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Abstract COVID-19-related health outcomes 
displayed distinct geographical patterns within 
countries. The transmission of SARS-CoV-2 
requires close spatial proximity of people, which 
can be influenced by the built environment. Only 
few studies have analysed SARS-CoV-2 infec-
tions related to the built environment within 
urban areas at a high spatial resolution. This study 
examined the association between built environ-
ment factors and SARS-CoV-2 infections in a 
metropolitan area in Germany. Polymerase chain 
reaction (PCR)-confirmed SARS-CoV-2 infec-
tions of 7866 citizens of Essen between March 
2020 and May 2021 were analysed, aggregated 
at the neighbourhood level. We performed spa-
tial regression analyses to investigate associa-
tions between the cumulative number of SARS-
CoV-2 infections per 1000 inhabitants (cum. 
SARS-CoV-2 infections) up to 31.05.2021 and 

built environment factors. The cum. SARS-CoV-2 
infections in neighbourhoods (median: 11.5, IQR: 
8.1–16.9) followed a marked socially determined 
north–south gradient. The effect estimates of the 
adjusted spatial regression models showed nega-
tive associations with urban greenness, i.e. nor-
malized difference vegetation index (NDVI) 
(adjusted β =  − 35.36, 95% CI: − 57.68; − 13.04), 
rooms per person (− 10.40, − 13.79; − 7.01), liv-
ing space per person (− 0.51, − 0.66; − 0.36), and 
residential (− 0.07, 0.16; 0.01) and commercial 
areas (− 0.15, − 0.25; − 0.05). Residential areas 
with multi-storey buildings (− 0.03, − 0.12; 0.06) 
and green space (0.03, − 0.05; 0.11) did not show 
a substantial association. Our results suggest that 
the built environment matters for the spread of 
SARS-CoV-2 infections, such as more spacious 
apartments or higher levels of urban greenness 
are associated with lower infection rates at the 
neighbourhood level. The unequal intra-urban dis-
tribution of these factors emphasizes prevailing 
environmental health inequalities regarding the 
COVID-19 pandemic.
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Introduction

The COVID-19 (coronavirus disease 2019) pandemic 
has severely affected peoples’ lives globally. COVID-
19-related health outcomes, including infections with 
the pathogen SARS-CoV-2 (severe acute respiratory 
syndrome coronavirus 2), were not distributed equally 
between [1, 2] or within countries [3, 4], reveal-
ing distinct geographical patterns at different spatial 
scales. Metropolitan and urban areas were particu-
larly affected [5, 6] due to some defining characteris-
tics, e.g. high population density and high scales and 
mobility of human activities [7], specifically during 
the onset of the COVID-19 pandemic. Virus transmis-
sion like SARS-CoV-2 is crucially impacted by close 
spatial proximity of people [8], a distinct feature of 
metropolitan and urban areas, which in turn could be 
influenced by the built environment.

The built environment is defined here as human-
made spaces, which provide settings for different human 
activities [9], e.g. residential and commercial areas, green 
space, and housing conditions. Built environment factors 
play an essential role in the conceptual link between envi-
ronment and health [10]. Depending on certain charac-
teristics, e.g. availability, access or quality, and the local 
context, human-made spaces can harm or promote health 
via direct and indirect pathways [11], making those 
important determinants of health and well-being. The 
built environment can also affect infectious disease trans-
missions and is therefore a crucial component to consider 
in the management of the COVID-19 pandemic [12].

Analysing the geographical patterns of COVID-
19-related outcomes, the majority of studies focused on 
compositional factors, i.e. individual-related variables 
such as age, gender, immigration status, and income, 
at national [13, 14], sub-national [15, 16], or city level 
[17, 18]. Only few studies investigated the role of the 
built environment adopting a small-scale perspective, 
i.e. examining intra-city differences [19, 20], but none 
of them in Germany. Such high-resolution analyses 
are crucial as they can reveal information that would 
remain hidden at higher aggregated levels and help to 
tailor interventions to the local context [21].

The objectives of this study were therefore two-
fold: first, analyse the intra-urban spatial distribu-
tion of SARS-CoV-2 infections at a small scale in a 
metropolitan area in Germany, and second, examine 
associations between built environment factors and 
the spatial variation of SARS-CoV-2 infections.

