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and Rural Epidemiology Study by their residential 
address and used age- and sex-dependent walking speeds 
to estimate individual exposure zones to local greens-
pace and socioeconomic characteristics, which were then 
entered into a principal component analysis to derive a 
novel diabetes risk index (DRI-GLUCoSE). We mapped 
index scores in both study areas and validated the index 
using fully adjusted logistic regression models to predict 
individual diabetes status. Model performance was then 
compared to other non-clinical diabetes risk indices from 
the literature. Diabetes prevalence among participants 
was 9.9%. The DRI-GLUCoSE index was a significant 
predictor of diabetes status, exhibiting a small non-
significant attenuation with the inclusion of dietary and 
physical activity variables. The final models achieved a 
predictive accuracy of 75%, the highest among environ-
mental risk models to date. Our combined index of local 
greenspace and socioeconomic factors demonstrates that 
the environmental component of diabetes risk is not suf-
ficiently explained by diet and physical activity, and that 
increasing urban greenspace may be a suitable means of 
reducing the burden of diabetes at the community scale.

Keywords Diabetes · Greenspace · Socioeconomic 
status · GIS · Indices

Background

Type 2 diabetes is a multifactorial disease with 
foundations in genetic and behavioural risk factors. 

Abstract Greenspace and socioeconomic status are 
known correlates of diabetes prevalence, but their com-
bined effects at the sub-neighborhood scale are not yet 
known. This study derives, maps, and validates a com-
bined socioeconomic/greenspace index of individual-
level diabetes risk at the sub-neighborhood scale, without 
the need for clinical measurements. In two Canadian cit-
ies (Vancouver and Hamilton), we computed 4 greens-
pace variables from satellite imagery and extracted 11 
socioeconomic variables from the Canadian census. We 
mapped 5125 participants from the Prospective Urban 
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However, with the continuing increases in the prev-
alence of diabetes among countries of all economic 
strata, these factors do not comprehensively explain 
risk for diabetes and suggests societal and environ-
mental factors are also involved, including the socio-
economic composition and geographical context of a 
neighborhood. This is reflected in the WHO’s 2016 
statement underscoring the importance of socioeco-
nomic conditions and healthy neighborhood environ-
ments as a focus area for prevention policy [1].

Previous studies have identified a higher preva-
lence of diabetes in subpopulations with low socio-
economic status (SES), most commonly measured 
using composite indices that capture diverse aspects 
of socioeconomic (dis)advantage [2, 3]. When meas-
ured at the individual- or household-level, socioeco-
nomic risk factors for diabetes include income [4], 
educational attainment [5, 6], and occupational status 
[5]. Individual SES is not distributed randomly, and 
low and high SES individuals cluster together, which 
can be measured using area-based SES measures, for 
example, using census tracts. At the neighborhood 
scale, these measures represent the socioeconomic 
composition of an area and have been used to iden-
tify policy interventions targeting the socioeconomic 
component of disease risk. In public health planning 
and prevention programmes, area-based SES indi-
ces (e.g., the Vancouver Area Neighborhood Depri-
vation Index) have demonstrated immense value as 
correlates for a wide range of diseases, syndromes, 
and health conditions [7]. Even when controlling for 
individual- or household-level SES, area-based met-
rics often remain significant predictors, suggesting a 
social-environmental/neighborhood-scale composi-
tional component to the effects of SES on health [5, 
8, 9].

In addition to the socioeconomic composition of 
a neighborhood, the geographical/structural context 
is known to exhibit effects on health. Many recent 
studies have focussed on neighborhood-scale con-
textual characteristics relevant to diabetes risk, pre-
dominantly greenspace and walkability; both are 
known to be associated with a lower diabetes inci-
dence/prevalence, as they provide enhanced oppor-
tunities for physical activity [10–15]. In addition, 
greenspace may capture other pathways impor-
tant to diabetes risk, such as reducing air pollution 
exposures [16], decreasing stress [16], or increasing 
neighborhood social capital [17]. As such, policy and 

community-based initiatives to improve or enhance 
urban greenspace are often presented as measures for 
improving population health [1].

