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Abstract
Non-coding RNAs represent a significant proportion of the human genome. After having been considered as ‘junk’ for a 
long time, non-coding RNAs are now well established as playing important roles in maintaining cellular homeostasis and 
functions. Some non-coding RNAs show cell- and tissue-specific expression patterns and are specifically deregulated under 
pathological conditions (e.g. cancer). Therefore, non-coding RNAs have been extensively studied as potential biomarkers in 
the context of different diseases with a focus on microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for several 
years. Since their discovery, miRNAs have attracted more attention than lncRNAs in research studies; however, both families 
of non-coding RNAs have been established to play an important role in gene expression control, either as transcriptional or 
post-transcriptional regulators. Both miRNAs and lncRNAs can regulate key genes involved in the development of cancer, 
thus influencing tumour growth, invasion, and metastasis by increasing the activation of oncogenic pathways and limiting 
the expression of tumour suppressors. Furthermore, miRNAs and lncRNAs are also emerging as important mediators in 
drug-sensitivity and drug-resistance mechanisms. In the light of these premises, a number of pre-clinical and early clinical 
studies are exploring the potential of non-coding RNAs as new therapeutics. The aim of this review is to summarise the 
latest knowledge of the use of miRNAs and lncRNAs as therapeutic tools for cancer treatment.

1  Introduction

Non-coding RNAs are a large family of RNAs that are 
not coding for known proteins. In general, non-coding 
RNAs can be classified according to their length into 
small (< 200 nucleotides) and long (> 200 nucleotides) 
RNAs or according to their function as housekeeping and 
regulatory RNAs [1]. About 17 categories of non-coding 
RNA molecules have been identified so far; among them 
transfer RNAs, ribosomal RNAs, small nucleolar RNAs, 
endogenous small interfering RNAs, sno-derived RNAs, 
transcription initiation RNAs, microRNA-offset-RNAs, 
circular RNAs, vault RNAs, microRNAs (miRNAs), small 

interfering RNAs (siRNAs), small nuclear RNAs, extra-
cellular RNAs, piwi-interacting RNAs, small Cajal body 
RNAs, long intergenic non-coding RNAs and long non-
coding RNAs (lncRNAs) are known [2–23]. Non-coding 
RNAs constitute the majority of the human genome and 
retain fundamental biological properties within cells [24, 
25]. Among their functions, they regulate transcription, 
influence translation of coding genes, are components of 
the protein synthesis machinery, and regulate each other, 
e.g. modify ribosomal RNAs, and lncRNAs can counteract 
miRNAs by sequestering them (miRNA sponges) [17, 26]. 
Moreover, many physiological processes are regulated by 
non-coding RNAs, including development, gametogenesis, 
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stress, immune response and tumourigenesis [17, 27]. 
MicroRNAs may also influence longevity as was shown 
by analysing the lifespan of the roundworm Caenorhabdi-
tis elegans [28]. In this particular case, a loss-of-function 
mutation in the lin-4 miRNA down-regulated FOXO/DAF-
16 and up-regulated lin-14, resulting in a shorter lifespan 
[27].

Long non-coding RNAs and miRNAs are the most stud-
ied classes of non-coding RNAs involved in pathological 
conditions [13, 29, 30]. This review aims to focus on the 
different functions of lncRNAs and miRNAs and on their 
potential utility as therapeutic targets.

2 � MicroRNAs

MicroRNAs are short RNA transcripts of 18–24 nucle-
otides and they regulate gene expression at the transla-
tional level [14]. They are among the most extensively 
studied and best characterised non-coding RNAs. Accord-
ing to the canonical view, miRNAs are regarded as nega-
tive regulators of gene expression that upon binding to 
the 3ʹ-untranslated region of the target messenger RNA 
(mRNA) cause a block of translation and/or degradation 
of the transcript, therefore down-regulating the final pro-
tein synthesis rate [31]. However, novel non-conventional 
mechanisms of action have been suggested for miRNAs 
that challenge traditional paradigms. For instance, in 
contrast to the general consensus that miRNA-mRNA 
interactions occur in the cytoplasm, miR-29b has been 
demonstrated to localise predominantly in the nucleus 
[32]. Furthermore, some miRNAs (like miR-10) can exert 
their effects also by binding to the 5ʹ-untranslated region 
[33] or like miR-155 to the coding sequence of target 
mRNAs [34]. Sometimes miRNAs can affect translation 

by up-regulation mechanisms. It has been shown that miR-
369-3p recruits a protein complex to the AU-rich elements 
in the tumour necrosis factor-alpha mRNA and induces an 
increase of the tumour necrosis factor-alpha translation 
rate [35].

A single miRNA can target several mRNAs, thus each 
miRNA can simultaneously regulate multiple target genes, 
both within a single pathway or even across different path-
ways [36–38]. For example, while the miR-17 family targets 
various components of the transforming growth factor-beta 
(TGF-β) signalling pathway, including TGF-β receptors 
and down-stream transducers such as SMADs and cyclin-
dependent kinase inhibitor 1A [39], miR-21 suppresses key 
genes of major tumour suppressive pathways such as p53, 
TGF-β and mitochondrial apoptosis [40].

MicroRNA expression patterns are tissue specific [41] 
and often define the physiological nature of the cell [42]. 
Numerous publications show that altered mRNA expression 
in the context of several diseases (e.g. cancer, viral diseases, 
cardiovascular diseases, neurodegenerative and immune-
related diseases) is caused by deregulation of miRNA 
expression [13, 43–48].

MicroRNA dysfunction occurs as a consequence of 
diverse mechanisms such as promoter methylation, muta-
tions, amplifications or deletions involving miRNA cod-
ing regions, transcriptional regulation by proteins (e.g. p53 
and c-myc) or lncRNAs, and down-regulation as well as 
mutations in genes coding for miRNA biogenesis-related 
enzymes (i.e. Drosha, Exportin 5, Dicer, Argonaute 2) [31, 
49–51].