Methods

Investigating the spatial pattern and associations between 
SARS-CoV-2 infections and built environment factors, 
the retrospective analysis was carried out at the popula-
tion level in the city of Essen, Germany. The reporting 
of this study follows the STROBE (Strengthening the 
Reporting of Observational Studies in Epidemiology) 
statement [22]. The ethics commission of the medical 
faculty of the University of Duisburg-Essen approved 
this study (registration number: 21–10242-BO).

Study Area and Spatial Resolution

The city of Essen, the tenth most densely populated 
city in Germany [23], is located in the centre of the 
Ruhr Metropolis, an urban agglomeration of more 
than 5 million inhabitants in the western part of Ger-
many. The city displays distinct social and ethnic seg-
regation, with a socio-economic north–south gradi-
ent [24]. Administratively, Essen comprises nine city 
districts, which are divided into 50 boroughs. Since 
the first officially reported COVID-19 case in Essen 
on 29.02.2020, the city experienced several waves of 
infection triggered by different virus variants accu-
mulating to more than 200,000 confirmed cases and 
around 850 deaths (as of December 2022, [25]).

Data in this study was analysed at the highest 
spatial resolution available, the neighbourhood level 
(n = 426). Developed by a joint working group con-
sisting of city departments and academic institutes, 
the following criteria were applied to demarcate 
neighbourhoods [26]: delimitation by joining build-
ing blocks; consideration of topographical bounda-
ries, barriers, building and social structure; develop-
ment of population; no overlap of district borders; 
and a minimum of 1000 inhabitants.

Dataset: Overview of Outcome and Explanatory 
Variables

Between 01.03.2020 and 31.05.2021, the Essen Uni-
versity Hospital (UME) received nasopharyngeal 
swab samples for polymerase chain reaction (PCR) 
tests systematically by the local health agency of 
Essen, covering the first three waves of infections. 
For the analysis, we used a dataset containing infor-
mation on 142,418 PCR tests performed during this 
period. Of those tests, 67,129 tests (47.1%) were 
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carried out on residents of Essen. After removing 
double positive PCR tests from the same person 
within the last 60  days, 7866 individual cases of 
PCR-confirmed SARS-CoV-2 infections remained. 
This indicates that around 31% of all positive PCR 
tests in Essen during the study period (n = 25,667) 
were carried out at UME.

Testing the validity of the UME dataset, we com-
pared the calculated 7-day incidence to the officially 
reported incidence for the city of Essen by the federal 
Robert Koch Institute [27], showing a high similar-
ity (Pearson correlation, R2 = 0.91, see also Fig. A in 
supplementary material). Regarding the age and sex 
distribution, the study population in the UME data-
set exhibited a slightly higher percentage of young 
(below age 14) and elderly (above age 60) individu-
als, as well as a lower percentage of males and higher 
percentage of females.

Due to data protection, the number of individ-
ual PCR tests was aggregated into neighbourhoods 
(n = 426) for analysis. As the residential address 
was available for each case (n = 7,866), all indi-
vidual PCR tests could be assigned to their respec-
tive neighbourhoods. The outcome is the cumula-
tive number of people infected with SARS-CoV-2 
(PCR-confirmed) per 1000 inhabitants (inh.) in 
neighbourhoods up to 31.05.2021. This number 

was calculated by dividing the number of people 
infected with SARS-CoV-2 (PCR-confirmed) by the 
number of all residents in a neighbourhood, the lat-
ter being provided by the City of Essen, based on 
the residents’ registration office.

For the statistical analysis, several demographic 
(i.e. population density, number of people in dif-
ferent age groups), socio-economic (i.e. number of 
people without German nationality, welfare recipi-
ents or unemployed persons), and built environment 
variables were available at the neighbourhood level 
(for a complete list of all available variables, see 
Table A in supplementary material). The Office for 
Statistics, Urban Research and Elections of the city 
of Essen prepared this data in collaboration with 
other institutions specifically for the neighbour-
hood level, making it more recent than census data. 
As previous studies investigated the role of demo-
graphic and socio-economic factors in Germany 
[28, 29], we focus here on the built environment. 
Table  1 depicts the built environment factors used 
individually as expositions in the analysis.