In many locations, the level of neighborhood 
greenspace is associated or correlated with SES 
and studies have attempted to disentangle the two 
and examine their effects in isolation using statisti-
cal adjustment [18]. However, we hypothesise that 
the health-related benefits of urban greenspace may, 
to a limited degree, mitigate the risk associated with 
socioeconomic deprivation. As such, area-level pre-
dictive models and risk indices should take not only 
the socioeconomic composition of a neighborhood 
into account, but also include contextual factors such 
as greenspace. The effects of neighborhood SES and 
greenspace are unlikely to be independent but rarely 
has the combined influence of these exposures been 
examined. This study therefore aims to examine the 
combined effects of local SES and walkable greens-
pace on diabetes risk to develop a novel, high-reso-
lution geographical exposure model. We derived and 
validated a high-resolution, area-based Diabetes Risk 
Index of Green Land Use and Community Socioeco-
nomic Environments (DRI-GLUCoSE) in two Cana-
dian cities and their rural peripheries and mapped the 
results as follows.

Methods

Participant Data

The current cross-sectional study focusses on 5125 
participants recruited between 2006 and 2009 in 
Hamilton and Vancouver, Canada, for whom we had 
robust address and community-level characteristics. 
These sites are part of the PURE study, which is an 
ongoing global cohort study investigating risk fac-
tor for chronic disease in 27 countries [19]. All par-
ticipants provided informed consent and the study 
was approved by the local institution research ethics 
boards.

Individual variables collected using surveys 
included residential address, age, sex, household 
income range, tobacco and alcohol consumption, 
history of diagnosed diabetes, and history of diabe-
tes medication use. Additionally, each participant’s 
diet was determined using the alternative healthy 
eating index (AHEI), a nine-component index on 
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dietary choices and nutrient intake designed to assess 
dietary-based chronic disease risk [20], and daily 
physical activity metabolic equivalent of task (MET) 
scores were calculated from robust questionnaire 
instruments as described by Lear et al. [21]. Trained 
project staff conducted in-person measurements to 
derive body mass index (BMI, measured as a continu-
ous variable) and waist-to-hip ratio (WHR).

Participants were classified as having diabetes 
(either type 1 or type 2) if they fulfilled any of the fol-
lowing criteria: self-reported a diagnosis of diabetes; 
current or past use of diabetes-specific medication; a 
fasting plasma glucose level greater than or equal to 
7.0 mmol/l.

Environmental Data

Data for Canadian census dissemination areas (DA, 
the smallest available census area with an aver-
age population of 400–800 residents) for the census 
year 2006 were acquired from Statistics Canada. The 
SES variables included in this analysis are listed in 
Table 1. Each DA was categorised as urban/suburban/
rural using a previously validated, Canada-specific 
classification method based on active transportation 
and population density [7, 22, 23].

The Normalized Difference Vegetation Index 
(NDVI) provides a greenspace metric often used in 
health research [24]. Derived from satellite imagery, 
higher NDVI values indicate a greater intensity of 
greenness. We acquired cloud-free LANDSAT 5 
satellite images for Hamilton (09.05.2006) and Van-
couver (23.07.2006) through the United States Geo-
logical Survey’s EarthExplorer platform. Both images 
were preprocessed and NDVI scores were calculated 
and mapped as 30-m pixels (native resolution) in the 
study areas.

Spatial Modelling

Data preparation and analysis were conducted 
using R (v.4), and mapping was completed using 
QGIS (v.3.10) on a Linux system (AMD Ryzen 9 
3900 × CPU, 64  GB DDR4). All code including 
detailed documentation are available at https:// github. 
com/ CHEST- Lab/ DRIGL UCoSE.

In order to estimate each participant’s potential 
exposures to greenspace and local SES, we mapped 