Multiple lines of evidence suggest that tissue- and dis-
ease-specific miRNA signatures may be used as biomark-
ers for diagnostic, prognostic and predictive purposes in 
the clinic [46, 52–58]. However, the most exciting avenue 
of current translational research efforts is focusing on their 
therapeutic potential [59–64]. Indeed, their pivotal role in a 
huge range of pathological conditions together with the fact 
that a single miRNA can modulate the expression of several 
genes across multiple pathways altered in diseases makes 
them attractive therapeutic targets [65]. Modulation of the 
expression of miRNAs could be a novel and promising ther-
apeutic modality that can be achieved through administra-
tion of either miRNA mimics to restore expression of down-
regulated miRNAs or miRNA inhibitors (anti-miRNA) to 
counteract the up-regulation of pathogenic miRNAs [66]. 
Research on miRNAs as both targets and therapeutics is 
proceeding at a rapid pace. In less than 20 years after the 
discovery of the first miRNA in the nematode C. elegans 
[67, 68], the first miRNA-based therapeutic entered clinical 
evaluation in patients with chronic hepatitis C virus (HCV) 
genotype 1 infection [69]. Owing to a deeper understand-
ing of disease-relevant miRNAs and advances in in-vivo 

Key points 

Non-coding RNAs (especially long non-coding RNAs 
and microRNAs) have important roles as oncogenic and 
tumour suppressor molecules.

Long non-coding RNAs and microRNAs are attracting 
increasing interest as therapeutic targets after they have 
been used widely as biomarkers in the past.

One bottle neck is tissue- and cell type-specific delivery 
and targeting of deregulated non-coding RNAs as well 
as reducing off-target effects especially innate immune 
responses.
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delivery systems, the administration of miRNA-based thera-
peutics has recently shown to be feasible and safe in humans 
with encouraging efficacy results in early-phase clinical tri-
als (Table 1) [69–71].

However, although a plethora of miRNA-based com-
pounds have been investigated in preclinical studies, only a 
minority of these has moved to clinical development. Chal-
lenges concerning a proper target selection, stability in body 
fluids, and specificity of target binding as well as off-target 
effects remain to be addressed in the future to optimise the 
in-vivo delivery and efficiency of miRNA-based therapeu-
tics. As miRNAs are implicated in virtually all physiological 
and pathological processes, a huge therapeutic potential is 
expected from miRNA-based constructs.

Interestingly, in addition to acting within cells, circulat-
ing cell-free miRNAs have been detected in plasma, serum, 
urine, and many other body fluids and have been shown 

to act at distant sites within the body [72, 73]. It has been 
recently shown that miRNAs can be either released by pas-
sive leakage from lytic cells or actively secreted via extra-
cellular vesicles (e.g. exosomes) as well as via high-density 
lipoprotein [74, 75]. Still, another significant proportion of 
extracellular miRNAs is exported in conjunction with RNA-
binding proteins, such as AGO2 and NPM1 [76–78]. Of 
note, this horizontal transfer of secreted miRNA is emerg-
ing as a new form of intercellular communication, by which 
a donor can influence the gene expression of a recipient cell, 
both in an autocrine and paracrine manner [79, 80]. More 
importantly, besides the tremendous contribution to the 
understanding of mechanisms governing cell-to-cell signal-
ling and miRNA functions, the evidence of a microvesicle-
dependent miRNA trafficking system provides intriguing 
insights for the development of efficient miRNA delivery 
systems for targeted therapeutics.

Table 1   Clinical trials investigating microRNA therapeutics in cancer and other diseases

ATLL adult T-cell leukemia/lymphoma, CLL chronic lymphocytic leukemia, DBCLC diffuse large B-cell lymphoma, GalNAc N-acetylgalactosa-
mine, HCC hepatocellular carcinoma, HCV hepatitis C virus, NAFLD non-alcoholic fatty liver disease, NSLC non-small cell lung cancer, RCC​ 
renal cell carcinoma, SCLC small-cell lung cancer, TCL T-cell lymphoma

Drug name Type Disease Phase Status ClinicalTrials.
gov identifier

Miravirsen Anti-mir122 HCV I Completed NCT01646489
Miravirsen Anti-mir122 HCV II Completed NCT02508090
Miravirsen Anti-mir122 Treatment naïve

HCV
II Completed NCT01200420

Miravirsen Anti-mir122 HCV II Completed NCT02452814
Miravirsen Anti-mir122 HCV II Completed NCT01200420
Miravirsen Anti-mir122 HCV II Active NCT01727934
Miravirsen Anti-mir122 Refractory HCV II Active NCT01872936
RG-101 GalNAc-conjugated anti-mir122 HCV Ib Terminated
MesomiR miR-16 mimic Malignant pleural mesothelioma, 

NSCLC
I Completed NCT02369198

MRX34 miR-34 mimic Primary HCC, melanoma, RCC, 
SCLC, NSCLC, lymphoma, 
multiple myeloma

I Terminated NCT01829971

MRX34 miR-34 mimic Melanoma I Terminated NCT02862145
MRG-106 Anti-miR155-5p Cutaneous TCL, mycosis fungoi-

des, CLL, DLBCL, ATLL
I Recruiting NCT02580552

MRG-106 Anti-miR155-5p Cutaneous TCL, mycosis fungoides II Recruiting NCT03713320
MRG-106 Anti-miR155-5p Cutaneous TCL, mycosis fungoides II Not yet recruiting NCT03837457
RG-125 GalNAc-conjugated anti-

miR-103/107
Type 2 diabetes mellitus and 

NAFLD
I/IIa Suspended (sponsor decision) NCT02826525

MRG-201 miR-29 mimic Keloids I Completed NCT02603224
MRG-201 miR-29 mimic Keloids II Recruiting NCT03601052
EXTH-61 Anti-miR-10 Glioblastoma I Recruiting NCT01849952
MRG-110 Anti-miR-92 Small skin wound I Completed NCT03603431
RG-012 Anti-miR-21 Alport’s syndrome I Active NCT03373786
RG-012 Anti-miR-21 Alport’s syndrome II Suspended (sponsor decision) NCT02855268
pSil-miR200 miR-200a/c plasmid Inflammation and osteogenesis 

after tooth extraction
I Not yet recruiting NCT02579187
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3 � Long Non‑Coding RNAs

Long non-coding RNAs are constituted by more than 200 
nucleotides and have an important role as regulators dur-
ing development and pathological processes [81–85]. Under 
physiological conditions, most lncRNAs are transcribed 
from promoters with low CpG dinucleotide contents and 
therefore expressed at low levels [86]. An aberrant expres-
sion of lncRNAs in several diseases is due to modulation of 
the chromatin state. Changes in chromatin structure can also 
be induced by miRNAs; one example is the up-regulated 
expression of lncRNA MEG3 by miRNA-29 via its inhibi-
tion of DNA methyltransferase activity that in turn hampers 
the methylation of the MEG3 promoter in the context of 
hepatocellular cancer [87].

