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Abstract
Telehealth demand is rapidly growing along with the necessity of providing wide-scale services covering multiple patients 
at the same time. In this work, the development of a store-and-forward (SAF) teledermoscopy system was considered. The 
dermoFeatures profile (DP) was proposed to decrease the size of the original dermoscopy image using its most significant 
features in the form of a newly generated diagonal alignment to generate a small-sized image DP, which is based on the 
extraction of a weighted intensity-difference frequency (WIDF) features along with morphological features (MOFs). These 
DPs were assembled to establish a Diagnostic Multiple-patient DermoFeature Profile (DMpDP). Different arrangements 
are proposed, namely the horizontally aligned, the diagonal-based, and the sequential-based DMpDPs to support the SAF 
systems. The DMpDPs are then embedded in a recorded patient-information signal (RPS) using a weight factor β to boost 
the transmitted patient-information signal. The effect of the different transform domains, β values, and number of DPs within 
the DMpDP were investigated in terms of the diagnostic classification accuracy at the receiver based on the extracted DPs, 
along with the recorded signal quality evaluation metrics of the recovered RPS. The sequential-based DMpDP achieved the 
highest classification accuracy, under − 5 dB additive white Gaussian noise, with a realized signal-to-noise ratio of 98.79% 
during the transmission of 248 DPs using β = 100, and spectral subtraction filtering.
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1 � Introduction 

The COVID 19 pandemic motivated the use of widespread 
telemedicine and tele-consultation to mitigate waiting lines in 
hospitals/clinics and to avoid its spreading and infection [1]. 
Telemedicine changes the communication between physicians, 
as well as the physicians and their patients. Since skin diseases 
have a variety of types starting from cancer-related to non-
cancer-related diseases, the development of a teledermoscopy 

system is critical to prevent, diagnose, and treat skin diseases 
remotely without direct interaction [2]. Teledermoscopy is 
considered an economically feasible choice to achieve tel-
ehealth sessions to diagnose skin diseases, including melano-
cytic lesions leading to optimized care with accurate diagnosis 
comparable to in-person diagnostic visits [3–6]. Several studies 
confirmed the superiority of the teledermoscopy diagnostic 
capacity as opposed to the in-person diagnosis which has the 
drawback of mishandling melanoma cases [7–9].

Teledermoscopy requires the transmission of the skin 
disease historical data along with the examination in the 
form of clinical data and dermoscopic images [10]. The most 
common teledermoscopy system is based on store-and-for-
ward (SAF) transmission for consultation by sending the 
dermoscopic image of the unusual skin lesion accompanied 
by the patient data through a secure web service to an expert 
[11]. Subsequently, the treating physician retrieves the trans-
mitted images and data and then sends back a diagnosis, 
treatment guidance, or a therapy plan. Constantly, the SAF 
teledermoscopy systems allow expert decisions in excessive 
demand situations or remotely.
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Teledermoscopy systems have several requirements for 
the monitoring of chronic cases with recurrent follow-up 
and continued treatment, including the capability to trans-
mit multiple images for the same patient captured over sev-
eral time instances, transmit multiple images for different 
patients simultaneously, avoid telecommunication channel 
congestion, reduce delay, and provide protected data trans-
mission. Thus, several requirements and pre-conditions 
should be considered while realizing a teledermoscopy sys-
tem, including safety, data encryption, storage, network pro-
tection, easy accessibility, and reliable/accurate diagnosis. 
Also, patients’ recorded information must be provided for 
guiding the final diagnoses, including patient demographics 
(e.g., name, age, gender); the patient history (e.g., family 
history of skin disease, sun exposure, symptoms and com-
plaints, history of tumors, allergies); and the skin lesion’s 
description (e.g., number of lesions, surface, size, borders, 
shape, distribution, location, color) [2].