age- and sex-specific walkable buffer zones around 
each individual’s residential address using street and 
path networks derived from OpenStreetMap data 
(Fig. 1). Using age- and sex-specific walking speeds 
(average male–female difference = 0.13  km/h; [25]), 
we then mapped each participant’s walkable areas 
in 2-min increments from their residential address, 
with a maximum walking time of 20 min. The 20-min 
maximum parameter was derived through sensitiv-
ity analysis, in which walking areas were calculated 
in 2-min intervals and iteratively entered into the 
successive statistical models described below. The 
20-min parameter was selected as it (i) featured the 
highest predictive performance, (ii) is a heuristically 
realistic representation of movement patterns in the 
city, in that it adequately captures activity spaces of 
persons in the study (this was ascertained through 
informal discussion with residents of the study area, 
in which several of the authors reside), and (iii) the 
20-min zone also approximates the radius of structur-
ally homogenous spaces/neighborhoods in the study 
area and may therefore be the most suitable proxy 
for composition of the built environment. Each par-
ticipant was thereby assigned ten concentric walking 
zones from 0 to 20 min walking time (Fig. 1a). The 
concentric walking zones were then overlaid on the 
SES and greenspace data described above (Fig. 1b). 
A logit weighting function was applied to each buffer 
zone’s mean distance to derive distance-based vari-
able weights, such that the estimated effect of an SES 
or greenspace variable decreases as distance from 
the home increases (Fig.  1c). A logit function was 
selected as it heuristically approximates a suitable 
distance-decay function [26] and various parameteri-
sations were assessed through sensitivity analysis. 
The zone-distance-weighted mean of each of the 15 
SES variables and 4 greenspace variables was then 
assigned to each participant for index derivation. 
Equations and documented code are provided on our 
GitHub page, linked above.

In order to increase the amount of built environ-
ment information contained in the model, we cal-
culated 4 separate metrics from the NDVI data: 
median NDVI score; standard deviation; and  95th 
and  5th percentiles. These were selected as they 
respectively represent overall local greenspace 
levels, variability in the amount and intensity of 
greenspace within each walking zone, the inten-
sity of the most green areas (P95) that may serve as 
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Table 1  Study participants and neighborhood characteristics by diabetes status

No diabetes
(N = 4616, 90.1%)

Diabetes
(N = 509, 9.9%)

Total
(N = 5125)

Bivariate odds ratio
OR (95% CI, p-value)

City
  Hamilton 2307 (87.5%) 331 (12.5%) 2638
  Vancouver 2309 (92.8%) 178 (7.2%) 2487 0.54

(0.44–0.65, p < 0.001)
BMI 1.12

(1.11–1.14, p < 0.001)
  Mean (SD) 27.3 (5.4) 32.1 (6.4) 27.8 (5.7)
  Median (Q1; Q3) 26.4 (23.8; 29.8) 30.9 (27.5; 35.7) 26.8 (24.0; 30.4)

Waist to hip ratio 1.11
(1.10–1.12, p < 0.001)

  Mean (SD) 85.2 (9.0) 93.6 (8.5) 86.0 (9.3)
  Median (Q1; Q3) 85.2 (78.6; 91.6) 94.2 (87.8; 99.6) 86.0 (79.3; 92.6)

Obesity (WHR)
  Low and moderate 2787 (96.0%) 115 (4.0%) 2902
  High 1829 (82.3%) 394 (17.7%) 2223 5.22

(4.21–6.48, p < 0.001)
Age (years) 1.29

(1.23–1.36, p < 0.001)
  Mean (SD) 52.7 (9.4) 56.9 (8.3) 53.1 (9.3)
  Median (Q1; Q3) 53.0 (45.0, 60.0) 58.0 (51.0, 63.0) 53.0 (46.0, 61.0)

Sex
  Male 2076 (87.6%) 294 (12.4%) 2370
  Female 2540 (92.2%) 215 (7.8%) 2755 0.60

(0.50–0.72, p < 0.001)
Household income range 0.75

(0.71–0.80, p < 0.001)
  > 90 k 1793 (93.3%) 129 (6.7%) 1922
  45 k–65 k 759 (89.8%) 86 (10.2%) 845
  30 k–45 k 564 (85.2%) 98 (14.8%) 662
  65 k–90 k 1010 (92.7%) 80 (7.3%) 1090
  20 k–30 k 304 (81.3%) 70 (18.7%) 374
  < 20 k 186 (80.2%) 46 (19.8%) 232

AHEI score 0.97
(0.96–0.98, p < 0.001)

  Mean (SD) 37.7 (10.0) 35.0 (9.5) 37.4 (9.9)
  Median (Q1; Q3) 37.6 (30.7, 44.8) 34.8 (28.1, 41.4) 37.3 (30.4, 44.5)

