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Abstract
Cervical cancer is caused in the vast majority of cases by the human papilloma virus (HPV) through sexual contact and
requires a specific molecular-based analysis to be detected. As an HPV vaccine is available, the incidence of cervical cancer
is up to ten times higher in areas without adequate healthcare resources. In recent years, liquid cytology has been used to
overcome these shortcomings and perform mass screening. In addition, classifiers based on convolutional neural networks
can be developed to help pathologists diagnose the disease. However, these systems always require the final verification of a
pathologist to make a final diagnosis. For this reason, explainable AI techniques are required to highlight the most significant
data to the healthcare professional, as it can be used to determine the confidence in the results and the areas of the image
used for classification (allowing the professional to point out the areas he/she thinks are most important and cross-check them
against those detected by the system in order to create incremental learning systems). In this work, a 4-phase optimization
process is used to obtain a custom deep-learning classifier for distinguishing between 4 severity classes of cervical cancer
with liquid-cytology images. The final classifier obtains an accuracy over 97% for 4 classes and 100% for 2 classes with
execution times under 1 s (including the final report generation). Compared to previous works, the proposed classifier obtains
better accuracy results with a lower computational cost.
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1 Introduction

Cervical cancer is a malignant tumor of the cervix, caused
in 99% of cases by persistent infection with high-risk human
papilloma viruses (HPV), a widespread virus transmitted by
sexual contact [1]. This is mainly observed in women under
35 years of age in countries with low HPV vaccination rates
and limited healthcare resources. HPV types can be classified
as low risk or high risk depending on their association with
benign, precancerous, or cancerous lesions.

Cervical cancer ranks fourth globally in cancers diag-
nosed and fourth in women’s cancer deaths, with a higher
proportion of low- and middle-income countries. It is par-
ticularly present in sub-Saharan Africa [2]. In 2020, more
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than 600,000 new cases were diagnosed worldwide (6.5% of
all female cancers) and more than 340,000 deaths related to
cervical cancer were reported. In general, 84% of new cases
and around 90% of deaths occur in these countries [3]. Fur-
thermore, in high-income countries, this incidence is 7–10
times lower.

Early detection of cervical cancer plays a key role in
treatment and can significantly reduce the risk of death; there-
fore, specialized laboratory equipment and pathologists are
required to perform these tests. An interview with medi-
cal specialists (cardiologists and oncologists) in the United
States andGermany in 2016 summarized that 66%of the crit-
ical decisions they made were based on the results obtained
by the pathology and laboratory medicine (PALM) services
[4]. This implies that access to high-quality and timely PALM
services is needed to support health care systems.

However, for example, in sub-Saharan Africa, the number
of pathologists is approximately one per million patients, a
ratio approximately 50 times lower than that of high-income
countries (such as the United States or the United Kingdom)
[5]. Due to this situation, it is essential to look for diagnostic
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aid systems to reduce pathologist workload and, as a result,
to allow them to increase the number and quality of their
diagnostic decisions.

The usefulness of diagnostic aid systems is not to replace
the pathologist’s work, but to provide a tool for the patholo-
gist to allow rapid initial screening of samples and to present
a detailed report that helps the pathologist with his or her
decision.

At this point, the application of artificial intelligence (AI)
techniques is of great importance in the design of classifier
systems capable of extracting characteristics from images
and differentiating between those that indicate some type of
disease and those that represent a healthy patient [6].

The application of this type of technique in medical imag-
ing provides three main benefits:

• Mass case screening: easily diagnosable cases may have
a quick analysis, reducing the time spent by the specialist.

• Specialists’ workload reduction: as a consequence of
the above, the specialist can spend more time on severe
and/or difficult-to-diagnose cases. As a secondary impli-
cation, false negatives could be reduced.

• Diagnosis time reduction: as a consequence of the pre-
vious benefits, both the specialist and the patient could
know the diagnosis in a shorter time, and, therefore, the
action plan in case of detection of the disease could be
streamlined, improving the survival rates in many cases.

As a result, numerous AI-based diagnostic aids have been
developed in recent years. These systems have the advantage
of providing fast classification but require a sufficiently large
dataset so that, during the training phase of these tools, the
most relevant features can be correctly extracted from the
data provided by each sample.

The use of AI techniques can be seen in the field of health-
care in multiple aspects: from the analysis of physiological
signals [7–9] to the study of bad habits and abnormalities dur-
ing activities of daily living [10–13]. Moreover, in relation to
this work, the use of techniques derived fromAI andmachine
learning (ML) is widely extended in the field of medical
image analysis, making use of advanced deep learning (DL)
techniques based on convolutional neural networks (CNN).
These techniques have been applied in multiple research
works in recent years, obtaining very positive results with a
correct diagnosis rate higher than 80% [14–16]; even reach-
ing, in several cases, accuracy values above 95% [17–19].

However, errors obtained in this type of diagnostic aid sys-
tem must be minimized because their results are critical, and
diagnosis failure can even be fatal. Therefore, the analysis of
errors, as well as disturbances caused by their variations, is
of great importance in this type of system [20, 21]. Hence,
such a classifier must follow a thorough optimization pro-
cess that includes the analysis of variations in the input (by

applying techniques that randomly select the sets of images
to be used in the tests).Mechanisms such as hold-out or cross-
validation are commonly used to improve the robustness of
the developed system.

However, very few diagnostic aid systems achieve a 100%
accuracy, because those systems are usually tested on a subset
of samples from the dataset itself used to train them (sharing
similarities in many cases) [22–24]. Thus, in future classifi-
cations, some errorsmay occur if samples fromothermedical
centers are evaluated or different scanning devices are used
(among other possible variables involved) [25].

This fact leads to a certain mistrust of automated diagnos-
tic support systems among healthcare professionals. More-
over, another problem with DL systems is the fact that, when
they are trained, the weights of the neural network connec-
tions do not provide information understandable by the user
that helps him/her to know the objective criteria used to per-
form the classification. For this reason, these systems are
known as “black boxes” [26].

Due to this, in recent years, the use of explainable artifi-
cial intelligence (xAI) and explainable deep learning (xDL)
technologies has gained very significant importance. These
technologies, through various and varied subsequent anal-
yses, provide information on the objective classification
criteria used in the automatic system [27, 28]. This objective
information obtained after these analyses is of great impor-
tance, not only to detect possible classification errors but also
to allow the healthcare professional to understand the deci-
sions made in the correct classifications. This is the reason
why this type of analysis is essential in medical diagnostic
aid systems [29, 30].

The authors’ research group has extensive experience in
the field of machine learning and deep learning applied to e-
Health. This experience can be appreciated, for example, in
thefield of physiological signalmonitoring and/or processing
[31], biomechanical gait studies [32], fall detectors [33], etc.
Moreover, in addition to this, the group provides experience
in the field of medical imaging processing using convolu-
tional neural networks (CNN), having developed multiple
aid systems for the diagnosis of cancer and other diseases
[24, 34].

So, in this work, a diagnostic aid system for precancerous
and cervical cancer lesions is designed, implemented, and
tested using liquid-based cytology imaging. In addition to
explaining the procedure and the results obtained, a compar-
isonwill bemadewith previous work in the area. And finally,
to provide better information to the healthcare professional,
xDL techniques will be used to study the areas of the images
in which the classifier has focused to perform decisions and
to provide a detailed report to the healthcare professional
regarding the confidence level of the system’s decision for
each class. In this way, not only the possible diagnosis result
but also the areas of images that the classifier has mainly
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used to obtain that diagnosis can be provided to the pathol-
ogist (together with a detailed classification report about the
confidence of belonging to each class). So, the highlights of
this work are as follows:

• Abetter optimization process based on a 4-stage analysis.
• Better results compared to previous work.
• Lighter classifier for mass screening and for use in low-
resource countries as it can be implemented in computers
with lower processing power or cloud-based, associated
processing costs are reduced.

