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Abstract This study focuses on the space-time pat-
terns of the COVID-19 Omicron wave at a regional 
scale, using municipal data. We analyze the Basque 
Country and Cantabria, two adjacent regions in 
the north of Spain, which between them numbered 
491,816 confirmed cases in their 358 municipalities 
from 15th November 2021 to 31st March 2022. The 
study seeks to determine the role of functional urban 
areas (FUAs) in the spread of the Omicron variant 
of the virus, using ESRI Technology (ArcGIS Pro) 
and applying intelligence location methods such as 
3D-bins and emerging hot spots. Those methods 
help identify trends and types of problem area, such 
as hot spots, at municipal level. The results demon-
strate that FUAs do not contain an over-concentration 
of COVID-19 cases, as their location coefficient is 
under 1.0 in relation to population. Nevertheless, 

FUAs do have an important role as drivers of spread 
in the upward curve of the Omicron wave. Significant 
hot spot patterns are found in 85.0% of FUA area, 
where 98.9% of FUA cases occur. The distribution of 
cases shows a spatially stationary linear correlation 
linked to demographically progressive areas (densely 
populated, young profile, and with more children per 
woman) which are well connected by highways and 
railroads. Based on this research, the proposed GIS 
methodology can be adapted to other case studies. 
Considering geo-prevention and WHO Health in All 
Policies approaches, the research findings reveal spa-
tial patterns that can help policymakers in tackling 
the pandemic in future waves as society learns to live 
with the virus.

Keywords Space-time trend · Emerging hot spots · 
Functional urban areas · Geographic Information 
Systems · Municipalities

Introduction

Background: Geo-technologies and COVID-19 
Spatial Patterns

From the outset of the COVID-19 pandemic, geo-
technologies and location intelligence methods [1] 
have been used to help determine COVID-19 spa-
tial patterns [2–4]. These contributions are aligned 
with geo-prevention principles to detect COVID-19 

O. De Cos (*) · V. Castillo 
Department of Geography, Urban and Regional Planning, 
Universidad de Cantabria, 39005 Santander, Spain
e-mail: olga.decos@unican.es

O. De Cos · V. Castillo · D. Cantarero 
Research Group on Health Economics and Health Services 
Management – Valdecilla Biomedical Research Institute 
(IDIVAL), 39011 Santander, Spain
e-mail: david.cantarero@unican.es

D. Cantarero 
Department of Economics, Universidad de Cantabria, 
39005 Santander, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11524-023-00720-3&domain=pdf
http://orcid.org/0000-0002-2245-5378
https://orcid.org/0000-0001-8025-4892
https://orcid.org/0000-0001-8082-0639


315Role of Functional Urban Areas in the Spread of COVID-19 Omicron

1 3
Vol.: (0123456789)

problem areas [5] in line with WHO Social Determi-
nants of Health [6], Health in All Policies (HiAP) and 
Healthy Cities principles [7, 8] to reduce inequity in 
health conditions or pandemic risks depending on the 
area (urban or rural) or the domains of Social Deter-
minants of Health regarding to living context (neigh-
borhood and built environment) and socioeconomic 
context [9]. According to this, health is influenced 
not only by living and working conditions in homes 
and communities, but also by economic and social 
opportunities and resources [10]. However, academic 
studies encounter many difficulties in terms of admin-
istrative mismatching of diagnosis areas and health 
management units [11]. Local studies are essential for 
action at local scales, but global thinking is needed 
[12], considering both worldwide and local research 
about spatial patterns of the pandemic.

Health Geography contributions highlight that the 
living environment matters in the spatial behavior 
of COVID-19, especially in urban areas [13]. There 
is strong evidence of correlation between the distri-
bution of confirmed cases and population density 
[14–16], environmental conditions such as pollution 
[17], socioeconomic conditions [18–20], concen-
tration of economic activities [21, 22], proximity to 
transport centers [23], and indeed proximity to other 
locations [24].

The context in which people live is important not 
only in COVID-19 incidence but also in vaccina-
tion levels [25]. Nevertheless, as some authors have 
hypothesized, vaccination seems insufficient to con-
tain spread [26], so public health policy must meet 
the challenge of high transmissibility variants such as 
Omicron one, which can spread globally [27].