Long non-coding RNAs can be localised in the nucleus 
or cytoplasm [88, 89]. Often lncRNAs have been shown to 
serve as scaffolds for the assembly of multiple component 
complexes [90]. Depending on the subcellular localisation of 
the lncRNAs, they directly regulate gene expression by (a) 
influencing chromatin modification by binding to chroma-
tin regulatory proteins; (b) regulating splicing and stability 
of mRNAs; as well as (c) indirectly in transcriptional and 
post-transcriptional gene expression mechanisms by inter-
acting with other RNAs and proteins [91–93]. For instance, 
several lncRNAs (e.g. MALAT1, H19, MEG3) are important 
regulators of the cell cycle via their influence on p21 or p53 
[94–96]. On the contrary, some lncRNAs (e.g. H19, PINT, 
RP11–467J12.4, LincRNA-p21, PANDA) are induced by p53 
[97–101].

Several reports have underlined the fundamental inter-
action between lncRNAs and miRNAs in RNA regulation 
processes [13, 29, 102, 103]. Long non-coding RNAs can act 
as miRNA decoys by sequestering miRNAs, thus acting as 
competing endogenous RNAs and leading to re-expression 
of miRNA target genes [13, 102, 103]. In addition, lncR-
NAs can promote gene expression by competing with miR-
NAs for specific binding sites in the non-coding regions of 
mRNAs and preventing the transcriptional repression caused 
by miRNAs [29, 102, 103]. The fact that some lncRNAs can 
be processed into miRNAs highlights the strong interaction 
among different classes of non-coding RNAs [13, 29, 102, 
103].

Many lncRNAs are expressed in a tissue- and cell type-
specific manner; the expression varies between different 
development stages and they are often deregulated in a 
disease-specific pattern [104–107] and changes in lncRNA 
expression has been observed in body fluids such as urine 
and blood in several pathological conditions [108–110]. 
Long non-coding RNAs are released either encapsulated 
in exosomes or inside apoptotic bodies and they are bound 
to RNA-binding proteins [111, 112]; therefore, they are 

resistant against RNase degradation and they could be of 
interest as non-invasive biomarkers [108, 113].

Altered lncRNA expression has been observed in several 
diseases and especially in cancer [114]. Because of the abil-
ity of lncRNAs to interact with DNA, RNA, proteins and 
their combination, lncRNAs have the potential to contribute 
to the onset of cancer, modulating virtually all hallmarks of 
cancer and fostering cancer progression.

Long non-coding RNAs were shown to respond to DNA 
damage and to be involved in DNA repair; for instance, 
estrogen-regulated lncRNAs CUPID1 and CUPID2 trigger 
progression of breast cancer by an inhibition of cell-cycle 
arrest following DNA damage [115]. In triple-negative 
breast cancer, lncRNA LINK-A increases the stability of 
hypoxia-inducible factor 1-alpha [116] and, in oral cancer, 
lncRNA HIFCAR was identified as a hypoxia-inducible 
factor 1-alpha co-activator [117]. In both cases, lncRNAs 
support tumour growth by regulating the Warburg effect. In 
a hypoxic environment, the expression of some lncRNAs 
(e.g. lncRNA LET) is also repressed for instance by his-
tone deacetylase 3 activity, resulting in a reduced histone 
acetylation rate of the lncRNA promoter region [118]. Low 
lncRNA LET expression is also an important prerequisite for 
stabilisation of nuclear factor 90 protein that in turn results 
in increased cancer invasion [118]. In renal tumours, the 
down-regulation of tumour suppressor lncRNA FILNC1 
increases c-Myc expression and in parallel enhances glu-
cose metabolism and lactic acid production [119]. Moreover, 
epithelial-mesenchymal transformation (EMT) is under the 
influence of lncRNAs as demonstrated for the up-regulated 
expression of zinc finger proteins ZEB1 and ZEB2 fol-
lowing loss of lncRNA ATB in hepatocellular carcinoma, 
which leads to increased distant metastasis [120]. In con-
trast, hepatitis B virus X protein down-regulates lncRNA 
hDREH, an inhibitor of EMT in hepatocellular carcinoma 
[121]. Another lncRNA that promotes EMT and metastasis 
in various tumours such as liver cancer, pancreatic cancer 
and breast cancer is HOTAIR [122–124]. Expression of 
HOTAIR in cancer cells is induced by TGF-β secreted by 
carcinoma-associated fibroblasts [125]. HOTAIR in turn 
induces EMT by activating the SMAD cascade signalling 
in tumour cells [125].

Recently, lncRNAs have been identified as important 
regulators for the tumour immune micro-environment 
[126–130], as for instance, the immune escape of liver 
tumours by lncRNA epidermal growth factor receptor 
(EGFR)-dependent stimulation of regulatory T-cell differ-
entiation [131]; other reports have evidenced the regulation 
of macrophage recruiting into bladder cancer by lncRNA 
LNMAT1 [132] and lncRNA NKILA by enhancing sensi-
tivity of tumour-specific cytotoxic T lymphocytes and type 
1 helper T cells to activation-induced cell death and by 
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inhibiting the nuclear factor-κB signalling pathway [133]. 
All of this activity clearly shows the deep relevance of lncR-
NAs in the regulation of cancer from initiation to progres-
sion but also in the mantainance of the micro-enviroment 
needed to support cancer invasion and escape to metastatic 
sites. Long non-coding RNAs are contributing to all levels in 
cancer development and they could potentially be exploited 
for treatments.

4 � Use of MicroRNAs and Long Non‑Coding 
RNAs as Clinical Biomarkers

MicroRNA and lncRNA expression patterns are known to 
vary under pathological conditions. In addition, non-cod-
ing RNAs can be detected in tissue samples as well as in 
all body fluids such as blood (plasma/serum), urine, cer-
ebrospinal fluid or tears [134]. MicroRNAs, especially, are 
very stable even in RNAse-rich biofluids thus making them 
potential new biomarkers [73]. Furthermore, miRNAs and 
lncRNAs are present also in exosomes, which protect them 
from degradation within body fluids [135]. Therefore, tis-
sues as well as liquid biopsies can be used as starting mate-
rial for exploring the potential of both non-coding RNA 
classes as biomarkers and they are already widely used as 
biomarkers in cardiac and neural diseases as well as cancer 
[13, 53, 105, 136–138].