Residential and commercial areas, as well as green 
space, were calculated as the proportion of the respec-
tive land use type to the whole area in a neighbour-
hood. The NDVI was calculated for each neighbour-
hood based on data from the OLI sensor (Operational 

Table 1  Built environment factors at the neighbourhood level with their year, description, and data source

Built environment factors Year Description Data source

Residential area (%) 2019 Proportion of the area of all residential 
buildings

Ruhr Regional Association

Residential area with multi-storey build-
ings (%)

2019 Proportion of the area of all residential 
buildings higher than three floors

Ruhr Regional Association

Commercial area (%) 2019 Proportion of the area of all commercial 
buildings

Ruhr Regional Association

Green space (%) 2019 Proportion of the area of public and 
private green spaces, including parks, 
open spaces near houses, meadows, 
pastures and forests

Ruhr Regional Association

Normalized difference vegetation index 
(NDVI)

2020 (May) Proportion of the near-infrared and vis-
ible parts of the sun radiation reflected 
by vegetation

USGS Earth Explorer, Landsat 8

Rooms per person 2020 Ratio of the number of rooms and the 
number of persons in an area

Office for Statistics, Urban 
Research and Elections, City 
of Essen

Living space  (m2) per person 2020 Ratio of the living space in square meters 
and the number of persons in an area

Office for Statistics, Urban 
Research and Elections, City 
of Essen
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Land Imager) of the Landsat 8 satellite (May 2020, 
no visible cloud cover) obtained from United States 
Geological Survey website at a 30  m2 resolution, 
using ArcGIS Pro (version 2.9.0). It is a commonly 
used indicator, ranging between − 1 and + 1 [30], to 
measure the mass of green leaf vegetation of an area, 
i.e. indicating its greenness [31], as healthy dense 
vegetation absorbs more visible radiation and reflects 
larger portions of near-infrared radiation as opposed 
to sparse vegetation. Rooms and living space per per-
son were derived by dividing the number of rooms 
and the living space of all residential buildings by the 
number of inhabitants in each neighbourhood.

Data Analysis: Map Production, Descriptive and 
Inferential Statistics

All statistical analyses were implemented using R 
(version 4.2.1). For the descriptive analysis, the 
median and interquartile ranges (IQR) were used 
because most variables exhibited right skewed dis-
tributions (see Fig.  B in supplementary material). 
Investigating spatial patterns, the outcome and 
explanatory variables were mapped in ArcGIS Pro 
(version 2.9.0). As expected due to the spatial nature 
of the data, the thematic maps suggested spatial auto-
correlation for several variables, which were con-
firmed by calculating global Moran’s I (see Table B 
in supplementary material). In preparation for that, 
we computed a spatial weighting matrix using the 
longitude and latitude of the centroids of each neigh-
bourhood. Due to the high heterogeneity in the size 
of the neighbourhoods, the first-order queen con-
tiguity matrix was used, which defines areas as 
neighbours if they share a border with the respective 
neighbourhood [32]. We used basic binary coding to 
assign spatial weights.

To assess the influence of the built environment 
factors on the cumulative number of SARS-CoV-2 
infections at a small scale, we implemented simple 
and multiple linear and spatial regression analyses 
(for a detailed description of the methods applied 
in the context of COVID-19, see, e.g. [1, 2]). In 
order to select variables for the multivariate analy-
sis, minimal sufficient adjustment sets for estimating 
direct effects of the expositions on the outcome were 
derived based on the available data using directed 
acyclic graphs (DAGs) [33] (see Fig.  C in supple-
mentary material).

Ordinary least squares (OLS) regression was used to 
compute the effect of each variable individually. OLS 
regression models rely on the assumptions of homoge-
neity and spatial non-variability of the residual errors 
[34]. When spatial autocorrelation is present, the effect 
estimators of the OLS regression may be biased and 
inconsistent [35]. We tested the residuals of each OLS 
regression model for spatial autocorrelation by com-
puting global Moran’s I. In addition, we applied geo-
graphically weighted regression (GWR) to explore 
how the associations between the variables may vary 
over space [36]. GWR implements a regression model 
for each neighbourhood, taking into account a specific 
number of the surrounding neighbours [37]. The GWR 
models were specified by using an adaptive kernel with 
varying bandwidth (Gaussian kernel function), whereby 
the optimal bandwidth, i.e. the proportion between 0 
and 1 of observations to include in the k-nearest neigh-
bours weighting scheme, was determined by drop-1 
cross-validation.