2 � Related work

To support teledermatology, the efficient storing and self-
assessment of skin lesions was introduced based on a smart-
phone teledermoscopy system [12]. This system acquired, 
identified, and classified the different skin images into 
melanoma, benign, and nevus lesions with transmission 
size reduction. Along with the requirement to preserve the 
communication channel bandwidth, robust behavior against 
security attacks is also essential in teledermoscopy systems, 
which can be achieved using watermarking procedures. 
Jamali et al. [13] employed the singular value decomposition 
(SVD) with the discrete cosine transform (DCT) and the dis-
crete wavelet transform (DWT) in embedding a watermark 
in the medical images. Also, several methods have been 
proposed for achieving secure transmission in telemedicine 
systems based on wavelet watermarking [14–17]. However, 
these methods mainly targeted patient identification and 
authentication, while other methods targeted tamper detec-
tion [18, 19].

On the other hand, Khaldi et al. [20] presented a fre-
quency-domain watermarking method for hiding electronic 
patient records in their electrocardiogram signals. The sig-
nal was transformed into a 2D image, and the frequency 
content of the image was extracted using the integer 
wavelet transform. Then, Schur decomposition was used 
to acquire the coefficients, and the watermark bits were 
integrated by altering the least significant bit of the gener-
ated Eigenvalues. Khudhair et al. [21] proposed a revers-
ible data hiding technique based on the histogram bin 
distribution of the cover image, also, the secret data were 
encrypted before embedding to further strengthen secu-
rity. Generally, many researchers have proposed different 

multimedia securing techniques based on watermarking, 
such as watermarking based on contourlet transform (CT) 
and singular value decomposition (SVD) [22], chaotic 
maps [22–25], and range image watermarking [26].

The standardization of the dermoscopic image quality 
for efficient transmission and reception is considered a key 
factor in implementing any teledermoscopy system. Arz-
berger et al. [27] mentioned that images having 800×600 
pixel resolution are sufficient, with perfect recommended 
resolution 1024×768. In the traditional SAF, the digital 
pictures of skin lesions in the form of the traditional der-
moscopy image are transmitted along with the patient’s 
clinical data to the dermatologist through the intranet or 
internet using relatively long transmission time and high 
transmission bandwidth.

The key motivation for the present work is to resolve the 
transmission limitation due to the large transmission size 
of dermoscopic images through the traditional SAF system 
even after compression, especially in the case of trans-
mitting multi-dermoscopic images for the same patient 
or multiple images for different patients at the same time 
along with other patient’s information. These scenarios 
affect the performance of the teledermoscopy systems 
since the transmission channel bandwidth as well as the 
image quality are highly affected. In the proposed system, 
a new framework for the dermoscopic image presentation 
is engaged to reduce the size of the transmitted dermos-
copy image along with the patient’s information, and an 
innovative representation of the dermoscopic image is 
proposed, the Diagnostic Multiple-patient DermoFeature 
Profiles (DMpDP), based on the small unit representing a 
single dermoscopy image which is called DermoFeature 
Profile (DP).

Hence, the main highlights covered by this work can be 
summarized as follows:

•	 Proposing a novel DP which is an innovative compact 
form of the original dermoscopy image to substitute the 
need of transmitting high-resolution dermoscopy images 
through SAF teledermoscopy systems.

•	 Presenting a new diagnostic SAF dermoscopic image 
representation for telemedicine that can be used directly 
as the main support for the physician in a secure manner.

•	 Transmitting the patients’ information along with the 
DP or DMpDP as a recorded patient-information signal, 
called RPS by embedding the DP or DMpDP in the RPS.

•	 Collating multiple DPs in different forms composing 
the DMpDP to represent the medical cases of multiple 
patients.

•	 Transmitting the DP or the DMpDP as an embedded 
watermark in the RPS, which provides integrated, com-
pact and secure representation for the patient(s) case file 
at the receiver diagnostic side.
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Accordingly, the organization of this paper is as fol-
lows. Section 2 reports the significant related studies. Then, 
Sect. 3 introduces the methodology of the proposed SAF 
teledermoscopy system. In Sect. 4, the results of different 
experimentation scenarios are reported. In Sect. 5, the pro-
posed system performance is compared to state-of-the-art 
studies. Finally, the conclusions are presented in Sect. 6.