• High detailed reports thanks to xAI techniques.

The rest of the manuscript is organized as follows: In
Sect. 2, the description of the developed classifier, the met-
rics used to evaluate it, the description of the xDL techniques
performed, and a search for recent similar works are detailed.
The results obtained after testing the classifier and the
explainable deep learning reports are explained in Sect. 3,
together with a comparison with previous work. Finally,
Sect. 4 draws the discussion and conclusions of this work
and proposes future research lines.

2 Materials andmethods

This section presents tools and systems designed to detect
cervical cancer in liquid cytology samples. To do so, we will
first detail the dataset used, its structure, and the preprocess-
ing applied to it. Then, the characteristics of the classifiers
developed will be presented, as well as the justification for

Table 1 Original dataset distribution and class renaming for this work

Original class Renamed class Number of images

NILM NEG 613

LSIL LOW 163

HSIL HIGH 113

SCC SCC 74

their choice. Finally, we will explain how these classifiers
have been evaluated and what information is provided to the
pathologist.

In summary, the graphical abstract of the work presented
can be seen in Fig. 1.

2.1 Dataset

The dataset used in this work consists of a total of 963 images
subdivided into four subsets, representing the four classes
of precancerous and cancerous lesions of cervical cancer
according to the standards under The Bethesda System. This
dataset is known as the “Mendeley liquid cytology dataset”
and was shared under the Creative Commons license in 2020
[35]. According to the authors, the pap smear images were
captured at ×40 magnification using the Leica ICC50 HD
microscope, which were collected and prepared using the
liquid-based cytology technique from 460 patients. The full
content of this dataset is shown in Table 1.

The acronyms used in the dataset are the following: NILM
for “Negative for Intraepithelial malignancy” (renamed
“NEG” in this work), LSIL for “low squamous intraepithelial

Fig. 1 Work’s progress summary
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lesion” (renamed “LOW” in this work), HSIL for “high squa-
mous intraepithelial lesion” (renamed “HIGH” in this work),
and SCC for “squamous cell carcinoma” (this acronym is
retained in thiswork).An example of each class type is shown
in Fig. 2.

The main problem found in this dataset is the class bal-
ance: aDL classifier tries tomaximize the number of samples
it classifies during its training process. Therefore, in the case
of this dataset, it will try to maximize the NEG class. How-
ever, in this work, we are trying to correctly classify all
classes, so we will have to apply pre-processing techniques
to the dataset to improve the distribution of images of each
class. These techniques are described in the following.

2.2 Preprocessing

The preprocessing process applied to the dataset consists of
three steps: resizing, equalization, and data augmentation (in
this order).

First, the images are resized from 2048 × 1536 to 240 ×
180 pixels to reduce the computational load of the classifier
and speed up the training and classification processes. After
that, a histogram equalization is performed on the reduced
images.

And, finally, the data augmentation process is performed.
Due to its complexity, this step is justified and detailed next.

As indicated above, the dataset has a significant imbal-
ance problem. The most populated class has almost 9 times
the number of images of the least populated class. To solve
this problem, data augmentation techniques are applied on

the dataset to increase the number of images of the least pop-
ulated classes. However, the least populated class (SCC) has
only 74 images, and applying data augmentation techniques
on it to reach the number of images of the most populated
class (NEG with 613 images) would imply obtaining more
than 8 artificial images for every real image. If this process
were carried out, it could condition the results of the classi-
fier, as the augmented images have characteristics similar to
the original ones, and this fact would hinder the classifier.

This is the reason why, in order to balance the dataset, it
was decided to use only 150 images for each class. In this
way, only one augmented image would be needed for each
real image of the SCC class, and one augmented image per
each 3 real images of the HIGH class. To obtain the new
images, a random rotation (90, 180, or 270 degrees) or a
zoom modification (between 5 and 15%) is applied offline
to both classes (SCC and HIGH), until the number of 150
images for these classes is reached.

With respect to theNEGandLOWclasses,where the num-
ber of required images (150 per class) is exceeded, a random
selection process of 150 images is performed online (at the
time of loading the dataset), so that all images are involved
in the training processes and tests performed (although only
a subset of 150 per class in each test).

For each class, a 70% of the images is used for train-
ing (105), a 10% for validation (15), and a 20% for test
(30). Regarding the augmented images of the SCC and HSIL
classes, it is important to note that, in the subset splitting
process, they are forced to be placed in the training subset.
In this way, for the validation and test processes, we work

Fig. 2 Example of images from
the dataset

WOLGEN

CCSHGIH
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Table 2 Dataset distribution
after data augmentation (D.A.)
for each subset and class

Class Training subset Validation subset Testing subset
Before D.A. After D.A. Before D.A. After D.A. Before D.A. After D.A.

NEG 105 105 15 15 30 30

LOW 105 105 15 15 30 30

HIGH 68 105 15 15 30 30

SCC 29 105 15 15 30 30

As can be observed, the augmented images from HIGH and SCC classes are located in the training subset

with original images and not with augmented ones. The final
distribution can be seen in Table 2.

2.3 Classification system

In this work, multiple classifiers based on convolutional neu-
ral networks (CNN) are evaluated considering the number of
convolutional layers involved and the values of their hyper-
parameters (learning rate and batch size). The neural network
architectures used are completely customized (without using
pre-trained models); so, we use combinations of the basic
layers: convolutional layers, dense layers, polling layers,

dropout layers, and flatten layers. A summary of the net-
works used is shown in Fig. 3.

In addition, to be able to compare the results of this work
with previous works, classifiers are not only designed and
tested for the four classes indicated above but also imple-
mented and tested using only two classes (negative and
positive) as many previous works use this approach. In the
two-class classifiers, the dataset is divided into negative
images (entirely from the NEG class) and positive images
(by combining LOW, HIGH, and SCC classes in equal pro-
portions).

For all these classifiers, multiple tests have been carried
out varying the values of the hyperparameters (learning rate

Fig. 3 Classifiers tested: (left) 8 convolutions + 4 max polling; (middle) 6 convolutions + 3 max polling; (right) 4 convolutions + 2 max polling
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and batch size). The process of finding the best classifier is
divided into four phases:

• Phase 1: coarse-grained adjustment. In this first step, 16
batch sizes (even values from 2 to 32 inclusive) and 8
learning rates (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2,
and 5e-2) are evaluated over the three different classifier
architectures. This has required 384 training processes,
using 100 epochs for each.

• Phase 2: Selection of the best candidates. Taking into
account the accuracy and loss results of each individual
training, the best combination of batch size and learning
rate for each architecture is selected, resulting in 3 can-
didate networks. The best candidates are named CNN1
(8-convolution classifier), CNN2 (6-convolution classi-
fier), and CNN3 (4-convolution classifier) (see Fig. 3).

• Phase 3: fine-grained adjustment. The three candidate
networks obtained from the previous phase are trained
with 1000 epochs each. In addition, to guarantee the
results and reduce the randomness generated by the
selection of the training, validation, and test subsets,
the cross-validation technique is applied to the complete
dataset, obtaining ten non-coincident combinations of the
subsets. In this way, each network architecture is trained
and evaluated 10 times with 1000 epochs. The accuracy
deviation in these tests provides a measure of the robust-
ness of the model independently of the dataset division,
thus ensuring that the choice of architecture and param-
eters is not due to the specific dataset split.

