that this will be reflected in
the model’s classification accuracy of the stress position. To test this, we extracted the
information included in CELEX about whether words are derived or simplex since
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Fig. 2 Model accuracies as
function of morphological
complexity. Model types are
encoded by point type

derivational processes can be stress-preserving or stress-shifting. This means that the
variability of the stress position in derived words is very high, which should create
more uncertainty about the stress position for the learning model. Accordingly, we
expect accuracies for derived words to be lower than for underived words. Figure 2
supports our hypothesis in all three models.

Having demonstrated that our models classify derived and underived words with
different degrees of accuracy, we will now investigate how accuracies vary with mor-
phological type among derived words, i.e. stress preserving and stress shifting suffix-
ation. For example, suffixes such as -ion, -ity or -ical (and their equivalent derivations)
attract stress to the syllable preceding the suffix (pre-stressing), whereas suffixes such
as -ese, -teen or -ee carry stress themselves (auto-stressed). Suffixes such as -ness or
-less, by contrast, preserve basal stress (stress preserving, cf. Sect. 1 above for dis-
cussion).

We expect classification accuracy to be associated with the type of morphologi-
cal structure. In words with stress preserving suffixes, the stress position should be
strongly supported by the cues in the base. By contrast, in words with pre-stressing
and auto-stressed suffixes, the stress position is different in derivatives and corre-
sponding bases, which should result in more uncertainty about the stress position,
due to competition between stress-supporting cues from the base and from the suffix.
In words with stress-shifting suffixes, cues from the suffix support the stress posi-
tion in the derived word, while the cues in the base will have to support multiple
stress positions (at least one for the derived word and one for the base word). This is
why we expect higher classification accuracy for stress preserving suffixes than for
pre-stressing and auto-stressed suffixes. We do not make any predictions about the
difference between auto-stressed and pre-stressing suffixes, as they both introduce
greater cue competition than stress-preserving suffixes do.
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Fig. 3 Model accuracies for
derived words depending on
morphological stress type.
Model types are encoded by
point type

We tested these hypotheses with the help of a subset of 4,626 words that contained
only words with clearly stress preserving, pre-stressing, and auto-stressed suffixes.9

The stress preserving suffixes that we considered were -ness (as in happi-ness), -less
(as in piti-less), and -ly (as in happi-ly). The pre-stressing suffixes that we consid-
ered were -ion (as in constrict-ion or informat-ion), -ity (as in divin-ity), and -ical
(as in satir-ical). The auto-stressed group comprised the largest number of different
suffixes, as these suffixes occur in much fewer different words in English than the
suffixes belonging to the other two groups. By including a larger number of different
suffixes in this group we made sure that we would have a sufficient number of data
for analysis. These suffixes are -ese, -teen, -ee, -ana, -esque, and -ette (as in e.g.,
Japan-ese, seven-teen, adopt-ee, Smithsoni-ana, Kafka-esque). Suffixed words were
extracted from our CELEX dataset on the basis of their orthographic forms (e.g. lem-
mas ending in the string ‘ness’, ‘ity’, ‘ee’), but excluding lemmas that are not marked
as morphologically derived in CELEX (e.g. excluding the lemma city from the set of
-ity derivatives).

The accuracies in Fig. 3 support our hypothesis for the vowel and count from left
models. In these models, stress preserving suffixes indeed yielded higher accuracies
than auto stressing and prestressing suffixes. Note that prestressing suffixes yielded
a higher classification accuracy than auto-stressed suffixes. A likely reason for this
difference is that auto-stressed suffixes cause a stress shift in all pertinent words,
and cues from the base have to compete for this stress position with the cues from the
suffix. By contrast, stress in words with prestressing suffixes may often be in the same
position as in their bases, which is why their stress position is stronger supported by

9Running the analysis on the whole set of derived words in our CELEX dataset rather than on a set of
selected derivational categories was not an option. The reason is that assignment to stratal categories is not
straightforward for all suffixes. Cf. e.g. Bauer et al. (2013, chpt. 9) for discussion.
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the cues in the base. As an example, compare derivatives with pre-stressing -ity, some
of which are stressed on the same syllable as their bases (e.g. obésity, obése) whereas
others are not (e.g. productívity, prodúctive).