Research Questions and Case Study

The research is approached in the awareness of the 
importance of tackling the pandemic at local scales, 
coordinating actions horizontally and vertically from 
an administrative perspective in line with WHO HiAP 
principles [8]. In this regard, the Omicron wave has 
posed a challenge to health policies due to its high 
transmission rates. We seek to analyze the role of 
urban areas in the spread of the COVID-19 Omicron 
variant, using geo-statistics methods implemented 
by Geographic Information Systems (GIS) with Arc-
GIS Pro ESRI Software. Knowing the spatial pat-
terns of the virus is essential if we are to contribute 

to effective policies and strategies [28], using spatial 
knowledge to design mitigate and control measures 
[29].

In this regard, the research proposes a method 
using 3D-bins and emerging hot spots to reveal space-
time trends of the virus. Context variables are also 
explored, using the Ordinary Least Square (OLS) 
method to distinguish variables which are more 
closely correlated with virus incidence from demo-
graphic and territorial approaches. The methodologi-
cal proposal can be adapted from the spatial and tem-
poral viewpoints and helps to identify daily problem 
areas such as hot spots. It thus contributes to a culture 
of governance at regional level by revealing links and 
similarities between FUAs [30] for future waves and 
variants.

The case study looks at the regions of the Basque 
Country and Cantabria (northern Spain). In Spain, 
pandemic management was initially centralized at 
national level but was then decentralized to regional 
governments from the end of the lockdown in June 
2020. Regions are thus the basic unit of pandemic 
management, coordinated at national level by the 
“Inter-territorial Committee”. The study area meas-
ures 12,555  km2, and has a population of 2,798,500 
(Population register, 2021: 584,507 inhabitants in 
Cantabria and 2,213,993 in the Basque Country). 
There are FUAs around the four main cities (Bilbao, 
Santander, Donostia-San Sebastián, and Vitoria-
Gasteiz), which between them have 2,056,037 inhab-
itants (i.e., 73.5% of the population live in urban 
areas). The study period corresponds to the Omi-
cron wave from 15th November 2021 to 31st March 
2022, i.e., 136 days. Between them, the two regions 
recorded 1,603,096 confirmed COVID-19 cases in 
the 2 years from the beginning of the pandemic to the 
end date of the study period, of which 492,774 were 
recorded in the study period (about 4 months), i.e., 
30.7% of the cases occurred in 18.8% of the time.

Methodology

Data

The research is based on the confirmed COVID-19 
cases reported daily at municipal level by regional health 
authorities (Basque Government and Government of 
Cantabria). The study period corresponds to the sixth 
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wave of infection in Spain: that of the Omicron vari-
ant. The cumulative total for the study area is 492,774, 
but the research considers the 491,816 cases where the 
municipality is known (91.8% of the total). The study 
brings together tabular data and a polygonal shape layer 
with 358 municipalities.

Methods

A GIS project is implemented using ArcGIS Pro 
(ESRI GIS Company). The research workflow 
involves three stages, framed in geo-statistical and 
GIS cluster methods [31, 32].

The exploratory stage uses the Global Moran’s 
Index [33] to contrast the statistical significance of 
the distribution of COVID-19 cases aggregated at 
municipal level. The main stage analyzes 3D-bins 
and emerging hot spots based on Getis-Ord Gi* sta-
tistics [34] to identify hot spots as spreading areas 
and Mann-Kendall statistics to determine trends 
[35]. Following on from previous research based on 
3D-bins implemented from geocoded microdata on 
COVID-19 cases [36–38], here the research consid-
ers the 3D-bins creation tool from previous locations 
(municipalities) as other authors have with point lay-
ers of cities [39] and polygons of counties and dis-
tricts [40, 41]. 3D-bins based on municipalities accu-
mulate cases over time in 14-day internal time slides, 
considering the 2-week periods commonly used by 
health authorities to calculate cumulative incidences. 
The methodology thus uses a relative parameter of 
time to avoid methodological distortions [42]. The 
workflow also includes a partial-time analysis from 
the beginning to the peak number of cases reported 
(5 January 2022) to study the spatial spread process 
in detail. Considering cumulative COVID-19 cases 
in each bin recorded over time, the emerging analysis 
provides a maximum of 17 pattern types (1 “no pat-
tern detected”, 8 “cold spots”, and 8 “hot spots”). Hot 
spots are interpreted as spreading areas, cold spots are 
no-problem areas because of significant cold trends, 
and, finally, “no pattern detected” is essential to dis-
tinguish areas that have had cases but show no signifi-
cant trend.