• Phase 4: Selection of a winner. Taking into account the
results obtained from the above cross-validation process,
the mean, standard deviation, and median values are
extracted. The architecture with the best mean value is
considered the winner (in the case of similar values, the
onewith the smallest standard deviationwill be selected).
The results used for this final comparison are those
obtained from the mean values of the previous phase.

2.4 Evaluation

To evaluate the effectiveness of the classification system,
well-known metrics are used: accuracy (most used metric),
sensitivity (also known as recall), specificity, precision, and
F1score [36]. To this end, the classification results obtained
for each class are tagged as “true positive” (TP), “true neg-
ative” (TN), “false positive” (FP), or “false negative” (FN).
According to them, the high-level metrics are presented in
the following equations:

Accuracy =
∑

c

T Pc+ T Nc

T Pc +FPc +T Nc + FNc
, c∈classes

(1)

Speci f ici t y =
∑

c

T Nc

T Nc + FPc
, c ∈ classes (2)

Precision =
∑

c

T Pc
T Pc + FPc

, c ∈ classes (3)

Sensi tivi t y =
∑

c

T Pc
T Pc + FNc

, c ∈ classes (4)

F1score = 2 ∗ precision ∗ sensi tivi t y

precision + sensi tivi t y
. (5)

About those metrics:

• Accuracy: all samples classified correctly compared to
all samples (see Eq. 1).

• Specificity: proportion of “true negative” values in all
cases that do not belong to this class (see Eq. 2).

• Precision: proportion of “true positive” values in all cases
that have been classified as it (see Eq. 3).

• Sensitivity (or Recall): proportion of “true positive” val-
ues in all cases that belong to this class (see Eq. 4).

• F1score: It considers both the precision and the sensitivity
(recall) of the test to compute the score. It is the harmonic
mean of both parameters (see Eq. 5).

These metrics are common to all ML/DL systems, but
there are other metrics commonly used in medical diagnostic
systems; this is the case of the ROC curve (receiver operating
characteristic) [37], because it is the visual representation
of the true positives rate (TPR) versus the false positives
rate (FPR) as the discrimination threshold is varied. Usually,
when the ROC curve is used, the area under the curve (AUC)
is used as a value of the system’s goodness of fit.

Therefore, the classifier systems developed in this work
will be evaluated according to all the metrics detailed in this
subsection.

2.5 Report generation

As commented before, the use of the Grad-CAM algorithm
for CNN-based systems is very widespread. Moreover, it can
be adapted to classification problems (as is the case in this
work), visual question answering, and captioning. It uses the
gradients of any target concept, flowing into the final con-
volutional layer, to produce a coarse localization map that
highlights the important regions in the image for predicting
the concept.

Therefore, after the classification performed by the diag-
nostic aid system developed in this work, the information
provided to the healthcare professional is completed with
an explanation of the decision taken based on the use of
the Grad-CAM algorithm on the evaluated image and a text
report about the confidence of the system regarding each
of the output classes (obtained from the values obtained
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Fig. 4 System’s final report
given to the healthcare
professional

previously to the softmax activation of the last layer). A sum-
mary of the final report generation process is shown in Fig. 4.

Based on this detailed report, the healthcare professional
can make the final decision, which could be to validate the
proposed results or to carry out a more detailed human-based
study of the sample.

In the “Results” section, the Grad-CAM algorithm is
applied to several testing images, providing the final report
for all cases. Before this, it is important to carry out a search
for similar works, to be able to compare them with this work
at the end of the manuscript.

2.6 Previous works

Aglobal search is performed in themain search engines (Sco-
pus, IEEExplorer, and Google Scholar) with the following
keywords: “cervical cancer,” “cytology,” and “deep learn-
ing.” The results obtained are filtered by year, restricting
the works to those published in the last 5 years. Preprints or
arXiv/bioRxiv works waiting for acceptance are not selected.

An initial filteringofworks that use liquid cytology images
has not been considered appropriate, as this type of imaging
has been widely used only relatively recently. Due to this and
to the datasets used by each study, different nomenclatures
can be found in the classifications made by those works.

Table 3 shows the equivalence of the nomenclature between
the cancer and precancer classification systems [38].

The most common nomenclatures used in publicly avail-
able datasets are the Bethesda System and the CIN (cer-
vical intraepithelial neoplasia) classification. This last one
evolved in 1968, to take into account the different nat-
ural histories seen with different degrees of dysplasia
(CIN1/mild, CIN2/moderate, CIN3/severe). On the other
hand, the Bethesda system was developed in the 1990s at
the US National Cancer Institute, distinguishing between
high-grade squamous intraepithelial lesions (HSIL, which
combines CIN2 and CIN3) and low-grade squamous intraep-

Table 3 Cervical cancer and pre-cancer: terminology for cytological
and histological reporting

Cytological classification Histological classification
Pap Bethesda CIN WHO

Class I Normal Normal Normal

Class II ASCUS / ASC-H Atypia Atypia

Class III LSIL CIN1 Koilocytosis

Class III HSIL CIN2 Moderate dysplasia

Class III HSIL CIN3 Severe dysplasia

Class IV HSIL CIN3 Carcinoma in situ

Class V Carcinoma Carcinoma Carcinoma
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ithelial lesions (LSIL, equivalent to CIN1). Furthermore, in
the 2001 Bethesda System, atypical cells are divided into
ASCUS (atypical squamous cells of undetermined signifi-
cance) and ASC-H (atypical squamous cells: cannot exclude
a high-grade squamous intraepithelial lesion), but not all pub-
lic datasets include this final classification.

The results after the searching process and the elimination
of articles not focused on the design of a classifier reflect a
total of 23 works. The selected works are presented below
with a brief summary.

• Xu et al. [39]: 2-class classifier using colposcopy images
with random forest (RF), k-nearest neighbors (kNN),
logistic regression (LR),AdaBoost, support vectormach-
ine (SVM), and a pre-trained CNN model.

• Elakkiya et al. [40]: 2-class classifier using colposcopy
images with custom CNN.

• Alyafeai et al. [41]: 2-class classifier using colposcopy
images with pre-trained CNN models.

• Jeftic et al. [42]: 2-class classifier using liquid cytology
images with statistical mechanisms.

• Sanyal et al. [43, 44]: 2-class classifier using liquid cytol-
ogy images with custom CNN classifier.

• Teramoto et al. [45–47]: 2-class classifiers using liquid
cytology images with pre-trained CNN models.

• Mulmule et al. [48], Nagadeepa et al. [49]: 2-class
classifiers using liquid cytology images with statistical
mechanisms and custom CNN models.

• Kanavati et al. [50]: 2-class classifier using liquid cytol-
ogy images with an ensemble composed by a pre-trained
CNN model and an SVM.

• Isidoro et al. [51]: 2-class and 3-class classifiers using
liquid cytology images with SVM classifier.

• Manna et al. [52]: 2-class and 4-class classifiers using
colposcopy images with pre-trained CNN models.

• Zhu et al. [53]: 2-class and 5-class classifiers using liquid
cytology images with pre-trained CNN models.

• Huang et al. [54]: 3-class classifier using liquid cytology
images with statistical mechanisms.

• Zhang et al. [55]: 3-class classifier using colposcopy
images with custom CNN.