To account for spatial interactions, we used spatial 
autoregressive models, namely, mixed spatial lag mod-
els (SLM). The SLMs incorporate spatial dependency 
between the parameters by adding spatially lagged 
dependent and explanatory variables based on a previ-
ously defined spatial weights matrix [38]. Each expo-
sition was adjusted individually for confounding based 
on the minimal sufficient adjustment sets derived from 
the DAGs to estimate their direct effects (see Fig. C in 
supplementary material). We checked for multi-colline-
arity in the models by using the variance inflation factor 
(VIF) [39], removing variables with VIF values greater 
than five (see Table E in supplementary material). For 
each effect estimator, corresponding 95% confidence 
intervals (CI) and Nagelkerke pseudo-R2, a goodness-
of-fit measure indicating how well the model explains 
the data, are provided.

Results

Spatial Pattern of PCR-Confirmed SARS-CoV-2 
Infections and Built Environment Characteristics of 
Neighbourhoods

At the end of the study period (31.05.2021), neigh-
bourhoods displayed, on average (median), 11.5 
SARS-CoV-2 infections/1000 inh (IQR: 8.1–16.9, 
min: 2.1, max: 57.0). The cumulative numbers of 
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SARS-CoV-2 infections were not distributed equally 
across the city of Essen (see Fig. 1, global Moran’s 
I = 0.17, p < 0.001), exhibiting a north–south gradi-
ent whereby northern neighbourhoods (relative to 
the highway A40) tend to display higher relative 
case counts.

Descriptive statistics of the built environment fac-
tors across all neighbourhoods and for three groups 
based on the distribution of the cumulative number 
of SARS-CoV-2 infections revealed further potential 
associations (see Table 2).

Differences regarding built environment factors in 
neighbourhoods occur mainly between the group with 
the lowest cumulative cases (< 9/1000 inh.) compared 
to the other two groups. Neighbourhoods in the lowest 
group tend to have lower proportions of residential and 
commercial areas, residential areas with multi-storey 
buildings, and a higher proportion of green space, as 

well as a higher NDVI and number of rooms and living 
space per person.

Spatial Regression Analyses of Built Environment 
Factors

As the input variables and residuals in all OLS 
regression models (except for rooms and living 
space per person) showed spatial autocorrelation 
(see Tables  B and C in supplementary material), 
mixed spatial lag models were employed to estimate 
the association between each built environment fac-
tor and the cumulative SARS-CoV-2 infections/1000 
inh. at neighbourhood level. The results of the geo-
graphically weighted regression models (see Table D 
in supplementary material) confirmed this approach, 
as commercial and residential areas, residential area 
with multi-storey buildings, green space, and NDVI 

Fig. 1  Cumulative SARS-Cov-2 cases (PCR-confirmed) per 1000 inhabitants in Essen at neighbourhood level up to 31.05.2021 
(data sources: UME data and city of Essen)
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presented spatially varying effects; only rooms and 
living space per person demonstrated a constant nega-
tive effect across space.

The minimal sufficient adjustment differed slightly 
for the expositions (see Fig.  C in supplementary 
material). In each spatial regression model, explana-
tory variables were removed due to multi-collinear-
ity based on the VIF (see Table E in supplementary 
material). Table  3 displays the results of the spatial 
regression analyses.

Residential and commercial areas, NDVI, rooms, 
and living space per person were negatively asso-
ciated with the cumulative SARS-CoV-2 infec-
tions/1000 inh. at the neighbourhood level, whereas 
residential area with multi-storey buildings and green 
space did not show any substantial association. After 
adjustment, a 10%-point increase in residential or 
commercial areas was linked to 0.7 and 1.5 fewer 
cases/1000 inh., respectively. A 0.1 increase in NDVI 
was associated with a decrease of 3.5 cases/1000 inh., 
and having an additional room or adding one square 
meter per person at an aggregated level reduces the 
cumulative cases by 10.4/1000 inh. and 0.5/1000 inh., 
respectively.

The Role of Demographic and Socio-Economic 
Determinants

Although the focus of this study is on the built envi-
ronment, the role of demographic and socio-economic 
determinants should not go unmentioned. Several 
neighbourhood demographic and socio-economic vari-
ables were associated with the cumulative number of 
SARS-CoV-2 infections (see Tables  F, G, and H in 

supplementary material). For instance, the number of 
children, as well as the number of persons without Ger-
man nationality, welfare recipients and unemployed 
persons all demonstrated positive associations with 
SARS-CoV-2 infections at the neighbourhood scale.