An increased level of circulating miR-1 has been shown 
to be a promising biomarker for acute myocardial infarc-
tion [139] and miR-208a/b along with miR-499 have been 
demonstrated as potential biomarkers of the severity of an 
infarction and the degree of myocardial damage [140]. A 
panel of ten miRNAs in plasma has been used to predict 
the individual risk for future fatal acute myocardial infarc-
tion in healthy individuals, resulting in nearly 80% correct 
risk assessment [141] and furthermore expression levels of 
lncRNAs (ZFAS1 and CDR1AS) are also able to predict 
myocardial infarction [142].

In the context of neurological diseases, the power of a 
diagnostic based on non-coding RNAs present in biologi-
cal fluid is a great advance given that the disease site is 
largely inaccessible. Disease-specific neural lncRNAs can 
be detected in the blood of patients with Alzheimer’s disease 
[143] and patients with major depressive disorder [144].

MicroRNA-based assays can be used for diagnostic and 
prognostic purposes in the setting of different cancers; e.g. 
miRNA expression profiling is clinically used as a tool to 
distinguish between molecular subtypes of breast cancer 
[145] and different forms of lung cancer [146]. Another 
assay composed of 64 miRNAs can detect the primary tis-
sue of origin for 49 tumour types with very high accuracy 
and is an offered laboratory test [147, 148].

In addition, miRNA- and lncRNA-based assays are often 
used in combination with existing protein biomarkers to 
improve the specificity and sensitivity of the diagnosis. One 
example is given by the lncRNA PCA3-based test from urine 
samples for the detection of prostate cancer [149], which has 
US Food and Drug Administration approval. By including 
lncRNA PCA3 in prostate cancer diagnosis, the sensitivity 
and accuracy are significantly increased in comparison to 
using the protein biomarker PSA alone [150, 151]. Further-
more, expression patterns of miRNAs and lncRNAs could be 
used to monitor therapy success and drug resistance develop-
ment [13] and therefore they are being tested as biomarkers 
in several registered clinical studies (ClinicalTrials.gov) to 
monitor disease progression in patients receiving Food and 
Drug Administration-approved drugs; e.g. NCT02656589 
(prognosis of Herceptin®-treated patients with breast can-
cer), NCT02471469 (identification of enzalutamide-treated 
patients with prostate cancer with need of a further surgery) 
and NCT02243592 (analysing miRNA expression in tis-
sue samples from patients with cancer who are exceptional 
responders to treatment).

5 � Identification of Deregulated Non‑Coding 
RNAs

The identification of non-coding RNA candidates for design-
ing targeted strategies is the foremost step in developing non-
coding RNA-based therapeutics. This requires translational 
research efforts starting with a patient’s sample analysis to 
select disease-specific non-coding RNAs more likely to be 
of biological relevance to a given pathological condition. 
The advent of high-throughput technologies along with mas-
sive parallel sequencing analysis have tremendously facili-
tated the search for non-coding RNAs, especially for key 
regulatory miRNAs, which could be targeted. To this end, 
genome-wide functional screening studies using libraries 
of hundreds of miRNA mimics or inhibitors are among the 
most commonly employed approaches [152]. For instance, 
a recent report described the genome-wide data, including 
miRNAs, isolated from extracellular vesicles of liver cancer 
cell lines [153]. On a different approach, several publicly 
available repositories exist that link genomic, transcriptomic 
and proteomic data of coding genes and non-coding RNAs 
targeting these genes, thus assisting researchers in identify-
ing the most biologically relevant lncRNAs and miRNAs in 
a disease-specific context. In fact, databases such as LncR-
NADisease [154], lncRNASNP [155], miRTarbase [156] 
and StarBase [157] contain thousands of experimentally 
validated and continuously updated lncRNA- or miRNA-
target interactions including data generated by cutting-edge 
techniques such as crosslinking immunoprecipitation [158, 
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159]. In addition, the matching of these data with those com-
ing from prediction platform such as TargetScan [160] has 
the potential to further improve the accuracy of the search 
for relevant non-coding RNAs.

6 � Non‑Coding RNA‑Based Therapeutics 
in Cancer: Principles, Promises 
and Challenges

The ability to target and modulate multiple protein-coding 
genes at different levels of the same pathways or across dif-
ferent pathways in virtually all pathological processes makes 
non-coding RNAs, especially miRNAs, therapeutic candi-
dates [64, 104, 105, 161]. This offers several advantages 
including the simultaneous targeting of various compensa-
tory pathways involved in the development of therapy resist-
ance as well as the chance to hit commonly undruggable 
proteins via their miRNA regulators.

Some promising approaches aimed at manipulating 
miRNA expression are summarised in Fig. 1. Expression 
levels of miRNAs can be regulated by anti-miRNAs and 
miRNA mimics. Anti-miRNAs are synthetic single-stranded 
RNA molecules that owing to sequence complementary bind 
and sequester mature miRNAs and by this activity counter-
act up-regulated miRNAs [61]. In contrast, miRNA mimics 
are synthetically derived oligonucleotide duplexes, which, 
upon introduction into the cells, behave similarly to (and 
therefore mimic) endogenous miRNAs and they are able 
to restore expression of down-regulated miRNAs [66]. A 
limitation of this approach could be the ability of cancer 
cells to overcome miRNA-mediated repression by allowing 
mutations within miRNA response elements or expressing 
mRNA isoforms with shorter 3ʹ-untranslated regions lacking 
miRNA-binding sites by using alternative cleavage and poly-
adenylation [162–165]. The missing repressive elements in 
mRNA isoforms will then prevent miRNA mimics binding 
and result in therapy failure. Another strategy to therapeuti-
cally fine tune miRNA levels relies on small-molecule com-
pounds [166, 167] that can perturb several steps of miRNA 
biogenesis and function mainly through transcriptional regu-
lation [168–170]. For instance, azobenzene was identified as 
a potent and specific inhibitor of miR-21 expression during a 
large-scale drug screening on small organic molecules [170]. 
Azobenzene affects the transcription of the miR-21 gene into 
pri-miR-21 and is an example for targeting the miRNA syn-
thesis pathway in the nucleus [170].