• Zhang et al. [56]: 4-class classifier using colposcopy
images with pre-trained CNN models.

• Hussain et al. [57], Martinez-Más et al. [58], Kundu et
al. [59]: 4-class classifiers using liquid cytology images
with pre-trained CNN models.

• Kuko et al. [60]: 5-class using liquid cytology images
with custom CNN.

• Nambu et al. [61]: 6-class classifier using liquid cytology
images with pre-trained CNN models.

As can be seen, there is no standard classifier used. Most
commonly, mechanisms based on convolutional neural net-
works (CNN) are found, but there are also cases where more

statistical methods and ensemble combinations are used.
Regarding the classified classes, many works opt for defin-
ing a binary state, but it depends on the dataset used and
the nomenclature used. The most commonly used nomen-
clatures are the Bethesda System (up to five classes) and the
CIN classification (up to six classes).

If we make a preliminary comparison, it can be observed
that all of them try to optimize the classification accuracy
(instead of the computational requirements); and, moreover,
the vastmajority of themdonot present a detailed final report.
These two points will be taken into account in the work pre-
sented in this manuscript.

3 Results

In this section, the implementation, optimization, and evalua-
tion process of the classifiers presented previously is detailed
and discussed. We will start with the 4-class classifier, and,
after that, the same process will be followed for the binary
classifier.

3.1 4-class classifier

Phase 1 Short training processes (100 epochs) are performed
on the three convolutional networks detailed above, varying
the learning rate and the batch size. Eight different learn-
ing rates and sixteen batch sizes are used; this implies a
total of 128 training processes for each network (384 training
processes in total). The selection of training, validation, and
test subsets is randomized at the beginning of each training,
taking into account that the augmented images are located
only in the training subset. The results obtained for each
case are evaluated by the test accuracy and loss for the three
CNNs, and the best results obtained are shown in Table 4.
The results obtained for all the cases can be accessed in the
Supplementary Material document.

Table 4 Best results obtained for each architecture after all the combi-
nations of learning rate and batch size hyperparameters

Architecture Learning rate Batch size Accuracy Loss

8 Convolutions 1e−4 24 98.95 0.03

1e−4 28 97.56 0.12

5e−4 32 96.89 0.10

6 Convolutions 5e−5 12 96.70 0.14

5e−4 22 96.79 0.15

5e−4 30 97.89 0.10

4 Convolutions 1e−5 30 97.20 0.16

5e−5 24 97.44 0.19

1e−4 20 98.46 0.09
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Fig. 5 Accuracy and loss summary for the best cases of the three architectures

The cases in which the trained systems do not obtain
acceptable classification rates are for low values of the learn-
ing rate with low values of batch size. If we take these
premises into account, several tests may be avoided; how-
ever, these first results will help to filter the most promising
cases, which will be used in later phases.

For all the results obtained, higher learning rate values
prevent the systems from converging correctly to an optimal
solution.This happens in all three networks for the cases 5e-3,
1e-2, and 5e-2. Similarly, at lower values of the learning rate,
low values of batch size also prevent the convergence of the
system (as is the case for batch sizes below12). In general, the
best learning rates for all networks are 5e-5, 1e-4, and 5e-4,
with the best results obtained in general for the case of 1e-4
(although, exceptionally, the 6-convolution network shows
its maximum with 5e-4). Regarding the batch size, it can be
seen that, in general, the best results are obtained for values
between 20 and 30, although other good results are obtained
for lower values, so we may think that this parameter is not
restrictive.

It is important to note that the five best cases for each con-
volutional network are marked in blue in the Supplementary
Material document. However, those values will be analyzed
in the next phase to obtain the best candidate from each con-
volutional network.

Phase 2 Best cases from the previous phase are plotted
graphically, where the highest peaks (in the case of accu-
racy) and the deepest valleys (in the case of loss) can be
observed. This information is presented in Fig. 5.

The first three values of each image refer to the best cases
of the first architecture (8 convolutions), the next three are

those of the second architecture (6 convolutions), and the last
three are those of the third architecture (4 convolutions).

For each of these blocks, we will determine the best case,
which will be used in the next phase.

If we look at the three best cases of the first architecture,
there is a clear winner with a 98.95% accuracy; although
there is only a difference of 1.4% between it with the second
classifier. Both have a learning rate of 1e-4 and similar batch
sizes: 24 and 28. However, if we look at the error obtained in
the validation, the casewith the batch size of 24 improves sig-
nificantly, reducing the loss value to a 25% (0.03) compared
to the other case.

Considering now the three best cases of the second archi-
tecture, there is one candidate that stands out from the others.
It corresponds to a learning rate of 5e-4 and batch size 30,
and obtains an accuracy value of 97.89%. Moreover, if we
look at the error obtained, it is also the candidate with the
lowest loss value with 0.10.

And finally, for the three best cases of the third architec-
ture, there is also a clear winner with a 98.46% accuracy and
a loss value of 0.09.

Based on these findings, Table 5 shows a summary of the
three final candidates and the nomenclature used hereafter to
name them.

Table 5 Three final candidates obtained at the end of phase two

Name CNN model Learning rate Batch size

CNN1 8conv+4max+3dense 1e−4 24

CNN2 6conv+3max+3dense 5e−4 30

CNN3 4conv+2max+3dense 1e−4 20
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Table 6 Fine-grained study with the best candidates obtained from the previous phase: [CNN1] 8 conv., lr 1e-4, bs 24; [CNN2] 6 conv., lr 5e-4, bs
30; [CNN3] 4 conv., lr 1e-4, bs 20

subset1 subset2 subset3 subset4 subset5 subset6 subset7 subset8 subset9 subset10 TOTAL
Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Mean STD Median

CNN1 99.95 93.75 94.93 99.87 97.97 99.87 97.50 98.00 96.93 97.75 97.68 1.48 97.50 (S.7)

CNN2 97.64 95.00 94.74 96.90 92.40 96.90 96.05 97.19 93.22 94.35 95.44 1.50 95.00 (S.2)

CNN3 94.94 91.00 96.04 88.74 95.04 96.90 92.82 87.22 96.03 91.80 93.05 2.74 92.82 (S.7)

Phase 3 Now, the three candidates are compared. For this
purpose, the following two actions are performed:

• First, the original dataset is randomly split offline into
10 nonmatching datasets (each with a train subset, a val-
idation subset, and a test subset according to the split
detailed in the previous section). A cross-validation pro-
cess will be performed on these ten datasets, obtaining in
each case the accuracy, and the best candidate from the
training set will be selected.

• Secondly, for the training of this phase, the learning rate
and batch size characteristics of each candidate will be
taken into account, and the training time will be extended
up to 1000 epochs. This is intended to allow all networks
to achieve the best possible convergence (which was not
always the case with 100 epochs, especially in the eight-
convolution network).

The results obtained with the 10 cross-validation subsets
for the three candidates are presented with the test accuracies
in Table 6.

Table 6 does not only show the accuracy results for the
10 cross-validation subsets by each candidate but also three
more columns where a summary of the results obtained by
each candidate is presented. In this final summary, the mean
accuracy value is detailed with its standard deviation (these
final columns form part of the next-phase analysis).

Looking at the individual results for each of the training
sessions, candidate CNN1 outperforms the other two in 8
of the 10 cross-validation training sessions. In the two cases
in which it is not the winner, candidate CNN1 comes sec-
ond (being bettered in one case by candidate CNN2 and by
candidate CNN3 in the second case).