Physical activity MET score
  < 525 1721 (87.3%) 250 (12.7%) 1971
  ≥ 525 2065 (92.3%) 172 (7.7%) 2237 0.57

(0.47–0.70, p < 0.001)
Ever smoked

  No 2087 (92.3%) 174 (7.7%) 2261
  Yes 1699 (87.3%) 248 (12.7%) 2937 1.75

(1.43–2.15, p < 0.001)
Daily drinker

  ≥ 1 drink/day 1157 (91.0%) 114 (9.0%) 1271
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Table 1  (continued)

No diabetes
(N = 4616, 90.1%)

Diabetes
(N = 509, 9.9%)

Total
(N = 5125)

Bivariate odds ratio
OR (95% CI, p-value)

  < 1 drink/day 2629 (89.5%) 308 (10.5%) 2937 1.19
(0.95–1.49, p = 0.133)

Participants’ neighborhood socioeconomic status
  Neighborhood type
    Suburban/rural 3607 (89.9%) 405 (10.1%) 4012
    Urban 1009 (90.7%) 104 (9.3%) 1113 0.92

(0.73–1.15, p = 0.459)
  Individual mean income (CAD/1000) 0.97

(0.96–0.98, p < 0.001)
    Mean (SD) 37.9 (13.9) 34.3 (12.1) 37.5 (13.8)
    Median (Q1; Q3) 35.0 (29.0; 42.0) 32.0 (27.0; 38.0) 35.0 (29.0; 42.0)
  Household median income (CAD/1000) 0.99

(0.98–0.99, p < 0.001)
    Mean (SD) 65.5 (21.5) 60.6 (20.5) 65.0 (21.4)
    Median (Q1; Q3) 61.0 (51.0; 77.0) 57.0 (45.0; 71.0) 61.0 (51.0; 76.0)
  Prevalence of low income (%) 1.04

(1.02–1.05, p < 0.001)
    Mean (SD) 9.4 (6.9) 11.3 (7.6) 9.6 (7.0)
    Median (Q1; Q3) 8.1 (4.3; 13.7) 10.1 (5.2; 16.3) 8.2 (4.4; 14.0)
  Commute walking/bicycle (%) 0.98

(0.97–1.00, p = 0.027)
    Mean (SD) 7.5 (6.9) 6.8 (5.8) 7.4 (6.8)
    Median (Q1; Q3) 5.1 (3.0; 9.9) 5.3 (3.2; 8.6) 5.2 (3.0; 9.7)
  Labour force participation rate (%) 0.98

(0.97–0.99, p < 0.001)
    Mean (SD) 66.6 (7.7) 65.3 (7.6) 66.5 (7.7)
    Median (Q1; Q3) 66.8 (61.8; 71.7) 64.9 (60.7; 70.5) 66.6 (61.7; 71.6)
  Gov’t transfer payments (%) 1.08

(1.06–1.09, p < 0.001)
    Mean (SD) 9.9 (5.2) 12.4 (6.3) 10.1 (5.4)
    Median (Q1; Q3) 8.8 (5.7; 13.0) 11.5 (7.2; 16.1) 9.0 (5.8; 13.3)
  Unemployment rate (%) 1.11

(1.08–1.15, p < 0.001)
    Mean (SD) 5.5 (2.5) 6.3 (2.9) 5.6 (2.6)
    Median (Q1; Q3) 5.4 (3.8; 7.0) 5.9 (4.4; 7.7) 5.4 (3.8; 7.0)
  Lone parent families (%) 1.05

(1.04–1.07, p < 0.001)
    Mean (SD) 14.8 (6.5) 17.3 (7.5) 15.0 (6.6)
    Median (Q1; Q3) 14.0 (10.9; 18.4) 16.1 (11.9; 21.8) 14.1 (11.0; 18.8)
  Education—no degree (%) 1.04

(1.03–1.05, p < 0.001)
    Mean (SD) 19.6 (9.2) 23.7 (10.4) 20.0 (9.4)
    Median (Q1; Q3) 17.7 (12.8; 24.9) 21.0 (15.8; 31.6) 17.9 (13.1; 25.6)
  Private dwellings—owned (%) 1.00

(0.99–1.00, p = 0.222)
    Mean (SD) 73.9 (17.8) 72.9 (17.6) 73.8 (17.7)
    Median (Q1; Q3) 77.1 (62.1; 88.5) 75.6 (61.7; 87.0) 77.0 (62.1; 88.4)
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local attractants or forested areas within a walking 
zone, and non-green areas (P5) that are characteris-
tic of a dense urban or industrial built environment 
(greyspace) and bare land, hypothesised to exhibit 
negative effects.