Other small-molecule modifiers act on miRNAs in the 
cytoplasm as it was shown for the liver-specific miR-122. 
Some small molecules act either as miR-122 inhibitors (e.g. 
can be used for blocking HCV replication in liver cells) or 
as miR-122 activators leading to increased apoptosis in HCC 

cell lines [171]. Furthermore, DICER and AGO2, two main 
components interacting with the RISC complex and respon-
sible for the formation of mature miRNAs in the cytoplasm, 
may be potential targets for interfering with miRNA biosyn-
thesis [172]. In addition, it is possible to block the release of 
exosomes and other microvesicles [173, 174] that are known 
carriers of proteins and genetic material including miRNAs 
between cells [175–177]. Furthermore, the use of vector-
based strategies has been successfully adopted both in in-
vitro and in-vivo models for targeting miRNAs [178]. This 
approach is based on the expression of specific lncRNAs 
acting like sponges or decoys capable of selectively seques-
tering miRNAs by means of various miRNA-binding sites. 
As an ultimate result, miRNA down-stream target genes are 
de-repressed and actively transcribed.

Therapeutic targeting of lncRNA expression can be 
reached by different approaches (Fig. 2) that have to be 
adapted to the different sub-cellular localisation of lncR-
NAs. Nuclear-located lncRNAs can be targeted by chemi-
cally modified antisense oligonucleotides (ASOs) resulting 
in RNAseH-dependent degradation [179]. Furthermore, 
ASOs or small-molecule inhibitors can be used to inhibit 
lncRNA-RNA-binding protein interactions [180]. However, 
the limitations of ASO use has also been recently described. 
Specifically, it was demonstrated that ASO-mediated cleav-
age of nascent RNAs can induce premature transcription 
termination [181]. The introduction of ASOs results in a 
reduction in polymerase II occupancy down-stream of the 
transcript cleavage site in an exonuclease XRN2-dependent 
manner and by this activity influence transcription in general 
[181]. Nevertheless, it seems possible to target the 3′-end of 
transcripts with ASOs to reach RNA knock-down without 
disturbing polymerase II association with the distal gene 
body [181] and this must be taken into account for thera-
peutic use of ASOs. Long non-coding RNA expression has 
been also modulated via steric blocking of the promoter 
or by using genome-editing techniques such as CRISPR/
Cas9 [182–184]. Up-regulation of lncRNA expression can 
be mediated by knock-down of the relevant corresponding 
natural antisense transcripts [185]. In contrast, lncRNAs pre-
sent in the cytoplasm can be degraded with siRNA-based 
strategies involving the multiprotein complex RISC, RNAse 
dicer and endonuclease Argonaut2-dependent degradation 
pathway [122, 186, 187].

However, naked oligonucleotides per se, regardless if 
single or double stranded, display suboptimal pharma-
cokinetic and pharmacodynamic properties owing to their 
molecular size (> 6000 Da) and the negatively charged 
backbone [188]. Indeed, in-vivo stability, cell permeabil-
ity, tissue-specific targeting and potential off-target effects 
represent hurdles to be overcome to successfully translate 
RNA-based compounds from the bench to the bedside.
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7 � Chemical Modification and Encapsulation 
into Delivery Vehicles

One of the greatest challenges related to in-vivo RNA 
therapeutic delivery to the target tissue is represented 
by their stability in body fluids. As already mentioned, 

naked oligonucleotides are subject to degradation by 
nucleases, especially 2′-hydroxyl-dependent RNAses, 
both in serum and in the endosomal compartment [189]. 
To overcome this issue and provide higher stability to 
RNA therapeutics, two complementary and non-mutually 
exclusive approaches have been adopted. The first one 
is based on chemical modifications mostly affecting the 

Fig. 1   Illustration of the multi-step microRNA (miRNA) biogenesis 
pathways, miRNA-target messenger RNA (mRNA) interaction and 
the exosome-mediated miRNA secretion pathway along with relative 
druggable concentrations. Black arrows refer to enzymatic steps, blue 

arrows refer to therapeutic approaches enhancing miRNA expression, 
while red lines refer to therapeutic approaches blocking miRNA func-
tions. For details see the main text
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2ʹ-position of the sugar ring of the RNA backbone that 
include the incorporation of O-methyl and O-methyoxy-
ethyl groups or phosphorothioate-like groups and locked 
nucleic acid (LNA) modifications (2′,4′-methylene link-
age of the ribose) that also improve the binding capacity 
for complementary sequences [190, 191]. The other strat-
egy involves the adoption of delivery technologies that 
in addition to protecting RNA from nucleases can also 
increase the delivery rate to disease-related tissues [192]. 
Administered antisense oligonucleotides have been found 
to accumulate and control gene expression in the liver and 
kidneys of patients but targeting of other tissues was less 
effective [193, 194].

Often RNA therapeutics are encapsulated into nanopar-
ticle vehicles to overcome these limitations [195]. Among 

them, lipid-based systems such as neutral lipid emulsions 
and polymers such as polyethylene glycol and polyethyl-
enimine are the most commonly tested delivery vehicles in 
both pre-clinical and clinical studies [196, 197]. However, 
potential immunostimulatory effects and a suboptimal 
specificity to a targeted disease site need to be overcome 
to successfully exploit miRNA therapeutics into the clinic.

A strategy to prevent harmful side effects caused by the 
delivery vehicle is to link RNA therapeutics to a ligand 
whose receptor is over-expressed on cancerous cells and 
deliver it directly into tumour cells [198]. Such a targeted 
delivery was successfully used in in-vitro and in-vivo studies 
with lung and breast tumour models by fusing miRNAs to 
folate where FolamiRs were taken up by tumour cells over-
expressing the folate receptor in comparison to normal tissue 

Fig. 2   Illustration of the possibilities to target and alter the expres-
sion level of long non-coding RNAs (lncRNAs). a Nuclear localised 
lncRNAs can be targeted by chemically modified antisense oligonu-
cleotides (ASOs) resulting in RNAseH-dependent degradation. b 
Antisense oligonucleotides or small-molecule inhibitors can be used 
to inhibit the lncRNA-RNA-binding protein interactions. c Long non-
coding RNA expression can be modulated via steric blocking of the 

promoter or by using genome-editing techniques such as CRISPR/
Cas9 [182–184]. d Up-regulation of lncRNA expression can be medi-
ated by knock-down of the relevant corresponding natural antisense 
transcripts (NATs). e Long non-coding RNAs present in the cyto-
plasm can be degraded with small interfering RNA (siRNA)-based 
strategies involving the multiprotein complex RISC, RNAse dicer and 
endonuclease Argonaut2-dependent degradation pathway
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[198–202]. One limitation of this approach is most probably 
the endocytic uptake of folate derivate and entrapment of 
FolamiRs into the endosomal compartment [198].