At first glance, the CNN1 candidate appears to be the
best overall performer (looking for the mean accuracy and
the mean loss); however, an evaluation of the computational
requirements of the three systems is performed to decide the
best final candidate.

In this study, the three candidate architectures are retrained
with their learning rate and batch size. And, for each case,
the average realized execution time for each classification
is noted. These tests are run on two different hardware
architectures: the first one has a powerful graphics card

(GeForce GTX 1080Ti), and the second one runs the classi-
fications using only CPU processing.

The results are shown in Table 7. However, in the
Supplementary Material document, a larger table is included
where the execution times for these candidateswith a variable
batch size between 1 and 50 can be observed.

In the final stage of the optimization process, these data
will be analyzed in detail before deciding on the final classi-
fier.

Phase 4 If we look closely at the results of the previous
phase (shown in the last three columns of Table 6), we can
see that the CNN1 candidate has an average accuracy value
that is more than 2% higher than the second-place candidate
(CNN2); moreover, in terms of standard deviation, we can
see that the CNN1 candidate has a better result too. In any
case, the CNN3 candidate is completely discarded, as the
values obtained are very distant from the other two (both in
terms of accuracy and standard deviation).

Regarding the execution times, the CNN3 results are the
lowest (as may be expected due to the low complexity of the
network), although the poor classification accuracy (com-
pared to the others) makes us discard this option. Taking
into account the absolute execution times obtained by the
other two candidates (Table 7), CNN1 classifier is faster
than CNN2 using GPU (0.0112 vs 0.0140 s) and without
GPU (0.2083 vs 0.2546 s). Therefore, CNN1 achieves better
classification results and better execution times than CNN2,
although the differences are not very significant.

Therefore, although candidate CNN1 could be directly
selected as the best option for the classification system, it is
important to analyze the reason for this difference in accu-
racy.

Table 7 Execution time study performed for CNN1, CNN2, and CNN3
using two hardware platforms: only an Intel i7 CPU, and adding a
GeForce 1080Ti GPU

Candidate GPU (GeForce
GTX 1080Ti)

CPU (Intel i7-10700K
@ 3.8GHz)

CNN1 0.0112±0.0063 0.2083±0.0071

CNN2 0.0140±0.0084 0.2546±0.0060

CNN3 0.0042±0.0040 0.1116±0.0035

Time indicated in seconds
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Fig. 6 Test Confusion Matrix
for the 4-class winner classifier
(CNN1): (left) absolute values;
(right) percentage values

To do so, the results provided by both candidates are stud-
ied in detail. However, because ten different training sessions
were conductedwith the different cross-validation subsets for
each candidate, there is some doubt regarding which of these
training processes best reflects the final result of each candi-
date. For this purpose, we use those trained systems whose
accuracy value corresponds to the median of the ten ranking
results shown in Table 6.

So, looking at the last column of Table 6, the value of the
accuracy median is reflected and, in parentheses, the subset
that corresponds to that accuracy value is shown. Thus, the
model obtained after training the candidate with this specific
subset will be the one selected as the final model for each
candidate: therefore, the model trained with subset 7 will be
used for candidate CNN1 and the model trained with subset
2 will be used for candidate CNN2.

Taking these premises into account, the results obtained
for each class independently can be seen in Table 8 for both
CNN1 and CNN2.

Although both candidates exhibit a very good behavior for
NEG and LOW classes, CNN2 obtains false positive cases,
which are the most dangerous in this case. Moreover, CNN2
candidate achieves worse ranking results for HIGH and SCC

classes. Therefore, the candidate finally selected as the final
model for the classifier is CNN1 (8 convolutions, 4 max-
polling layers, and 3 dense layers; trained with a learning
rate of 1e-4 and a batch size of 24; with the CNN weights
obtained from the resulting model trained with subset 7).

The CNN1 confusion matrix is presented in Fig. 6.
The final results show that the classifier system imple-

mented in this work obtains very high results (almost 98%
accuracy) when classifying the samples of the four classes;
showing a perfect behavior for the NEG and LOW classes.
For the HIGH and SCC classes, it shows a low failure rate
(around 5%). Even so, these failures are classified as a high
or very high-risk class, which means that the patient will
need to see a doctor for further testing. Not surprisingly, the
most critical cases in this type of classifier system are those
in which a sample from a sick patient is classified as healthy;
but such cases do not occur in this system.

Finally, a receiver operating characteristic (ROC) curve
analysis was performed to assess the diagnostic accuracy of
each class at each temporal resolution, with special emphasis
on the area under the curve (AUC),which is a commonly used
metric in this type of diagnostic aid system. The results can
be observed in Fig. 7.

Table 8 Final results obtained
for each classification class with
CNN1 and CNN2

Candidate Class Accuracy Specificity Precision Sensitivity F1score

CNN1 neg 100 100 100 100 100

low 100 100 100 100 100

high 97.50 98.89 96.55 93.33 94.91

scc 97.50 97.78 93.55 96.67 95.08

TOTAL 97.50 99.17 97.50 97.50 97.50

CNN2 neg 100 100 100 100 100

low 99.17 98.89 96.77 100 98.36

high 95.83 97.78 93.10 90.00 91.52

scc 95.00 96.67 90.00 90.00 90.00

TOTAL 95.00 98.33 95.00 95.00 95.00
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Fig. 7 ROC curves for the four classes of CNN1 classifier (with indi-
vidual AUC values)

In Fig. 7, it can be observed that theNEGandLOWclasses
have an AUC of 100%. For the other classes, HIGH has an
AUC of almost 99% and SCC has an AUC above 97%.

In these studies, AUC results are considered excellent for
AUCvalues between0.9 and1, good forAUCvalues between
0.8 and 0.9, fair for AUCvalues between 0.7 and 0.8, poor for
AUC values between 0.6 and 0.7 and failed for AUC values
between 0.5 and 0.6. [62, 63]. Thus, the results obtained are
excellent for all classes.

3.2 Two-class classifier

For this classifier, a positive case will be equivalent to any
nonnegative state. Therefore, a negative case will be the only
one in which no abnormality is detected in the tissue.

The NEG class of this classifier shall have the same distri-
bution and content as the NEG class of the 4-class classifier.
However, for the case of the POS class, a mixture of samples
of the three classes LSIL, HSIL, and SCC from the previous
case ismade. Thismixture is completely equal for each of the
various subsets (training, validation, and test), obtaining the
subsets for training (35×3 images), validation (5×3 images),
and testing (10×3 images). On this occasion, the process of
searching for the optimal classifier is simplified, reducing the
range of batch size (16, 20, 24, 28, and 32) and learning rate
values (1e-5, 1e-4, and 1e-3).

After 45 training sessions, it is observed that the best
results are obtained with the 8-convolution architecture (with
a significant deterioration in the other architectures). And,
among the 15 systems trained for this architecture, the one
that obtains the best results is the one trained with a learn-
ing rate of 1e-4 and batch size 20. For this case, we obtain
100% accuracy for the test set and a loss value of 0.02. All
results for the 8-convolution architecture are shown in the
Supplementary Material document.

As expected, the results for all metrics are 100%, as well
as the confusion matrix and the ROC curve. Therefore, the
corresponding tables and figures (which can be accessed in
the Supplementary Material document) are omitted in the
manuscript.

At this point, the different alternatives for the design of
both classifiers have been explained, showing the final archi-
tectures chosen and the classification results for each one of
them. In the remainder of this section, the results obtained by
both classifiers will be used for comparison with the previous
work detailed in Sect. 2.