Index Derivation

Using participant data and residential address loca-
tions, we first derived the index as follows: in a sub-
sequent step, we calculated and mapped the index 
across both study areas.

In order to manage class imbalance (i.e., ratio 
of diabetes to non-diabetes participants) for the 
index derivation [27], we used a combination of 

Table 1  (continued)

No diabetes
(N = 4616, 90.1%)

Diabetes
(N = 509, 9.9%)

Total
(N = 5125)

Bivariate odds ratio
OR (95% CI, p-value)

  Private dwellings—rented (%) 1.00
(1.00–1.01, p = 0.166)

    Mean (SD) 25.3 (17.2) 26.4 (17.0) 25.4 (17.2)
    Median (Q1; Q3) 22.1 (11.2; 36.9) 24.0 (12.9; 37.7) 22.4 (11.4; 36.9)

Participants’ neighborhood greenspace: Normalized Difference Vegetation Index (NDVI); OR per 0.1 NDVI-unit increase
  NDVI—median 0.68 (0.61–0.77, p < 0.001)
    Mean (SD) 0.341 (0.089) 0.314 (0.084) 0.338 (0.089)
    Median (Q1; Q3) 0.336 (0.291; 0.379) 0.313 (0.266; 0.360) 0.333 (0.288; 0.377)
  NDVI—standard deviation 0.79 (0.55–1.13, p = 0.201)
    Mean (SD) 0.090 (0.026) 0.088 (0.024) 0.090 (0.026)
    Median (Q1; Q3) 0.086 (0.071; 0.105) 0.084 (0.072; 0.100) 0.086 (0.071; 0.105)
  NDVI—Min 0.75 (0.67–0.83, p < 0.001)
    Mean (SD) 0.206 (0.097) 0.182 (0.086) 0.204 (0.096)
    Median (Q1; Q3) 0.202 (0.135; 0.262) 0.173 (0.118; 0.243) 0.198 (0.134; 0.260)
  NDVI—Max 0.69 (0.62–0.77, p < 0.001)
    Mean (SD) 0.495 (0.093) 0.465 (0.093) 0.492 (0.093)
    Median (Q1; Q3) 0.484 (0.435; 0.546) 0.459 (0.401; 0.514) 0.482 (0.432; 0.543)

Fig. 1  Spatial weight-
ing procedure to account 
for diminishing effects of 
distance in which (a) a 
road network was used to 
compute isochrones, (b) 
an unweighted variable is 
mapped over the network, 
and (c) a distance-decay 
weighting scheme is applied 
to the variable
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undersampling and the SMOTE algorithm [28] to 
iteratively derive model calibration sets, as described 
in our code/documentation. To derive the DRI-GLU-
CoSE index, we used principal component analysis 
(PCA) [29–32]. The 11 SES and 4 greenspace vari-
ables listed in Table 1 were normalised and tested for 
non-sphericity and suitability using Bartlett’s test and 
for sampling adequacy using Kaiser–Meyer–Olkin 
before being entered into a PCA model. The resulting 
loadings from the first component were then applied 
as variable weights for the 15 input variables, the sum 
of which was then rescaled to a range of − 1, 1 and 
taken as the participant DRI-GLUCoSE score. The 4 
SES variables with negligible Eigenvalues or absent 
from the first component were removed, as these had 
no detectable influence on model accuracy, resulting 
in a final index with 11 SES variables and 4 greens-
pace variables. The index is scaled such that high 
index values correspond with socially deprived areas 
and low greenspace.

For model comparison, we derived three vari-
ants of the index: (a) the combined DRI-GLUCoSE 
index described above; (b) a variant using only the 
SES variables; (c) a variant only using the greenspace 
variables. These are described in more detail on our 
GitHub page (linked above).