Discussion

This study demonstrated the associations between 
built environment factors, i.e. residential and com-
mercial areas, NDVI and housing space, and the 
cumulative number of SARS-CoV-2 infections at the 
neighbourhood level in a metropolitan area in Ger-
many. It thereby complements existing studies on the 
determinants of COVID-19 cases in Germany [28, 
29] that did not examine the role of the built environ-
ment and offers in addition a more in-depth perspec-
tive by using a high spatial resolution.

The observed north–south gradient of SARS-CoV-2 
infections in the city of Essen follows the typical 
socio-spatial structure of cities in the Ruhr Metropolis. 
Socially disadvantaged neighbourhoods in the north of 
Essen historically evolved as a result of industrializa-
tion and deindustrialization, as they were traditionally 
built for coal mining and industrial workers [40]. After 
the end of coal mining, segregation was further rein-
forced in these neighbourhoods through, for instance, 
social housing policies so that the characteristic pattern 
still widely persists [41]. Although cities in the Ruhr 
Metropolis, including the city of Essen, share a similar 
socio-economic structure, transferring and generalizing 
findings from this study to other national and interna-
tional cities require further validation.

Table 2  Built environment characteristics across all neighbourhoods (median and IQR) and stratified into three groups based on the 
cumulative number of SARS-CoV-2 infections up to 31.05.2021 in Essen

Cumulative SARS-CoV-2 infections/1000 inh

All (n = 426)  < 9 (n = 138)  ≥ 9– < 14.5 (n = 143)  ≥ 14.5 (n = 145)

Built environment factors Median [Q1–Q3]
Residential area (%) 34.4 [20.9–46.4] 32.4 [18.2–45.1] 37.7 [23.7–49.4] 33.4 [22.1–45.9]
Residential area with multi-storey buildings (%) 11.7 [5.2–23.0] 9.3 [2.8–15.5] 13.6 [5.9–24.6] 13.0 [6.6–26.9]
Commercial area (%) 4.3 [1.2–12.0] 2.9 [1.0–9.2] 4.7 [1.2–11.9] 6.0 [1.6–14.1]
Green space (%) 19.7 [12.8–28.2] 22.2 [15.3–32.8] 19.4 [10.6–28.7] 18.6 [11.0–24.6]
Normalized difference vegetation index (NDVI) 0.29 [0.24–0.34] 0.31 [0.26–0.37] 0.28 [0.24–0.33] 0.27 [0.23–0.31]
Rooms per person 2.1 [1.8–2.3] 2.3 [2.0–2.4] 2.1 [1.9–2.3] 1.9 [1.6–2.1]
Living space  (m2) per person 41.4 [36.6–47.6] 47.3 [41.7–52.5] 42.0 [38.1–47.4] 36.9 [32.4–40.9]
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Built-up areas can influence human activity to varying 
degrees [42], but the influence may vary depending on the 
specific land use type. Commercial and residential areas 
showed negative associations with cumulative SARS-
CoV-2 infections, which is in contrast to other studies 
that linked superstores [15], as well as restaurants and 
public markets [43] to a higher COVID-19 prevalence. 
Neither land use type could be further specified in our 
study, implying that effects from different commercial, 
e.g. supermarkets or office spaces [20, 44], or residential 
types, single-family houses or high-rise buildings [19], 
could be masked. Moreover, the negative associations 
may indicate the influence of spatial mobility, whereas an 
infection remains possible in such settings, and the result-
ing PCR-test would be allocated to the home address, 
which may be located in a different neighbourhood.

Associations Between Urban Green Space and 
Greenness and SARS-CoV-2 Infections

Internationally, multiple studies from different coun-
tries examined the influence of neighbourhood 

greenness (i.e. NDVI) or green space on COVID-
19 cases and mortality. Urban green spaces provide 
opportunities for outdoor physical activity [45] and 
social interaction [46], which are in turn associated 
with a range of positive health and well-being out-
comes [47, 48]. Emerging evidence from countries 
in the Global North has indicated that people spent 
more time in green spaces during the COVID-19 pan-
demic [49, 50]. Urban green spaces as “safe spaces 
for socializing, physical activity and recreation” [51] 
may have played an important role in maintaining or 
improving physical and mental health during the pan-
demic because they enabled compliance with physi-
cal distancing rules while engaging in such activities 
[52], lowering the infection transmission risk.