3.3 Works comparison

Following the guidelines indicated in Sect. 2, a search has
been done for cervical cancer classification systems using
deep learning techniques. It is important to note that, within
the range of years used for the search (2017 to 2021), the
publicly available works that meet all the requirements indi-
cated previously are mainly concentrated in recent years
(2019, 2020, and 2021). Some works related to cervical can-
cer detection were conducted in the first years and are more
focused on medical innovations for treatment and sociologi-
cal studies than on the creation of classifiers. However, those
works focused on classifiers are included in this study aswell.
Moreover, the works with the best results have been found
in the last years.

Therefore, taking into account the restrictions provided
and the above explanation, nineteen works have been
selected: one published in 2017, five published in 2019, eight
published in 2020, and five published in 2021.

The summary of the selected work with its main attributes
and results is shown in Table 9.

It can be seen that most of the selected works use CNNs in
their classifier. However, the main differences are centered
on the classes detected by each classifier. As in this work
two different classifiers are developed and evaluated (2-class
and 4-class classifiers), the comparison will be divided into
two parts: on the one hand, works that implement 2-class
classifiers; and, on the other hand, works that classify more
than 2 classes.

In general, the classifiers developed in this work perform
better than the classifiers implemented in previous work.
There is no 2-class classifier that improves the one presented
in this work; while, for the 4-class classifier, there are a cou-
ple of previous works whose results are very similar to this
one (even better): the exhaustive comparison that followswill
show the differences between them and why, from the com-
putational point of view, the classifier developed in this work
is more efficient.

It should be noted that some of the works cited (6 out of
19) do not balance the training dataset (or at least they do not
discuss this topic). Thus, they may present biased results.
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This is the case for works: Zhang et al. [55], Jeftic et al. [42],
Sanyal et al. [44], Martínez-Más et al. [58], Elakkiya et al.
[40], and Kundu et al. [59]. Moreover, other works give the
results obtained from the training set (not the test one), like
Elakkiya et al. [40], Manna et al. [52]; so, the test results may
be lower than those shown in Table 9.

Other particular characteristics are detailed below:

• Sanyal et al. [43]: better results were obtained with a
10-epoch training than for other cases with more train-
ing epochs. Due to the lack of a dropout layer, it seems
that a phenomenon of overfitting is taking place for this
classifier.

• Teramoto et al. [45]: Thiswork does not include a dropout
layer either.

• Hussain et al. [57]: This work collects the dataset used
in our work (Mendeley liquid-based cytology dataset).

• Kuko et al. [60]: 19.18% of the misclassified samples are
abnormal cells classified as normal. These are the cases
that any diagnostic support system should try to avoid.

• Nambu et al. [61]: in this work, a data augmentation pre-
processing is performed to balance the classes. However,
for some classes, the number of samples is multiplied
by almost 20 (i.e., 19 augmented images are obtained for
each original image); therefore, as the augmented images
share features on multiple occasions, this could facilitate
the convergence task of the classifier.

The works that use a binary classifier are those developed
by:Xuet al. [39], Jeftic et al. [42], Sanyal et al. [43], Teramoto
et al. [45], Sornapudi et al. [46], Alyafeai et al. [41], one of
the classifiers of Isidoro et al. [51], Sanyal et al. [44], Bao
et al. [47], Elakkiya et al. [40], one of the classifiers ofManna
et al. [52], one of the classifiers of Zhu et al. [53], Kanavati
et al. [50], Mulmule et al. [48], and Nagadeepa et al. [49].

Among all of them, the works developed by Jeftic et al.
[42], Isidoro et al. [51], Zhu et al. [53], Kanavati et al. [50],
Mulmule et al. [48], Nagadeepa et al. [49] do not use a CNN
model.

And the works with results most similar to our classifier
are those developed by Elakkiya et al. [40],Manna et al. [52].
However, theseworks have a very important difference:None

of them use liquid-based cytology images. For this reason,
the classifier complexity may clearly vary. In fact, both clas-
sifiers are based on computationally more expensive neural
networks than the classifier used in this paper. Therefore, in
addition to these two works, others with high classification
results using liquid-based cytology are included (works with
accuracy greater than 90%). To highlight these differences,
we summarize the type of CNN and the number of layers of
each type used in Table 10.

In Table 10, we can see that the two studies that do not
use liquid cytology samples require models with a much
higher computational cost than the other studies. Compared
to the others, our work has the lowest number of dense lay-
ers and maxpolling layers, but not the lowest number of
convolutions. This last parameter is surpassed by the works
developed by Sanyal et al. [43, 44], which use 4 and 5 con-
volutional layers, respectively. However, these two works
present deficiencies: Sanyal et al. [43] does not have adropout
layer and, observing the accuracy evolution, an overfitting
phenomenon may be occurring; and, Sanyal et al. [44] uses
an unbalanced dataset, which may affect the results. Even if
we do not take these facts into account, the classifier devel-
oped in this work improves the results of both articles by
5%.

On the other hand, the works that implement a classifier
with more than 2 classes are Zhang et al. [55], one of the
classifiers of Isidoro et al. [51], Zhang et al. [56], Hussain
et al. [57], Kuko et al. [60], Martínez-Más et al. [58], one of
the classifiers of Manna et al. [52], one of the classifiers of
Zhu et al. [53], two classifiers of Kundu et al. [59], Nambu
et al. [61], Huang et al. [54].

Among all of them, the classifiers developed by Isidoro
et al. [51] and Zhu et al. [53], do not use a CNN model and
are not included in the comparison. So, observing the results
obtained from the other works, it can be seen that two of the
previous articles obtained better accuracy results than this
work. This is the case for Manna et al. [52], Kundu et al.
[59]. However, the difference does not exceed 2% accuracy.

First, it is important to note that the works developed by
Zhang et al. [55, 56], Manna et al. [52] do not use liquid

Table 10 2-class classifiers
complexity regarding the
number of layers used in the
CNN

Work Model NCL NML NDL

Sanyal et al. [43] Custom CNN 4 4 3

Sanyal et al. [44] Custom CNN 5 5 3

Bao et al. [47] VGG-16 13 5 3

Elakkiya et al. [40] Fast RCNN + GAN 40+ 10+ 5

Manna et al. [52] Ensemble (Inception-v3 +
Xception + DenseNet-201)

60+ 20+ 10+

This work Custom CNN 8 4 3

In the case of works that use more than one model, the less-complex one is indicated; but, in the case of works
that use ensembles, the summation of the layers is shown
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cytology imaging and, for two of them, the accuracy results
are very low. So, only the third paper will be included in the
comparison.

Regarding the classes used, the classifiers of Hussain et al.
[57], Kundu et al. [59] use the same dataset and the same
classes as the classifier developed in this work. On the other
hand, the classifiers in Kuko et al. [60], Martínez-Más et al.
[58] use the same nomenclature (from the Bethesda system),
but do not include the carcinoma category. Finally, the clas-
sifier developed in the work Nambu et al. [61] is the only one
that classifies the five classes of the Bethesda System.

Other shortcomings detected in these studies are detailed
below.

• Classifiers presented on Martínez-Más et al. [58] and
Kundu et al. [59] train with unbalanced datasets.

• Classifier from Nambu et al. [61] performs a data
augmentation process that is too extensive (detailed pre-
viously).

• Work developed in Kuko et al. [60] has problematic cases
of false positives of the “normal” class.

• The work developed in Manna et al. [52] presents the
results obtained for the training set (not the test one).