Interestingly, exosomes that are extracellular cell-derived 
phospholipid nanovescicles horizontally transmitting bio-
active molecules to specific recipient cells are increasingly 
regarded as natural nanocarriers for miRNA- and lncRNA-
based therapeutic delivery [203]. Indeed, exosomes are 
endowed with target-homing specificity, stability and capa-
bility of surmounting in-vivo barriers that can lead to spe-
cific and efficient delivery of molecules including nucleic 
acids [204]. In an elegant in-vivo study, human embryonic 
kidney cells were transfected with the exogenous tumour 
suppressor let-7a, and after purification from the culture 
supernatant, let-7a-containing exosomes were systemically 
administered to mice bearing a EGFR-expressing breast 
cancer xenograft [205]. The authors were able to show that 
exosomes loaded with let-7a successfully achieved targeted 
delivery and tumour regression, providing a proof of princi-
ple on the feasibility and the efficacy of these bioengineered 
exosomes [205]. Despite these encouraging results, before 
moving to the clinic further research is needed, especially to 
reduce the immunogenicity of allogeneic exosomes that are 
enriched in major histocompatibility complex proteins with 
the risk of immune reactions.

8 � Clinical Development of MicroRNA‑Based 
Therapeutics

The development of miRNA-targeted therapeutics has 
advanced considerably in recent years, with numerous phase 
I and II trials currently ongoing across a broad range of path-
ologic conditions (Table 1).

8.1 � Locked Nucleic Acid‑Antisense Oligonucleotide

As mentioned above, LNA-antisense oligonucleotides are 
used to repress the expression level of endogenous miRNAs 
in the cells. The LNA modification increases the RNAse 
stability of the antisense oligonucleotide and improves 
the binding capacity for complementary sequences. One 
of the earliest and at the same time successful example of 
the translational research efforts behind miRNAs comes 
from the treatment of HCV infection. In a phase IIa trial, a 
15-nucleotide LNA-antisense oligonucleotide complemen-
tary to and with high affinity and specificity for the 5ʹ-region 
of mature miR-122 (Miravirsen®) was administered to 36 
patients with chronic HCV genotype 1 infection [69]. The 
liver-specific miR-122 is (ab-)used by the virus to bind to 
the 5ʹ-untranslated region of the viral genome and thereby 
enhance virus replication [69]. In this study, prolonged 
and dose-dependent reductions in HCV RNA levels were 

observed, including undetectable viral load in five patients, 
with no dose-limiting toxicities [69]. This successful thera-
peutic outcome is based on the fact that no escape muta-
tions in the miR-122-binding sites of the HCV genome were 
found [69]. Miravirsen had a good safety profile with most 
common adverse events such as headache and fatigue that 
were mild in grade and only observed in a few patients [69]. 
Based on these positive results, other studies testing Mira-
virsen either alone or combined with other antiviral agents 
are underway (summarised in Table 1 and [206]). Indeed, 
longer follow-up and larger patient population are needed 
to ensure a proper assessment of both efficacy and safety.

In another first-in-human study based on LNA-modified 
oligonucleotide inhibitor (MRG-106), the onco-miR-155-5p 
was targeted in patients with mycosis fungoides who are in 
clinical stage I–III with plaques or tumours on a stable treat-
ment regimen or without any concomitant therapy [207]. 
During this phase I study, both intratumoral and subcutane-
ous administration of MRG-106 was evaluated and inhibi-
tion of miR-155-5p was well tolerated [207]. In all patients, 
MRG-106-treated lesions had a Composite Assessment of 
Index Lesion Severity score reduction of ≥ 50%, which was 
maintained to the end of the study [207]. One big advantage 
is the significant pharmacodynamic activity of MRG-106 
without requiring additional formulation [207] and by this 
the risk of unwanted side effects is reduced. Furthermore, 
the accessibility of cutaneous lesions provides the oppor-
tunity to apply MRG-106 directly into the tumour area and 
this most probably also reduces off-target effects. Biomarker 
analysis of pre- and post-treatment biopsies showed reduc-
tions in the MAPK/ERK, JAK/STAT and PI3K/AKT sur-
vival pathways in agreement with the expected MRG-106 
mode of action [208]. The simultaneous decreased expres-
sion of several signalling pathways associated with the 
pathogenesis of mycosis fungoides and tumour cell survival 
is of pivotal importance to minimise tumour escape mecha-
nisms. The possibility to target several survival pathways 
in parallel underlines the therapeutic power of LNA-based 
miRNA inhibition. Based on the positive outcome of this 
clinical trial, a phase II study with MRG-106 has recently 
started to recruit patients with cutaneous T-cell lymphoma 
who have confirmed disease progression following treatment 
with vorinostat.

In the setting of a phase I study, the LNA inhibitor MRG-
110 is used to reduce the expression level of the potent anti-
angiogenic miR-92 [209]. MRG-110 is expected to accel-
erate wound healing by improving angiogenesis into the 
wound area when injected into the skin at the site of the 
skin wound. Furthermore, MRG-110 has the advantage of 
reducing off-target effects by applying the inhibitor directly 
into the area of interest. Inhibition of miR-92 increased 
angiogenesis and MRG-110 was safe and generally well 
tolerated when given as 3-weekly intradermal doses. Based 
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on these phase I safety, tolerability, pharmacokinetic, and 
biomarker data, further clinical studies with MRG-110 are 
in preparation to evaluate the ability of this miR-92 inhibi-
tor to enhance vascularisation and function in the setting of 
heart failure.