Next, we turn our attention to accuracies in the count from right model, for which
the effect is reversed: preserving suffixes actually yield the lowest accuracy while
auto-stressed and prestressing suffixes yield higher accuracies. This finding does not
come as a surprise. Derivation by means of suffixation changes the number of syl-
lables in a word. The syllable position remains the same when counted from left,
but changes when counted from right. Accordingly, preserving suffixes create higher
uncertainty in the count from right model than in the other models, reducing its ac-
curacy. Note, however, that the count from right model yields a very high accuracy
for prestressing suffixes, as they provide a highly informative cue about the stress
position.

4.3.2 Strata and activation profiles

So far, we have shown that the NDL network is capable of learning stress position
and that morphological structure is reflected in classification accuracies. We have ar-
gued that this is due to differences in the uncertainty between cues and outcomes.
In the following section, we turn our attention to how these differences in uncer-
tainty are reflected in the model. Specifically, we will inspect how the vowel model
represents morphological stratification. We hypothesize that the network has indeed
learned stratification of suffixes. Specifically, we assume that stratification will be
mirrored in differences in the activation of the stress position coming from the stem
and coming from the suffix.

The cues in suffixes that attract stress (auto-stressed suffixes) and suffixes which
attract stress to the preceding syllable (pre-stressing suffixes) systematically indicate
the stress position; the cues in the stem of such derivatives, by contrast, discriminate
variable stress positions (i.e. those of the base word and those of its derivatives). Ac-
cordingly, suffix cues in stress-shifting derivatives should be better cues for the stress
position than stem cues. From this we predict that, in NDL terms, stress-shifting suf-
fixes will have a relatively higher activation than their stems. By contrast, the reverse
should hold for stress-preserving suffixes. Here suffix cues should be weaker cues
for stress position than stem cues. These suffixes should thus yield a lower activation
than the stem.

We operationalized the relative support of stem and suffixes for the stress position
by calculating the ratio between the activation of the suffix and activation of the stem
for a word’s stress position. Prior to the calculation, we rectified activations of stems
by setting all activations smaller than zero to zero. The data showed a strong non-
normal distribution with a peak at the centre and long left and right tails. This is why
we used a non-parametric regression technique, quantile generalized additive models
(Fasiolo et al., 2021), which allows to fit data without any assumptions about the
distribution of the residuals.10

10Quantile generalized additive models allow to fit data from different quantiles of the dependent variable’s
distribution. In our analysis, we fitted the 50th percentile, i.e. the median.
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Table 4 Summary for model fitting the activation ratio (suffix/stem) as a function of stress position shifts
depending on suffixation. Intercept represents ‘preserving’ stress

Estimate std. error z-value p-value

(Intercept) 0.01 0.00 6.13 < 0.0001

morphological class = auto 0.42 0.04 11.41 < 0.0001

morphological class = prestressing 0.11 0.00 27.91 < 0.0001

Fig. 4 Average activation ratio
between suffixes and stems
depending on stress shifts due to
suffixation

We used activation ratio as the dependent variable, and stress position as a fac-
torial predictor (with preserving as the reference level). Table 4 reports the model
summary. Figure 4 visualizes the results.

The intercept of the model, i.e. the average activation ratio for stress preserving
suffixes, is 0.01. We see that the levels auto stressed and prestressing yield signif-
icantly higher activation ratios than the level stress preserving. However, average
activation ratios are always below 1, which means that the stem is more strongly
activated for the word’s stress position than the suffix, regardless of its stratal affili-
ation. A very likely explanation is that, on average, stems have more cues (μ = 7.2,
sd = 2.5) than suffixes (μ = 2.9, sd = 1.0). As a consequence, they contribute more
weights for summation than suffixes, yielding overall higher activation scores.