Finally, to compare the computational cost, the type of
CNN and the number of layers of each type used is summa-
rized in Table 11.

As can be observed in Table 11, the two works with the
least computational cost are Kuko et al. [60] and Martínez-
Más et al. [58]; however, bothworks present twomain issues:
first, its accuracy value is low compared to most of the other
works; and second, they do not include the carcinoma class
in the detection.

For the other works, regardless of their shortcomings, all
of them have a much higher computational complexity than
the classifier implemented in this work (in the order of 5
times higher). This difference becomes even greater if we

compare our classifier with the two classifiers that obtain a
slightly better accuracy value than ours:Manna et al. [52] and
Kundu et al. [59]. Both use the same classes as this work but,
in both cases, to obtain these high accuracy values (exceeding
1.73% and 2% this work, respectively), they require a much
higher number of convolutional layers than those used in
our work (25 and 12 times more, respectively). Even so, the
work Manna et al. [52] presents the results obtained with the
training subset.

Thus, after a detailed and extensive discussion, it can be
concluded that the only work whose classification results
improve this work is the one developed by Kundu et al. [59]
(but only by 2%). And analyzing it at the level of compu-
tational requirements, it requires more than 12 times more
resources than those required by our work.

Therefore, if not only the final accuracy result is taken into
account, but also the efficiency ratio with respect to compu-
tational resources, our work shows the best results.

3.4 Report generation

The above results show that the system developed in this
work obtains an excellent classification result and requires
less computational load than in previous works. However,
for the report provided to the pathologist, this work gives
additional information about the confidence (in percentage
value) of the results provided and a heat map that specifies
the areas of the image that have been taken into account for
the classification. It is based on the application of explainable
artificial intelligence (xAI) techniques to extract information
from the intermediate layers of the convolutional neural net-
work.

This final report provided to the healthcare professional
is of utmost importance, as it will be thoroughly checked to
assess the reliability of the results and to consider whether a
reevaluation of the sample is necessary.

Table 11 Computational
complexity for classifiers of 3 or
more classes, regarding the
number of layers used in the
CNN

Work Model NCL NML NDL

Hussain et al. [57] GoogleNet 60 13 6

Kuko et al. [60] Custom CNN 3 3 2

Martínez-Más et al. [58] AlexNet 5 3 3

Manna et al. [52] Ensemble (Inception-v3 +
Xception + DenseNet-201)

200+ 20+ 10+

Kundu et al. [59] Ensemble (Inception-
v3 + DenseNet-161)

100+ 10+ 10+

Nambu et al. [61] ResNeSt 45 5 3

This work Custom CNN 8 4 3

In the case of works that use more than one model, the less-complex one is indicated; but, in the case of works
that use ensembles, the summation of the layers is shown
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In this work, the implemented explainable deep learning
algorithm (custom Grad-CAM) extracts the resulting infor-
mation after the last convolution (numerical weight matrix)
and converts it to a heat map. This map shows the areas
where the classifier has focused to obtain the diagnostic pro-
posal. In the final report, this heat map is overlapped with the
original image so that the health professional can appreciate
the areas that determine the verdict (see Fig. 4). In addition,
the numerical result of the classifier is extracted from the
last layer of the system before applying the softmax process
(activation of the class with the highest value and inhibition
of the remaining ones); in this way, a percentage of reliabil-
ity of the result can be provided. Based on these parameters,
the healthcare professional can make the final verdict, which
could be to validate these results or to proceed with a more
detailed study of the sample.

It is important to note that the input image has a resolu-
tion of 240× 180 pixels, while the heat map has a resolution
of 22 × 14 pixels (the result of the last convolution layer
before maxpooling, see “conv8” layer of the first classifier
of Fig. 3). Because of this, the heat map image must be over-
scaled before overlapping it with the original. This causes
that, due to the decimals obtained during this process of reso-
lution increase, some parts of the heat map do not fit perfectly
with the original; however, when observing them, it is clear
which parts of the image it refers to.

The results of the training dataset will be shown below.
Several cases will be shown for each class, with special
emphasis on cases with low percentage reliability and clas-
sifier system confusion.

3.4.1 Negative cases reports

The accuracy obtained by the classifier for this class is perfect
(100%), this means that all the cases are classified correctly.
The vast majority of classifications give confidence percent-
ages higher than 99%, and there are three cases with lower
confidence (98.84, 97.49, and 95.70%).

In Fig. 8, the reports obtained for two samples are shown.
The case presented in Fig. 8(top) represents one of the cases
with higher confidence (there is more than one sample classi-
fied with 100% confidence); and the case presented in Fig. 8
(bottom) represents the case with lower confidence (worst
case). In the cases with a confidence 100% in belonging to
the class, the confidence regarding the other three classes
is zero; however, for the other cases, the report gives a low
percentage value for the other classes.

If we try to understand the classifier’s criteria for selecting
one area of the image or another, we can observe two clearly
differentiated cases among all the heat maps of the complete
test subset (of which the samples shown in Fig. 8 are its main
exponents):

• Samples with solid, large cell concentrations and showy
shades: This is the case shown in Fig. 8(top), where the
classifier concentratesmainly on areaswith cells. In these
cases, the accuracy results are higher than 99. 5% for all
samples in the test set.

• Samples with low or no cell concentration: this is the case
shown in Fig. 8(bottom), where the classifier, having no
cells to focus on, focuses its attention on the background
of the sample, looking for uniformity. This phenomenon

Fig. 8 Reports obtained from NEG class samples: (top) one of the best cases with a 100% confidence; (bottom) the worst case with a 95.7%
confidence
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only occurs in the samples of this class and in some sec-
tions of the samples of the HIGH class (that is why, in the
Fig. 8(bottom) report, a 4.30% confidence of belonging
to the HIGH class is indicated).

For this class and the test set used, there are no circum-
stances in which the confidence percentage is too low; but if
it were the case, a low percentage could be a warning sign
for the health professional to manually analyze such a case.

3.4.2 Low lesion cases reports

The accuracy obtained for this class is also 100%; this means
that all samples are correctly classified and, furthermore, no
sample from another class is classified as this one. In the
reports for all samples, no cases with a confidence result of
100%are found; however, the results obtained for all samples
range between 99.24 and 99.99%, making it a more stable
class than the previous one. The reports of two samples that
represent two different cases are presented in Fig. 9.

In this figure, it can be seen that the samples of this class
have the particularity of still presenting large cell forms (sim-
ilar to the samples of the NEG class) but include a higher
concentration of lymphocytes (blue particles), which are
immune cells. Based on how this concentration is found in
the sample, there are two cases (depicted in Fig. 9):

• Samples with a dispersed lymphocyte concentration:
This corresponds to the case in Fig. 9(top). In these situ-
ations, with low lymphocyte concentrations, the sample
could be mistaken for one of the NEG class. In our case,
the classifier distinguishes them all perfectly, but there

is a very low percentage of belonging to the NEG class
(less than 1%).

• Samples with a concentration of lymphocytes focused on
certainareas: thiscorresponds to thecase inFig. 9 (bottom).
In these circumstances, it may be mistaken for a more
severe case of the lesion if the classifier looks only at areas
with a high concentration of lymphocytes. However, our
classifier focuses on the overall concentration (as shown
in the heat map) and, therefore, correctly classifies these
types of samples as well. However, it can be seen that
there is a slight percentage of confidence assigned to
the carcinoma class (less than 1%); however, in other
samples, this small percentage is distributed between the
HIGH and carcinoma classes.