Our analysis revealed a negative association 
between NDVI and SARS-CoV-2 infections after 
adjusting for potential confounding, indicating that 
greener neighbourhoods tended to have fewer cumu-
lative cases. Findings in previous studies are in line 
with these results. Regardless of how urban green 
space was measured, several studies found an inverse 

Table 3  Associations of built environment factors and cumulative SARS-CoV-2 infections in neighbourhoods in Essen (n = 426) estimated 
via crude and adjusted mixed spatial lag regression models (SLM) with 95% confidence intervals (CI) and Nagelkerke pseudo-R2

SLMs adjusted for: 1commercial area, green space, NDVI, population density, residential area with multi-storey buildings, and wel-
fare recipients (as a proxy for the contextual socio-economic status (cont. SES)); 2commercial area, green space, NDVI, residen-
tial area, and welfare recipients (cont. SES); 3green space, NDVI, population density, residential area, residential area with multi-
storey buildings, and welfare recipients (cont. SES); 4commercial area, NDVI, population density, residential area, residential area 
with multi-storey buildings, and welfare recipients (cont. SES); 5commercial area, green space, residential area, residential area with 
multi-storey buildings, and welfare recipients (cont. SES); 6population density and welfare recipients (cont. SES)

β 95% CI Pseudo-R2

Crude
  Residential area (%)  − 0.03 [− 0.08, 0.03] 0.06
  Residential area with multi-storey buildings (%) 0.04 [− 0.03, 0.12] 0.07
  Commercial area (%)  − 0.02 [− 0.10, 0.06] 0.06
  Green space (%)  − 0.03 [− 0.10, 0.04] 0.07
  Normalized difference vegetation index (NDVI)  − 11.51 [− 25.76, 2.73] 0.08
  Rooms per person  − 11.52 [− 14.15, − 8.89] 0.26
  Living space  (m2) per person  − 0.53 [− 0.64, − 0.41] 0.27

Adjusted models
  Residential area (%)1  − 0.07 [− 0.16, 0.01] 0.24
  Residential area with multi-storey buildings (%)2  − 0.03 [− 0.12, 0.06] 0.24
  Commercial area (%)3  − 0.15 [− 0.25, − 0.05] 0.24
  Green space (%)4 0.03 [− 0.05, 0.11] 0.23
   NDVI5  − 35.36 [− 57.68, − 13.04] 0.23
  Rooms per  person6  − 10.40 [− 13.79, − 7.01] 0.27
  Living space  (m2) per  person6  − 0.51 [− 0.66, − 0.36] 0.28
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association between COVID-19 cases and urban veg-
etation [51, 52], (natural) greenness (USA, South 
Korea) [53] or green streets (USA) [54].

Although neighbourhood greenness was associated 
with SARS-CoV-2 infections in our study, the propor-
tion of green space showed little to no association. 
Spotswood and colleagues made a similar observation 
[51]. Disentangling the variable “green space” into its 
individual components revealed a positive association 
between parks and SARS-CoV-2 infections, whereas 
open spaces near houses and forests were negatively 
associated, with meadows and pastures displaying 
no clear association (see Table  I in supplementary 
material). This indicates the importance of consider-
ing not just larger scale green spaces, such as parks, 
but also smaller area interventions to create a greener 
neighbourhood, e.g. planting tree rows along streets 
or open spaces. Such small-scale greening efforts in 
neighbourhoods may prove as an effective addition to 
constructing large green spaces in densely built urban 
areas, where free space is usually scarce.

Using the NDVI to assess neighbourhood green-
ness has certain limitations. A higher NDVI indicates 
healthy dense vegetation but provides otherwise no 
insights about its quality regarding availability, acces-
sibility, affordability, or appropriateness. In addition, 
it is also not feasible to identify the type of vegetation, 
e.g. lawn, shrubs, and trees, at the neighbourhood 
level. Future studies could focus on disentangling the 
underlying mechanisms of how urban neighbourhood 
greenness affects infectious disease outcomes, as our 
results indicate that it is not necessarily through the 
provision of larger urban green spaces, such as parks. 
Regarding the relatively wide confidence intervals for 
NDVI, it should be noted that small-scale analyses 
may result in small sample sizes, which in turn cause 
higher variance and thus wider confidence intervals. 
The resulting lower precision and greater uncertainty 
in the results therefore call for studies with larger 
sample sizes, which may underline our findings.