8.2 � MicroRNA Mimic

As mentioned above, miRNA mimics are synthetic oligonu-
cleotide duplexes, which, upon introduction into the cells, 
behave similarly to endogenous miRNAs and they are able 
to restore expression of down-regulated miRNAs. MRX34, 
a liposome-formulated miRNA-34 mimic, has been the first 
miRNA mimic therapeutic to enter a clinical trial in patients 
with solid tumours including hepatocellular carcinoma, renal 
cell carcinoma and melanoma [71]. In a phase I, first-in-
human, dose-escalation study, MRX34 was administered 
intravenously twice weekly for 3 weeks within a 28-day 
cycle (including six total doses of MRX34) in 47 patients 
with heavily pre-treated advanced solid tumours [71]. The 
liposomal miR-34 mimic yielded one prolonged therapeu-
tic effect and a partial response was confirmed by means 
of RECIST criteria in a patient with HCC. Moreover, six 
patients with stable disease were reported, four of whom 
lasted more than four cycles [71]. Despite these encourag-
ing preliminary efficacy and safety data, the trial was put 
on hold by the developing biopharmaceutical company 
itself because of the occurrence of five immune-related 
severe adverse events on a longer study follow-up [210]. It 
is currently unclear whether such adverse events should be 
attributed to the liposome carrier, the double-stranded oli-
gonucleotides, or both, as they are both known to potentially 
trigger pro-inflammatory and immune-mediated side effects 
[210]. Another possible limitation of this approach could be 
the intravenous administration of the miRNA mimic without 
any targeting molecule to increase the specific delivery into 
the tumour.

Following the same approach aimed at restoring the 
expression of down-regulated miRNAs, a miR-16 mimic 
recently entered clinical evaluation in patients with pre-
treated malignant pleural mesothelioma [70]. MesomiR is 
the first compound in a clinical trial to use the ‘TargomIR-
technology’ [161]. TargomiR delivery vesicles are com-
posed of a miRNA mimic and a targeting molecule (e.g. 
a specific antibody that recognises a protein on the target 
cells, in the case of mesomiR, an EGFR antibody is used) 
surrounded by bacterial-derived minicells [211]. In a first-in-
human phase I study, a miR-16 mimic was delivered in Tar-
gomiR vesicles to 26 patients with immunohistochemically 
proven, EGFR-expressing malignant pleural mesothelioma, 
progressing after standard chemotherapy [70]. MesomiRs 
were given over a 20-min intravenous infusion either once 
or twice weekly in a traditional 3 + 3 dose-escalation design 

in five dose cohorts. Among 22 assessable patients, one (5%) 
had a partial response and 15 (68%) had stable disease. The 
administration of MesomiRs was well tolerated and asso-
ciated with early anti-tumour activity. However, toxicity 
concerns emerged as cardiac events were reported in five 
patients [70]. The exact mechanism of the cardiac toxicity 
remains to be understood and, although a carrier-elicited 
inflammatory reaction seems the most plausible explana-
tion, a miRNA mimic-related myocardial injury could not be 
excluded. Pharmacological studies and correlative biomarker 
analyses embedded in future larger clinical trials are war-
ranted to better understand the pharmacokinetic and phar-
macodynamic properties of this new class of therapeutics, 
thus optimising the delivery of next-generation compounds.

In addition, a phase I study based on a miRNA-29b mimic 
(MRG-201) was started recently. By using a miRNA-29b 
mimic, expression of collagen and other proteins involved 
in fibrous scar formation should be reduced. The therapeutic 
substance is injected intradermally [210]. The possibility to 
apply MRG-201 directly into the area of interest will most 
probably reduce off-target effects. According to first results, 
collagen expression and the development of fibroplasia in 
incisional skin wounds have been significantly repressed by 
the application of MRG-201 and a phase II study to treat 
patients with a predisposition for keloid formation with 
MRG-201 is in preparation [212].

8.3 � Anti‑MicroRNA

As mentioned before, anti-miRNA are synthetic single-
stranded RNA molecules that, owing to sequence comple-
mentary bind and sequester endogenous miRNAs and by 
this counteract up-regulated miRNAs. MiR-10b is higher 
expressed in glioblastoma compared with normal brain tis-
sue [213] and therefore the critical function of anti-mir-10b 
(EXTH-61) in blocking established glioblastoma growth is 
under investigation in a phase I study [214]. Owing to the 
fact that miRNAs are able to cross the blood–brain barrier, 
EXTH-61 could be a further option to overcome the difficul-
ties in treating glioblastoma. However, there is the question 
on how specific EXTH-61 is taken up by glioblastoma and it 
will be of interest to see if the anti-miR-10b construct causes 
off-target effects.

In another phase I/IIa clinical study, 46 patients with 
type 2 diabetes mellitus and non-alcoholic fatty liver dis-
ease receiving metformin monotherapy will be included. 
A role of miR-103/107 in insulin sensitivity and resistance 
has been established [215] and, in this study, inhibition of 
this miRNA via N-acetylgalactosamine conjugated anti-
miR-103/107 (RG-125) will be explored. This study was 
stopped by the company before results were made available.

Following the same approach, anti-miR-122 was used 
as a conjugate with N-acetylgalactosamine (RG-101) in a 
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multicentre phase Ib study to treat HCV-infected patients 
who were either treatment naïve or relapsed after interferon-
α-based therapy [216, 217]. Twenty-eight patients received 
one subcutaneous injection of RG-101 and after 4 weeks the 
viral load was significantly reduced in all patients and the 
substance was well tolerated. Three patients had undetect-
able HCV RNA levels even 76 weeks after a single dose of 
RG-101. In some cases, the observed viral rebound after 
12 weeks was associated with the appearance of resist-
ance mediating mutations in miR-122-binding regions in 
the 5′-untranslated region of the HCV genome [217]. Nev-
ertheless, because of high levels of bilirubin in the blood 
of the patients, the company decided to terminate the tri-
als based on RG-101. Off-target effects of RG-101 are 
the inhibition of conjugated bilirubin transport, impaired 
baseline bilirubin transport and the preferential uptake of 
RG-101 by hepatocytes resulting in hyperbilirubinemia. 
This study targets miR-122 in HCV-infected patients like 
for Miravirsen (described in Sect. 8.1). Locked nucleic 
acid-antisense-based therapy has an advantage and results 
in fewer side effects compared with the anti-miRNA strat-
egy. Furthermore, no escape mutations have been observed 
in patients treated with Miravirsen, but surprisingly, such 
escape mutations occur during treatment with anti-miR-122 
even if both strategies target endogenous miR-122. Consid-
ering that both RG-125 as well as RG-101 studies are based 
on a N-acetylgalactosamine conjugated anti-miRNA, and 
both have been suspended, it is tempting to speculate that 
N-acetylgalactosamine conjugation is at least in some part 
involved in unwanted side effects.