In order to map index scores across both study 
areas, we first removed non-residential land use from 
the maps, then overlaid a 50-m pixel grid. The 50-m 
parameter was selected to achieve a balance between 
computational load and spatial precision follow-
ing sensitivity analysis of variable pixel sizes. From 
the centre of each 50-m pixel, we assume a standard 
participant with a 20-min walking zone and a fixed 
walking speed of 4.7 km/h [25]. The DRI-GLUCoSE 
index scores for each pixel were then calculated 
using the weighting procedure described above. This 
resulted in a DRI-GLUCoSE index map for both 
study areas.

Statistical Modelling and Validation

Using individual-level diabetes as a binary response 
variable, three sets of logistic regression models were 
run: (a) bivariate models with the DRI-GLUCoSE 
index and all control variables (age, sex, BMI, house-
hold income, urban/rural household, AHEI, rec-
reational physical activity, smoking status, and alco-
hol consumption); (b) semi-adjusted multivariable 

models using the DRI-GLUCoSE index, age, sex, 
BMI, household income, and urbanicity; and (c) fully 
adjusted multivariable models using all variables 
from model B, plus tobacco and alcohol consump-
tion, diet, and physical activity. For comparison, we 
also computed a series of bivariate and (semi-/fully-)
adjusted models using various combinations of the 
4 greenspace variables and the univariate predictors 
without PCA, including testing for interaction effects 
between greenspace and SES predictors. Odds ratios 
(OR) with 95% confidence intervals (CI) and p-values 
were reported for all models. Experimental models 
and models using WHR as the adiposity measure are 
reported in the online documentation.

To assess model performance and test for overfit-
ting, we randomly split the data into training (80%) 
and testing (20%) subsets, preserving the within-
group diabetes prevalence. In-sample statistics 
(j-index, sensitivity, specificity, AROC, and accuracy) 
of the training subset were calculated through tenfold 
cross-validation and compared to the out-of-sample 
statistics of the testing subset.

Results

Sample Characteristics

Of the total 5125 participants included in this analy-
sis, 10% were classified as having diabetes (Table 1). 
The mean BMI and WHR were 27.8 kg/m2 and 0.86, 
respectively, and participant median age was 53 years 
(IQR 46, 61) at the time of data collection. Approxi-
mately 28% of participants reported an average of 
more than one unit of alcohol consumed per day, and 
58.8% of household annual incomes were above CAD 
$65,000. Participants were equally divided between 
the two cities, with 78% of participants residing in 
suburban or rural neighborhoods.

DRI-GLUCoSE Index

Bartlett’s test results confirmed strong non-spheric-
ity (p < 0.001) of the predictor variables, and Kai-
ser–Meyer–Olkin returned an overall measure of 
sampling adequacy of 0.74, indicating a reasonable 
degree of suitability. The PCA results indicate that 
49.3% of variance was explained in the first compo-
nent, whose factor loadings for the derived index are 
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shown in Table 2. The remaining components respec-
tively explained 14.5%, 9.6%, 6.8%, and 5.2% of vari-
ance and were discarded. The factor loadings for the 
first component were then used as variable weights 
and entered a weighted linear combination to derive 
index scores.

The mapped index values (Fig. 2) highlight areas 
where the local SES and greenspace conditions pre-
dict a higher (dark) or lower (light) diabetes risk.

Regression Models

The results of the logistic regression models based on 
the testing subset are shown in Fig.  3. Participants’ 
local DRI-GLUCoSE score exhibited a consistent 
positive association across all models. A small, non-
significant attenuation of this effect was observed 
in the fully adjusted models, where individual-level 
lifestyle factors were included (diet, physical activ-
ity, smoking, and alcohol consumption). Increased 
odds of diabetes were observed for obese participants, 
current/former smokers, and persons who consume 
an average of less than one unit of alcohol per day. 
A lower risk is observed for urban residence, higher 

household incomes, and physical activity scores, 
but healthy eating score was non-significant (odds 
ratios shown in online appendix: https:// github. com/ 
CHEST- Lab/ DRIGL UCoSE).