Associations Between Crowded Housing Conditions 
and SARS-CoV-2 Infections

Crowded housing conditions are associated with a 
range of adverse health and well-being outcomes, 
including an increased risk of acquiring respiratory 
diseases [55]. Whether housing conditions are con-
sidered “crowded” depends on different factors [56], 

but it is often measured by relating available rooms 
or floor area to the number of occupants [55]. Living 
in crowded housing conditions during the COVID-
19 pandemic made it more difficult (if not impos-
sible) to maintain physical distancing or practice 
self-isolation in case of an infection, and exposed 
people living in such conditions more frequently to 
the virus [57, 58].

Both proxies for housing conditions analysed in 
this study, i.e. ratio of rooms and living space per 
person, were negatively associated (after adjusting 
for potential confounding) with SARS-CoV-2 infec-
tions, suggesting that neighbourhoods with more 
housing space tended to have fewer cumulative cases. 
Studies in Brazil [59], France [4], and the USA [60] 
also found positive associations between crowded 
housing conditions and COVID-19 cases. In addi-
tion, overcrowding was linked to a higher COVID-19 
mortality [61]. These findings underline the neces-
sity to improve crowded housing conditions, particu-
larly in the context of infectious diseases. Reducing 
the adverse impacts of crowded housing conditions, 
potential interventions include extending or refur-
bishing existing houses, subsidizing social or public 
housing and building affordable rental housing [55]. 
As these interventions are rather long term, short-
term solutions for the COVID-19 pandemic could 
entail, for instance, setting up an emergency housing 
system for people living in crowded housing condi-
tions [62]. Moreover, this provides another example 
of how socio-economic inequalities amplify negative 
health effects through the built environment.

One drawback of our ecological analysis of 
crowded housing conditions is that due to a lack of 
data, we could not control for other potential risk fac-
tors of infection, which may be associated with living 
in such conditions, like reliance on public transport 
or occupation in low-paid or high-risk jobs. Along 
the same lines, our data did not allow to account for 
spatial mobility. As the home address of individuals 
was aggregated into neighbourhoods, it is unclear 
where the virus transmission and infection took place. 
Neighbourhoods with a high number of cumulative 
cases, therefore, do not necessarily equal areas with 
a high infection dynamic. In addition, dividing the 
number of rooms or the square meters by the number 
of inhabitants per neighbourhood does not provide 
any information about small-scale differences within 
neighbourhoods or the actual housing situation.
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Demographic and Socio-Economic Determinants of 
COVID-19 Cases in Germany

The role of demographic and socio-economic deter-
minants of COVID-19 cases was investigated at dif-
ferent spatial scales in Germany. At the county level, 
Ehlert (2021) found positive associations between 
COVID-19 cases and average age and population 
density, negative associations with younger children 
in day care, while unemployment was not significant 
[28]. Our results contrast these findings, which under-
lines the necessity for small-scale analyses as such 
information can be masked at lower spatial resolu-
tions, e.g. the county level. Particularly in the context 
of a pandemic, data availability and preparation are 
needed at a high spatial scale to ensure adequate man-
agement of such a health emergency.

Straßburger and Mewes (2022) examined the rela-
tionship between district socio-economic status score 
and SARS-CoV-2 infections at the city-district level 
in Duisburg, a city only a few kilometres west of 
Essen. Their results suggest that socially disadvan-
taged districts were particularly affected in the sec-
ond wave of infection [29]. This is in line with our 
results, as two of the score components, i.e. welfare 
recipients and the number of people without German 
nationality, were positively associated with the cumu-
lative number of SARS-CoV-2 infections/1000 inh. 
As none of the studies above examined the role of the 
built environment, our study contributes an important 
perspective by filling this research gap.

Conclusion

Our results suggest that built environment factors, 
particularly housing space and neighbourhood green-
ness but also residential and commercial areas, matter 
for the spread of SARS-CoV-2 infections in a metro-
politan area in Germany, underlining the relevance 
and importance to consider the built environment in 
future analyses. More spacious apartments or higher 
levels of urban greenness are associated with lower 
infection rates at the neighbourhood level.

The unequal intra-urban distribution of these fac-
tors emphasizes prevailing environmental health 
inequalities regarding the COVID-19 pandemic in a 
metropolitan area in Germany. Understanding such 
small-scale spatial patterns of disease could help local 

decision-makers to timely employ effective and tar-
geted measures to the most affected neighbourhoods.
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