Finally, anti-miR-21 (RG-012) was tested in a phase I 
study for the efficiency to treat fibrogenetic diseases espe-
cially Alport nephropathy [218]. Alport syndrome is a life-
threating hereditary kidney disease that currently has no 
approved therapy [219]. An anti-miRNA-based strategy 
could be a therapeutic option for rare and orphan diseases 
such as Alport syndrome for which no drugs for treatment 
have been developed owing to the small number of patients. 
One issue of this study is the very limited information on 
exactly how Alport syndrome progresses, although miR-21 

is believed to play a central role in the disease progression. 
Furthermore, RG-012 is missing a targeting molecule to 
increase the specific delivery into the kidney and therefore 
off-target effects are very likely.

9 � Clinical Development of Long Non‑Coding 
RNA‑Based Therapeutics

No clinical trials targeting lncRNAs have been started. Nev-
ertheless, the first pre-clinical studies are underway and the 
first patent for using lncRNA as a therapeutic target has been 
issued (patent CA 2921457). In several pre-clinical studies, 
the potential benefit of lncRNA-based therapies for cancer 
have been demonstrated. Tumour growth and reduction in 
metastatic sites have been strongly affected by knocking-
down lncRNA MALAT1 by a specific ASO in models for 
breast and lung cancer [179, 220]. Antisense oligonucleo-
tide-mediated down-regulation of lncRN ASChLAP1 has 
been found to limit tumour formation and metastasis of pros-
tate cancer [221]. Another study using ASO directed against 
lncRNA USMycN significantly reduced tumour formation 
in mice with neuroblastoma [222]. The lncRNA-GMAN is 
highly expressed in gastric cancer cells and is associated 
with metastatic processes and poor prognosis. By using a 
CRISPR/Cas9 system targeting lncRNA-GMAN, metastasis 
of gastric cancer cells was significant reduced and overall 
survival was improved in a mice model [223].

Furthermore, lncRNAs can also influence the sensitivity 
of cancer cells towards different types of drugs. Silencing 
the expression of lncRNA-NEAT1 increased the sensitivity 
of pre-cancerous cells towards DNA damage-induced cell 
death and increased lethality of chemotherapy drugs on can-
cer cells [224]. All these examples underline the significant 
role of dysregulated lncRNAs in the context of cancer and 
demonstrate the potential therapeutic power that could result 
from modifying lncRNA expression.

Of special interest are some clinical phase I/II trials 
(Table 2) in which the anti-tumour efficiency of a plasmid 
coding for the A subunit of diphtheria toxin under the control 

Table 2   Clinical trials using long non-coding RNA promoter for specific expression of therapeutics in tumour cells

NMIBC non-muscle invasive bladder cancer

Drug name Disease Phase Status ClinicalTrials.
gov identifier

BC-819 Unresponsive NMIBC II Recruting NCT03719300
BC-819 Locally advanced pancreatic adenocarcinoma IIb Terminated NCT01413087
BC-819 Superficial transitional cell bladder carcinoma I Completed NCT01878188
BC-819 Advanced ovarian cancer I/IIa Completed NCT00826150
BC-819 Unresectable pancreatic cancer II Completed NCT00711997
BC-819 Intermediate-risk superficial bladder cancer II Completed NCT00595088
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of the lncRNA H19 gene promoter (BC-819) is evaluated 
in different solid tumours [225–231]. Based on the highly 
selective tissue expression of lncRNAs such as H19, 22% 
of the patients with cancer have a complete response and 
44% have a partial response [229]. Furthermore, observed 
side effects are minimal and BC-819 can be considered as 
safe and well tolerated, thus clinical phase III trials are in 
preparation [228].

10 � Conclusions

The interest in non-coding RNA-based therapeutics was 
boosted by the first Food and Drug Administration approval 
of a small-interfering RNA drug in 2018. This small-inter-
fering RNA drug called patisiran targets and degrades the 
mRNA coding for transthyretin and is used to treat polyneu-
ropathy caused by hereditary transthyretin-mediated amyloi-
dosis [232, 233].

Nevertheless, increasing knowledge about non-coding 
RNAs especially about lncRNAs is a prerequisite for using 
the non-coding RNAs as therapeutic targets. Notably, intra- 
and inter-tumoral heterogeneity are pitfalls in the study of 
non-coding RNA targets given the tissue-specific interac-
tion. Long non-coding RNAs as well as miRNA expression 
indeed can vary from one area to another in the same tissue 
as well as over time; moreover, numerous concomitant con-
ditions can alter the expression levels of non-coding RNAs 
[234, 235]. Clearly, non-coding RNA-based therapy is still 
in its infancy. It is very attractive to use these new targets as 
a further therapeutic option in the context of different dis-
eases because non-coding RNAs are often expressed in a tis-
sue- and cell type-specific manner and their deregulation is 
disease specific. However, it is also necessary to improve the 
methods for tissue- and cell type-specific delivery and the 
targeting of deregulated non-coding RNAs as well as reduc-
ing off-target effects especially innate immune responses.

The therapeutic manipulation of miRNAs has gained 
momentum based on their causative involvement in a broad 
range of human diseases, ranging from infections to can-
cer. MicroRNA-targeted therapeutics have recently entered 
clinical evaluations showing encouraging safety and effi-
cacy in early-phase trials, particularly in patients with HCV 
infection and malignant pleural mesothelioma [161, 236]. 
Furthermore, non-coding RNA-based therapies represent 
an option for life-threatening disease that currently has no 
approved therapy [219]. A suboptimal in-vivo delivery and 
emerging side effects could represent drawbacks in suc-
cessfully translating these compounds to the clinic. A better 
understanding of their pharmacological properties alongside 
safer and more efficient delivery technologies will hopefully 
help realise the tremendous potential of non-coding RNA-
based therapeutics.
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