In spite of suffixes having smaller activations than stems, the direction of the ob-
served effects supports our hypothesis. Stratification is indeed mirrored in the acti-
vation profiles of derived words. Auto stressed and prestressing suffixes yield signif-
icantly higher activation ratios than stress preserving suffixes. In other words, strati-
fication is reflected in the model in terms of systematic differences in the activation
profiles of complex words.

5 Discussion

In the present study we set the Naive Discriminative Learner model (NDL, Baayen
et al., 2011; Arppe et al., 2018) to the task of classifying stress position in simplex and
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morphologically complex English words from the CELEX Lexical Database (Baayen
et al., 1993). The representation of words that the model was given as input comprised
bigrams and trigrams, i.e. flat representations that encode sequences of sounds or
letters and as such, intrinsically encode phonotactic information. The most important
lesson to be learned from our modelling experiments is that stress position in English
words can be learned extremely successfully without assuming an a-priori setting of a
directionality parameter, and without an a-priori specification of morphological strata
in the Mental Lexicon.

With regard to directionality, we saw that orthographic vowels provide a better
outcome structure for stress position than outcome structures based on syllable count
from either word edge. This finding provides a substantial challenge to existing for-
mal accounts, which all assume that directionality is an indispensable parameter in
stress assignment.

The present findings also raise interesting questions about the role of orthography
in stress assignment. In the present paper, orthographic representations were used
as input simply because this offered a pragmatic solution to the problem that stress
position and vowel quality are strongly correlated in English. Our simulations do,
however, converge with previous work done in research on the acquisition of reading
skills, which has provided support for the idea that orthography is indeed predictive
of stress position (Arciuli et al., 2010; Abasq et al., 2019). While this was not our
aim, the findings of the present study suggest that it might be so on a larger scale
than expected. English orthography has already been shown to provide informative
cues about morphological structure in words (Berg, 2013). Our study indicates that
its graphemic structure discriminates stress position. In order to explore this issue
further, however, more research is needed to better understand how exactly trigrams
encode information that is relevant for language processing. Similar findings have
already been reported before. For example, a comparison of studies employing NDL
to model language processing tasks seems to suggest that trigrams are more informa-
tive cues than bigrams in some modelling tasks, but less successful in others (Baayen
et al., 2011; Baayen & Smolka, 2020; Tucker et al., 2019). Why this is so, is not fully
understood.

With regard to morphological stratification, we saw that differences between mor-
phological categories can be understood as differences in the activation profiles of
pertinent words. Activation profiles refer to the way in which the distribution of stored
weights are skewed within a word, as a result of linguistic experience when learning
complex words with their stress patterns. According to this account, what speakers
learn when they learn words with stress-preserving suffixes is that cues for stress are
relatively stronger in the base than in the suffix. Conversely, learning stress shift in
this account means learning that cues for stress position are relatively stronger in the
suffix. The model therefore offers an articulate hypothesis about what underlies strat-
ification effects. This hypothesis is testable. One prediction worth exploring is that,
if stratum-specific stress behavior is emergent from activation profiles, the model
should predict stress variation to occur exactly in cases in which both the suffix and
its stem are strongly activated (cf. Bell, 2015 for evidence that variation in English
compound stress arises in similar situations). This prediction could be tested with
the help of actual pronunciations of complex words. Another prediction is about the
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acquisition of stress-shifting morphological categories. Thus, if it is true that learn-
ing stress shift involves learning higher activation of suffix cues, the simulations we
presented here predict that, overall, stress shift should be acquired later than stress
preservation. More importantly even, learning paths should be correlated with fre-
quencies of pertinent morphological categories and with measures of how base and
suffix cues compete for stress positions in words instantiating such categories. Both
predictions could be tested by means of cross-sectional production studies as de-
scribed by Jarmulowicz et al. (Jarmulowicz et al., 2008; Jarmulowicz, 2006), whose
findings seem to already support the idea that stress shift is acquired relatively late,
and that its acquisition is a gradual process. We leave testing these predictions (and
others) to future research.
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