The multivariable models’ accuracies were 75% 
for the semi-adjusted model (Youden Index = 0.41, 
sensitivity = 0.78, specificity = 0.62, AROC = 0.76) 
and 75% for the fully adjusted model (Youden 
Index = 0.41, sensitivity = 0.75, specificity = 0.71, 
AROC = 0.78). Model diagnostics indicated no 
overfitting. Experimental models based on alterna-
tive configurations of greenspace variables, univari-
ate (non-PCA) predictor variables, and interactions 
between greenspace and SES predictors consistently 
featured lower accuracy and/or featured poor model 
fit.

The final models were compared to identically 
parameterised logistic models using two additional 
variants of the DRI-GLUCoSE index: SES only and 
greenspace only. The combined SES and greenspace 
model achieved the highest prediction accuracy of 
75%, compared to 72% for SES only (see Appendix).

Conclusions

Numerous studies since the 1970s have demonstrated 
the power of SES for identifying and predicting health 
risks and outcomes. In this study, we augmented the 
utility of SES indices by including a novel model for 
greenspace, which is known to be a strong predic-
tor for physical activity and positive health status/
outcomes. Our regression model results indicate the 
DRI-GLUCoSE index is significantly associated with 
reduced odds of individual-level diabetes risk in two 
test cities in Canada, and its use of both greenspace 
and SES provides the strongest environmental risk 
model to date (75% prediction accuracy) for predict-
ing individual diabetes risk using only non-invasive 
data. These results indicate that one’s diabetes risk is 
associated with their local neighborhood greenspace 
and SES and contribute to a growing recognition of 
geographical factors as important predictors of dis-
ease risk.

The index results are concurrent with the lit-
erature, in that higher neighborhood SES and local 
greenspace exhibit a protective effect [2, 5, 11, 12, 
14, 15]. In terms of urban/regional planning policy 
and diabetes prevention, low SES, unhealthy food 

Table 2  PCA results. Factor loadings in PC1 correspond to 
variable weights for the DRI-GLUCoSE index

Bartlett’s test for sphericity p < 0.001
Kaiser–Meyer–Olkin test for measure of sampling ade-
quacy = 0.74

Variable Factor load-
ings (PC1)

Factor load-
ings (PC2)

Government transfer payments  − 0.35 0.19
Lone parent families  − 0.32 0.07
Household median income 0.31 0.18
Prevalence of low income  − 0.30  − 0.09
Unemployment rate  − 0.29 0.15
Education—no degree  − 0.29 0.35
NDVI—median 0.26  − 0.12
NDVI—5th percentile 0.26 0.07
NDVI—95th percentile 0.25  − 0.29
Individual mean income 0.24  − 0.04
Private dwellings—owned 0.24 0.45
Private dwellings—rented  − 0.24  − 0.44
Labour force participation rate 0.12  − 0.08
Commute active  − 0.10  − 0.32
NDVI—standard deviation  − 0.02  − 0.41
Total variance explained 49.3% 14.5%
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environments, and lack of infrastructure for physi-
cal activity have been underscored as key priorities 
[1]. Markevych et al. [33] and Astell-Burt et al. [15] 
categorized the mechanisms linking greenspace to 
health benefits into three domains: mitigation (e.g., 
better air quality); restoration (e.g., stress recovery); 
and instoration (e.g., promotion of physical activ-
ity) and emphasise the interconnectedness of media-
tion pathways, which has not yet been thoroughly 
addressed in the literature [34]. Our modelling results 

largely correspond with previous studies, in that low 
household income [4] and tobacco use [2, 35] were 
significant risk factors. Urban place of residence was 
associated with decreased diabetes odds in our mod-
els, as also reported by Basiak et al. [36], but contrary 
to Dagenais et al. [6], who observed elevated diabetes 
risk in urban areas. Recreational physical activity [6, 
37] and healthy eating [38] exhibited a minor attenua-
tion in the effect of the DRI-GLUCoSE index on dia-
betes risk. Also observed was an association between 

Fig. 2  DRI-GLUCoSE 
scores for Vancouver (top) 
and Hamilton (bottom), 
ranging from low risk 
(light) to high risk areas 
(dark)
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low/no alcohol consumption and increased diabetes 
odds, a result concordant with the literature [2, 39] 
and likely explained by patients being advised against 
alcohol consumption following a diabetes diagnosis 
[2, 36].