The third method is Ordinary Least Square (OLS) 
analysis. This method of generalized linear regression 
[43] seeks to analyze links between COVID-19 inci-
dence and context variables. After considering nearly 
thirty demographic (structure indicators and density) 

and territorial variables (mainly accessibility), OLS 
reports three main statistics on each variable: coeffi-
cient and probability (to measure intensity and sign of 
correlation) and the variance inflation factor (VIF) (to 
avoid redundancies).

OLS testing contrasts stationarity with the Koen-
ker index based on Breusch-Pagan (BP) [44]. If BP 
is significant (p<0.010 with a confidence level of 
99%), the correlation is non-stationary. This is a 
key index because OLS is only methodologically 
appropriate when correlation is spatially homogene-
ous [45].

Results

The Wave with the Highest Peak

The results focus on the biggest wave in terms of 
the number of cases (Fig.  1), with 492,774 con-
firmed cases (491,816 geocoded in municipalities) 
from November 2021 to March 2022, i.e., 30.7% of 
all cases since the beginning of the pandemic. These 
cases are mostly of the Omicron variant, the most 
transmissible encountered to date [27]. According to 
epidemiological situation reports from Spain’s Minis-
try of Health [46], the Omicron variant predominated 
with 91.1% of cases in Basque Country and 95.6% 
of cases in Cantabria in January 2022, decreasing to 
76.2% and 68.3% respectively in March 2022.

Non-randomness and Cluster Pattern of Cases

The Global Moran’s Index of the distribution of con-
firmed cases reports a significant clustered distribu-
tion at municipal level (z-score above 2.580, more 
precisely 3.159). There is a probability of less than 
1% that the distribution of COVID-19 could be ran-
dom considering municipal data.

Cases are concentrated in the urban municipali-
ties (Fig.  2) corresponding to the main cities (Bil-
bao, Santander, Donostia-San Sebastián, and Vito-
ria-Gasteiz) and their FUAs, identified at European 
level as dynamic supra-municipal units with high 
population concentration and intense commuting 
[47]. Additionally, municipalities connected by high-
ways are highlighted for their concentration of cases. 
By contrast, inland rural municipalities  —especially 
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in Cantabria—  show a more scattered distribution, 
except in rural service centers.

Despite the concentration of cases in FUA, with 
70.9% of cases being found in 29.5% of the area 
(Table  1), there is no over-representation. The coef-
ficient of location (CL) is below 1.0, which demon-
strates that the municipalities in FUAs actually have 
fewer cases than would be expected in view of their 
volume of population. The only exception is the Don-
ostia FUA, where the CL above 1.0, making it the 
area with the highest density (1031.8 inhab./km2).

Space-Time Trends and the Role of FUAs in 
Spreading

The overall emerging hot spot analysis shows the 
end of the Omicron wave according to the leading 
non-significant pattern and the presence of cold pat-
terns in some municipalities of the Basque Country, 
between the three Basque FUAs (Fig. 3). The absence 
of hot spots is another important finding that con-
firms the end of the spread in the period analyzed. 
Nevertheless, the partial emerging model from the 
beginning to the peak on 5 January 2022 reveals the 

role of FUAs as drivers for spreading with a broad, 
significant hot spot area from the Bilbao FUA to the 
Vitoria-Gasteiz FUA, another major persistent area in 
the Donostia FUA and new hot spots in the Santander 
FUA (Fig. 4). Here, two speeds are identified, first in 
the Basque Country FUA and then in the Santander 
FUA in Cantabria, with fewer hot spot municipalities, 
some of them with new patterns.

Most FUA municipalities are not significant in the 
overall period (94.1% of FUA area), but in the partial 
increasing period up to 5 January 2022, FUA munici-
palities show significant patterns (hot spots) in 85.0% 
of the FUA area, where 98.9% of FUA cases occur 
(Table 2). Therefore, in the increasing period of the 
wave, FUAs contribute decisively to the spread of the 
virus.