Therefore, in this class, there are no circumstances in the
complete set that would lead to confusion of the classifier.

3.4.3 High lesion cases reports

This class is the only one in the dataset with false negatives
so that 10% of its samples (3 of 30 in the set used) are incor-
rectly classified as belonging to the carcinoma class. Thus,
the accuracy value of this class is 97.5% (because, although
it has false negatives, there are no false positives).

Therefore, in the reports generated for this class, we can
find cases of misclassification and, in certain circumstances,
correct classifications with a lower percentage of confidence
than usual. Figure 10 shows the three different cases that can
be found in the entire test suite. These cases are described as
follows:

Fig. 9 Reports obtained from
LOW-class samples: both cases
but differentiated due to
lymphocytes concentration
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Fig. 10 Reports obtained from
HIGH-class samples: in this
case, three cases are shown
depending on the classifier
behavior

• Samples with a high concentration of lymphocytes, no
presence of high cells, and some zones with a blank back-
ground: this is the case in Fig. 10(top). These cases are
distinguished from NEG class samples due to the large
cells that appear in NEG class; and they are distinguished
from LOW-class samples due to the fact that the concen-
tration of lymphocytes is more chaotic in HIGH class,
including the presence of dispersed blank areas.

• Samples with a medium concentration of lymphocytes
and large blank areas: this is the case in Fig. 10(middle).
In this case, since the lymphocyte concentration is not
uniform, these samples are not mistaken with LOW-class
samples; but due to the cases of large blank areas present
in some samples of the NEG class, the confidence of
these samples is significantly reduced to confidence val-
ues from80 to 90%.However, these samples are correctly
classified as they have no large cells (like the samples of
the NEG class), but it can be observed in Fig. 10(middle)
how the confidence of belonging to the class is reduced
to 87.5% (and the rest of the confidence is deposited in
the NEG class).

• Samples with a high concentration of lymphocytes with-
out large blank areas: this is the case of Fig. 10(bottom),

and these are the samples that are incorrectly classi-
fied as belonging to the carcinoma class. As will be
seen in the next subsection, this sample resembles the
carcinoma class samples. However, the carcinoma class
has other elements that distinguish it, but at low con-
centrations, and that is why, although these samples are
classified as belonging to the carcinoma class, the confi-
dence percentage is low. This phenomenon can be seen
in Fig. 10 (bottom), where the confidence of belonging
to the carcinoma class is 55.42%, while the rest of the
confidence is entirely in the HIGH class.

Therefore, the first and only classification faults of the
proposed classifier are found in this class. The reason for
these failures is due to the similarity of some samples of
severe tissue lesions with the presence of carcinoma.

3.4.4 Squamous cell carcinoma cases reports

In the latter class, all samples are correctly classified. How-
ever, due to false positives caused by samples from the HIGH
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Fig. 11 Reports obtained from
SCC class samples: two cases
with different behaviors

class (classified as belonging to this class), the accuracy value
is reduced to 97.5%.

Therefore, the reports of all the samples in the test set
obtain confidence percentages between 91.83 and 100%.
Both extreme cases are shown in Fig. 11. On this occasion,
we find that all the samples contained in the testing subset
are divided into two distinct cases:

• Samples with a high concentration of lymphocytes, no
blank areas, and the presence of some red cells: this is
the case in Fig. 11(top). In these samples, the classifier
perfectly distinguishes the class to which they belong. It
is true that in certain samples of the HIGH class there
was also a high concentration of lymphocytes, but usu-
ally, large bank areas could also be observed; it was only
in cases where these areas were not distinguishable that
the classifier was wrong (and assumed that they were car-
cinoma samples). However, in this case, the presence of
red cells is decisive for the system to give 100% confi-
dence in the classification.

• Samples with a high concentration of lymphocytes and
some large blank areas: this is the case in Fig. 11(bottom).
These samples show characteristics similar to those of
some samples in the HIGH class (such as the appearance
of blank areas), but if the sample in Fig. 10(bottom) is
compared with the sample in Fig. 11(bottom), it can be
seen that the concentration of lymphocytes in the SCC
class is higher,with areas of very high concentration over-
lapping and blurring. Not surprisingly, although these
samples are correctly classified, they are the ones that

obtain the lowest percentage of confidence in the final
report (values between 91.83 and 95%), with the rest of
the confidence given to the HIGH class.

Ultimately, this class is classified correctly and only
presents problems of false positives due to the similarities
of some samples from the HIGH class.

At this point, the analysis of each class individually has
been completed; however, it is interesting to recapitulate
and aggregate the observed behavior to detail the overall
classification criteria according to the samples and reports
analyzed.

In general, samples with a large cell presence and a uni-
form background are classified as normal. For the other
classes, it is the concentration of lymphocytes that distin-
guishes them; however, in low lesions, large cells are also
found on certain occasions (which helps to distinguish these
samples from high lesions). In cases of high concentration,
this is where the classifier errors are caused by assuming
that severe cases of the HIGH class belong to the carcinoma
class.

This complete analysis is possible thanks to the applica-
tion of explainable deep learning techniques on the developed
classifier, and it is essential information for the healthcare
professional who, in cases of low system confidence, may
decide to carry out a personal study to verify or refute the
diagnosis made by the classifier. Therefore, this shows that
this type of technique brings added value to diagnostic sup-
port systems and can help drastically reduce the time required
for mass screening of the population.
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4 Conclusions

In this work, a detailed study regarding the detection of cer-
vical cancer using liquid cytology images and analyzed with
artificial intelligence techniques has been performed. A bib-
liographic study has been carried out to obtain information
on advances in the area and to use this study as a starting
point for this work.

Based on it, two convolutional neural network-based clas-
sifiers (for 2 and 4 classes) have been developed to facilitate
mass screening of the population using images obtained from
liquid cytology samples, providing a classification based on
the Bethesda system.

The results obtained have been compared with the pre-
vious works, studying both the efficiency of the classifiers
and their complexity. It can be seen that the 2-class clas-
sifier obtains an accuracy result of 100% with an AUC of
100%, which improves all the 2-class classifiers of previ-
ous works. And the developed 4-class classifier obtains an
accuracy result close to 98% with AUC values from 97.4 to
100% depending on the class. These results improve those
obtained in previous works with one single exception; but,
for that case, our work is more efficient (as it uses less than
10% computational resources).

Finally, this work applies xAI techniques to present a
detailed report to the health professionals to help in the diag-
nosis task: it includes a graphical representation of the heat
map showing the areas of the image that have triggered the
classification result and a detailed report of the confidence
of the system in the results provided. This report generator
module is an essential addition to this type of system, as it
provides very useful information for the healthcare profes-
sional. Thanks to it, the pathologist will be able to ensure
the veracity of the results, and, reducing the time needed to
perform mass screening in the population.

In summary, the four strengths of this work are the system-
atic optimization process, the high classification results, the
low computational requirements required, and the detailed
report generation.

Regarding the limitations of the proposed classifiers, it
should be noted that the dataset used does not have a
large number of images, it is partially unbalanced and all
the images were taken from the same medical instruments.
Therefore, data augmentation techniques had to be applied
to solve these problems. Even so, in order to consolidate
the results obtained, it would be essential to carry out this
study on a larger dataset, that include images from differ-
ent hospitals, in order to avoid the use of data augmentation
techniques.

Finally, thanks to the good results obtained in the study of
execution times carried out, a new research branch is opened
as a continuation of this work, centered on the integration of
the classifier developed in an embedded system.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11517-024-03063-
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