By accounting for environmental characteristics in 
the DRI-GLUCoSE index, we observed strong pre-
dictive performance based primarily on environmen-
tal characteristics. Other diabetes risk indices have 
been developed using a larger number of non-clinical 
participant-level variables and no environmental fac-
tors and have achieved similar predictive performance 
with an AROC of 0.78 [8] and 0.745 [40]. Within 
similar accuracy, the DRI-GLUCoSE index provides 
a free and easy-to-use risk estimation and mapping 
tool for estimating the combined effects of SES and 
greenspace on diabetes risk at the sub-neighborhood 
scale without the need for clinical measurements or 
individual-level data. The required socioeconomic 
data and satellite imagery are freely available for 
most regions of the globe and require minimal pre-
processing, and the index calculation tool with docu-
mentation is freely available via GitHub, enabling 
public health analysts and researchers to calculate and 
map the index in the region of their choice. By map-
ping areas of interest using DRI-GLUCoSE, zones 
with a higher potential risk can be identified and 
targeted for urban renewal policy, diabetes preven-
tion, patient counselling, and health services plan-
ning. However, it is important to note that the effect 
size exhibited by greenspace characteristics is sig-
nificantly smaller than those of local and household 

SES and individual-level risk factors such as age, sex, 
and modifiable risk. The inclusion of greenspace to 
the SES-derived index only resulted in a 3% increase 
in overall accuracy in the fully adjusted models. This 
is indicative of (i) the relatively weak effects exhib-
ited by local greenspace, and (ii) the importance of 
health-related behaviours in mitigating diabetes risk, 
regardless of geographical setting.

This study uses participant data that did not differ-
entiate between type 1 and type 2 diabetes; given that 
the environmental effect on type 1 diabetes is likely 
to be low, it may be that our index and models under-
estimate the associations observed. While this study 
benefited from using two cities and their surrounding 
regions, both study areas are located in a high-income 
global region, and the index and modelling results 
may therefore not be generalisable to other global 
regions. Further research will focus on index refine-
ment for middle- and low-income countries. Our 
study is limited by an exclusive focus on participants’ 
place of residence as their primary exposure region. 
Importantly, this study used a cross-sectional design, 
preventing any inference of causality. Finally, despite 
being demographically representative, the study 
cohort may exhibit some selection bias, as participa-
tion was voluntary. However, as the logistic models 
presented herein are similar to others from the litera-
ture, we believe these results to be adequately repre-
sentative for the study population. Our results provide 
strong evidence for an environmental component to 
diabetes risk that is not accounted for by the selected 
covariates, but a dedicated study design to analyse the 

Fig. 3  Forest plot show-
ing significant effects for 
both semi-adjusted and 
fully adjusted multivari-
able logistic models. DRI-
GLUCoSE, Diabetes Risk 
Index-Green Land Use and 
Community Socioeconomic 
Environments; BMI, body 
mass index; AHEI, Alterna-
tive Healthy Eating Score
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potential roles of, e.g., the food environment and air/
noise/light pollution, may elucidate these effects in 
more detail.

The DRI-GLUCoSE index differs in that neigh-
borhoods are defined not by administrative bounda-
ries, rather, by age- and sex-specific walking zones. 
While this novel method for estimating exposure to 
greenspace and socioeconomic settings provides a 
more realistic representation of a person’s activity 
space, it is important to note that the downscaling 
of census data to a higher spatial resolution suffers 
from the assumption of demographic and socioeco-
nomic homogeneity within the census units (i.e., the 
attributes of a census dissemination area are assigned 
to each individual resident within it, regardless of 
whether they reside in the centre of that area or on 
the border). So while this technique sought to miti-
gate facets of the ecological fallacy induced through 
spatial containerisation and boundary effects, it is not 
able to overcome these limitations entirely.

In this study, we derived and validated the DRI-
GLUCoSE index as a high-resolution tool for quanti-
fying and mapping the combined socioeconomic and 
greenspace component of local diabetes risk using 
epidemiological cohort data in two Canadian cities. 
The index remained a significant predictor of diabetes 
risk after controlling for individual-level modifiable 
risk factors. In the absence of individual-level data, 
neighborhood-level indices like DRI-GLUCoSE can 
provide a useful means for identifying areas of higher 
environmental risk. This is invaluable for planning 
prevention policy, designing healthy neighborhoods, 
and targeting patient counselling guidelines.
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