The daily trends in cases are very different inside 
and outside FUA boundaries. Non-FUA municipali-
ties show a slow, erratic trend in cumulative inci-
dence over the whole period, while FUA areas show 
concentrated, high rates of spread of the virus in 
a short period of 1 month (Fig.  5A), with very fast 
increases from mid December 2021, a clear, broad 
peak of 2 weeks from the end of December 2021 to 

Fig. 1  Daily trend in new confirmed COVID-19 cases in the study area from the beginning of the pandemic. Source: Regional 
Health Authorities. Basque Government and Government of Cantabria. Authors’ own work
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mid-January 2022 and then a progressive decrease 
(Fig.  5C). 5 February 2022 marks the turning point 
of the highest incidence of the virus in areas outside 

FUAs as a new stage in the evolution of the pan-
demic. Core FUA municipalities and the remain-
ing peripheral FUA municipalities have very similar 

Fig. 2  Density map of confirmed COVID-19 cases in municipalities (15 November 2021–30 March 2022). Source: Regional Health 
Authorities. Basque Government and Government of Cantabria. Authors’ own work

Table 1  FUA sizes and distribution of confirmed COVID-19 cases

Regional Health Authorities. Basque Government and Government of Cantabria. National Institute of Statistics (Data from register 
of residents, 2021). Authors’ own work

Areas No Mun. Cases Population 2021 Area (sq.km) Pop. Density % Pop. % Cases % Area CL

Bilbao FUA 54 178,225 1,040,873 1,258.8 826.9 37.2 36.2 10.0 0.97
Donostia FUA 13 67,306 342,038 331.5 1,031.8 12.2 13.7 2.6 1.12
Santander FUA 21 53,988 383,696 685.7 559.6 13.7 11.0 5.5 0.80
Vitoria-Gasteiz FUA 19 49,031 279,507 1,422.4 196.5 10.0 10.0 11.3 1.00
Total FUA 107 348,550 2,046,114 3,698.4 553.2 73.1 70.9 29.5 0.97
Outside FUA 251 143,266 752,386 8,858.0 84.9 26.9 29.1 70.5 1.08
Total area 358 491,816 2,798,500 12,556.4 222.9 100.0 100.0 100.0 -
FUA zones
FUAs for main cities 4 164,402 959,821 414.8 2,313.9 34.3 33.4 3.3 0.97
Remaining FUAs 103 184,148 1,086,293 3,283.5 330.8 38.8 37.4 26.2 0.96
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patterns, with a median of about 500 new cases per 
day and a third quartile of about 2000 new cases per 
day (Fig. 5B). Outside FUAs, the interquartile range 
is lower and the highest typical figure is under 3000, 
while in FUA municipalities, it rises to over 4000 in 
core municipalities and almost 5000 in the rest of the 
FUAs.

Finally, according to the exploratory analysis of 
context variables related to COVID-19 incidence, the 
OLS multiple R-square is 1.00, so the dependent vari-
ables considered explain 100% of COVID-19 cases 
in a linear regression (Fig.  6). Chi-square p<0.050 
means that the model is statistically significant and 
the Koenker index of p>0.010 demonstrates that spa-
tial relations are stationary. Therefore, the model is 
spatially uniform in our study area.

According to OLS results for coefficient, prob-
ability, and VIF, we obtain three variables which 

are positively correlated with COVID-19 incidence, 
linked to progressive areas (densely populated, 
young population, and more children per woman) 
and three negatively correlated variables, such as 
the aging rate, which again corroborates the role 
of demographic structure, and accessibility vari-
ables related to mobility (distance to highways and 
railroads).

Estimating a predictive model at municipal 
level lies beyond our research goals, but the OLS 
results are significant in that approach, according 
to the standard deviation residuals. As shown in 
Fig. 6, 249 municipalities (69.6% of the total) show 
standard deviations between −0.5 and +0.5 and the 
Global Moran Index shows a z-score of 1.264 and 
a p value of 0.206, so the spatial pattern of stand-
ard deviation residuals seems considerably random. 
This clearly supports the idea that the OLS model 

Fig. 3  Emerging hot spots of the Omicron wave in the overall period from 15 November 2021 to 30 March 2022. Source: Regional 
Health Authorities. Basque Government and Government of Cantabria. Authors’ own work
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demonstrates the dispersion of residuals has no 
structure, although they are mainly in FUA areas 
and closest municipalities, so the model is cor-
rectly specified. FUA areas show municipalities 

with actual values larger than predicted (in red 
color) and in the outskirts appear some munici-
palities with actual values lower than predicted, as 
shown in the map of Fig. 6.

Fig. 4  Emerging hot spots of the Omicron wave in the partial increasing period from 15 November 2021 to peak on 5 January 2022. 
Source: Regional Health Authorities. Basque Government and Government of Cantabria. Authors’ own work

Table 2  Emerging patterns for the overall and partial periods

% Sig. indicates significant emerging patterns (cold or hot depending on the cases). By contrast, % Non-Sig. indicates “no pattern detected”.
Source: Regional Health Authorities. Basque Government and Government of Cantabria. Authors’ own work

Overall period Municipalities Cases Area
15/11/2021–30/03/2022 Total % Sig. % Non-Sig. Total % Sig. % Non-Sig. Total % Sig. % Non-Sig.
FUA municipalities 107 8.4 91.6 348,550 4.7 95.3 3,698.4 5.9 94.1
Outside FUA 251 40.2 59.8 143,266 49.7 50.3 8,858.0 22.6 77.4
Total 358 - - 491,816 - - 12,556.4 - -
Partial period Municipalities Cases Area
15/11/2021–5/01/2022 Total % Sig. % Non-Sig. Total % Sig. % Non-Sig. Total % Sig. % Non-Sig.
FUA municipalities 107 91.6 8.4 139,382 98.9 1.1 3,698.28 85.0 15.0
Outside FUA 251 38.6 61.4 64,468 48.9 51.1 8,857.96 29.4 70.6
Total 358 - - 203,850 - - 12,556.24 - -
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Discussion

Key Findings

The distribution of COVID-19 cases at munici-
pal level is statistically significant according to the 
Global Moran’s Index, as other research has demon-
strated using smaller areas such as zip codes [22] or 
even points for geocoded cases [36]. Confirmed cases 
are concentrated in urban areas and municipalities 
connected by highways. In fact, OLS analysis high-
lights distances to highways and railroads as nega-
tively correlated with COVID-19 incidence, as found 

by other authors in analyzing commercial prosperity 
and accessibility at municipal level [48].

One interesting result is that COVID-19 cases are 
not over-dimensioned in urban areas, as demonstrated 
by CL under 1.0. So, the role of FUAs in the Omicron 
wave does not correspond to an over-concentration 
of cases. FUAs are important drivers of spread, as 
hot spot patterns demonstrate in the partial emerging 
analysis up to 5 January 2022. Studies of health in 
FUAs are often focused on pollution and green areas 
and their ecosystem services [49]. Therefore, we can-
not contrast properly our results with other research 
about health spatial patterns on FUAs. Nevertheless, 

Fig. 5  Evolution of COVID-19 cases per zone (15 November 2021–30 March 2022). Source: Regional Health Authorities. Basque 
Government and Government of Cantabria. Authors’ own work



322 O. De Cos et al.

1 3
Vol:. (1234567890)

there is evidence about the role of urban scaling in 
health outcomes, not only size, but also proximity and 
mobility among urban areas, as FUAs [50]. Urban and 
metropolitan areas are essential in tackling the pan-
demic, and the spread in dynamic urban areas, such 
as FUAs, as key areas to analyze the spatial behavior 

of the virus at regional and local scale [51, 52]. In 
our results, FUAs have positive trends in the upward 
period of the wave, and the accumulation of positive 
cases is higher and shorter in time than in rural areas, 
where the pattern is mainly not statistically signifi-
cant, and the daily trend in cases is erratic. As other 

Fig. 6  OLS report of context variables at municipal level. Source: Regional Health Authorities. Basque Government and Govern-
ment of Cantabria. Authors’ own work
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authors state, urban areas are protagonist in the virus 
spread, having in consideration the concentration of 
population and cases, and other factors as crowding, 
spatial concurrence [24], mobility, and economic 
and demographic conditions [53]. Furthermore, our 
research confirms that highly transmissible variants 
such as Omicron and community transmission peri-
ods spread the virus to occupy medium-sized areas 
(such as rural service centers and inter-FUA munici-
palities) after the main cities such as Bilbao [24]. 
Cold spots and “no pattern detected” areas found in 
the global emerging model demonstrate that the end 
date of the study period corresponds to the end of the 
Omicron wave, with no hot spot patterns and a domi-
nant model of cold trends.

Finally, data series of COVID-19 cases at munici-
pal level are spatially stationary in relation to demo-
graphic and territorial variables. This contradicts the 
non-stationary behavior detected in other research at 
intra-urban scale with geocoded cases analyzed as 
points (not aggregated) [37]. Thus, municipal entities 
seem to be an adequate intermediate level between 
intra-urban and regional approaches to analyze cor-
relations with context variables. Furthermore, many 
countries publish statistical data at municipal level (or 
similar). This means that the proposed methodology 
is exportable to other countries or study areas and re-
scalable to other aggregation entities. Furthermore, 
this method monitors clustering during the evolution 
of the pandemic and detects in real time the location 
and type of problem areas such as hot spots, which 
is essential for pandemic response [54], especially in 
periods of in which people must live with the virus 
without strict lockdowns. Daily new cases are aggre-
gated by area (municipalities, counties, etc.) and it 
can be included in the ArcGIS Pro project. Thus, new 
3D-bins and emerging hot spots analysis will show 
problem areas in real time. Here, time parameter is 
the relative 2-week period and spatial parameter is 
based on aggregated areas. Additionally, geoprocess-
ing model can be automated using Model Builder in 
ArcGIS Pro if health authorities need to monitor the 
impact of pandemic on population health periodically.

Limitations

The research has some limitations. In regard to the 
variables analyzed, data on the proportion of people 
vaccinated are not available at municipal level, so 

the model does not include vaccine data, although 
some authors state that vaccination does not control 
the spread [26]. Some context variables, such as den-
sity, need to be improved. A clear correlation was 
obtained between COVID-19 incidence and density 
as an explanatory variable, but more advanced anal-
ysis requires “effective local density,” considering 
only residential areas in each municipality instead of 
the total area [55]. COVID-19 severity or mortality 
was not considered, although there is scientific evi-
dence about the disparities in COVID-19 mortality 
due to social determinants of health [56, 57]. Deeper 
research will be necessary in the future.

There are also factors which limit the applicabil-
ity and exportability of the proposed methodology. 
Many countries are reducing data monitoring and 
reporting of the pandemic. Two obstacles are identi-
fied: loss of temporal granularity and presence of data 
for certain collectives only (e.g., vulnerable people). 
This reduces the possibility of conducting continuous 
emerging analyses in future waves. On the other hand, 
the results are not easy to apply to pandemic manage-
ment, due to a multi-tier administrative organization 
(regions, municipalities, and administrative health 
units, among others) [11] which makes coordination 
and governance harder for health authorities, where 
the municipal level is essential to adapt and converge 
HiAP and Health Cities approaches [8]. Furthermore, 
other interesting areas in Health Geography stud-
ies are Basic Health Areas (BHA). In urban areas, 
BHA are more disaggregated than municipalities; 
meanwhile in rural areas, BHA could be more aggre-
gated in comparison to the municipal level. The ben-
efit of BHA is that are the management health areas 
in Spanish regions and data of comorbidities can be 
obtained at that level. According to this, some authors 
state that is more adequate BHA than administrative 
boundaries, as counties or municipalities [58, 59]. In 
any case, the proposed methodology can be exported 
and applied to BHA at regional level.

Conclusion

After 2 years, the COVID-19 pandemic continues to 
challenge health policies both globally and locally. 
Research focused on recent variants, such as Omi-
cron, which is more transmissible than previous vari-
ants, reveals keys to spatial patterns for the design of 
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effective policies. Urban areas (cities and outskirts) 
concentrate hot spots in the upward period of the 
Omicron wave. Subsequently, spatial spread affects 
medium-sized areas, rural service centers, and other 
municipalities. Therefore, fast action in the drivers 
of spread (functional urban areas) can help to pre-
vent subsequent spread. Daily tracking of pandemic 
trends at municipal level using 3D-bins and emerging 
hot spot analysis is essential to identify municipalities 
with hot spot patterns and design fast control meas-
ures such as restrictions on mobility and gatherings, 
among others, or even large-scale prevention cam-
paigns to detect asymptomatic cases or improve vac-
cination levels.

A multiscale approach is needed in the spatial anal-
ysis of the virus, and in that context, the use of GIS 
methods is essential. The methodology proposed here 
is adaptable and replicable in other case studies and 
using other boundaries, as interesting Basic Health 
Areas. Based on global principles of geo-prevention 
(health and safety areas) and the WHO HiAP philoso-
phy, municipal diagnosis seems a suitable way of tak-
ing local decisions adapted to recognized boundaries. 
Taking municipalities as a level for decision-making 
in pandemic management helps with vertical and hor-
izontal coordination, as was cited above state. Urban 
health governance requires strategic spatial reports 
such as those drawn up here, applying GIS location 
intelligence methods.
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