3 � Materials and methods of the proposed 
SAF teledermoscopy system

A dataset of 1400 images equally covering four classes was 
used. The dataset included benign Keratoses lesions, basal 
cell carcinoma, melanoma, and melanocytic nevi classes 
with 350 images per class. The used dataset was obtained 
from the “ISIC 2018: Skin Lesion Analysis Towards Mela-
noma Detection” grand challenge datasets [28, 29]. In addi-
tion, we synthetically recorded patients’ information through 
audio signals to simulate the real-time scenarios, where the 
patient or the physician on the transmitter side records the 
symptoms, a description of the lesion, and/or any required 
clinical/ historical data related to the transmitted images. 
Then, the DP images were embedded in these recorded sig-
nals (RPS) for transmission.

The proposed system includes several stages: (i) DP 
generation including dermoscopy image enhancement, seg-
mentation, feature extraction, and selection to provide an 
accurate diagnosis, as an expert system, using the generated 
DMpDP; (ii) DMpDP formation; (iii) DMpDP embedding 
in the patient-information recorded signal; (iv) filtering; (v) 
DMpDP extraction from the watermarked signal; (vi) DP 
extraction; and (vii) classification using a pre-trained clas-
sifier. Each of these stages will be explained in the following 
subsections.

3.1 � Generation of proposed Diagnostic 
Multiple‑patient DermoFeature Profile 
at the transmitter

The DMpDP was generated at the transmitter edge repre-
senting the main features of the dermoscopic images under 
examination. The unit of the DMpDP is the DP, which repre-
sents the generated diagonal-aligned features for one patient 
for a single instance. The generation of a single DP involves 
the application of sequential image-processing steps to pro-
cess the original high-resolution dermoscopy image, which 
includes image enhancement, area-of-interest segmenta-
tion, feature extraction and selection, and diagonal repre-
sentation. For image enhancement, the original/traditional 
(high resolution) dermoscopy image was preprocessed for 
artifact removal using DullRazor [30] and median filtering. 
Subsequently, the lesion was detected using wavelet-based 

segmentation [31]. Several geometric and color features 
were extracted from the detected lesion to represent its mor-
phological characteristics [32], in addition to its textural fea-
tures. The weighted intensity-difference frequency (WIDF) 
was extracted for the textural representation of the lesion. 
Those features estimate the smoothness of any given lesion 
based on the difference in the intensity levels between the 
pixel pairs inter-sampled at a given distance between the pix-
els and orientation. For this purpose, the frequency of inten-
sity differences from 0 to ξ within the image was estimated, 
where ξ is the number of intensity levels (e.g., ξ = 256 for 
grayscale image). Then, these frequencies were weighted 
by weights that decrease as we quantify the frequencies of 
higher intensity differences. Hence, the WIDF at a given 
inter-sample distance δ and a given orientation θ is given as:

where fi is the frequency of the intensity difference i for 
the pixels inter-sampled by distance δ and orientation θ in 
a given image. Accordingly, the frequencies of the small 
intensity differences were assigned higher weights compared 
to the higher intensity differences to describe the textural 
similarity within the lesion. In addition, morphological fea-
tures (MOFs) were extracted from the original dermoscopic 
image. These include the solidity index SI , the contour steep-
ness CT , the geometric index GI , and the pigment deviation 
PD [33]. The solidity index can be calculated using the fol-
lowing equation:

where PP is the lesion perimeter and At is its total area. 
The contour steepness CT is the distance from the centroid 
to any point on its perimeter. It is based on the different 
radial distances of the irregular borders of the lesion. CT 
was calculated using the variance of the radial distances by 
initially determining the location of the binary lesion mask’s 
centroid. Then, a convolutional 2-D filter was used to scan 
the lesion for locating the points on the lesion perimeter. For 
each point on the lesion’s perimeter, the radial distance Dr 
was calculated using the following equation:

where ca and cb are the coordinates of the centroid, while a 
and b are the coordinates of the point on the lesion perime-
ter. Finally, CT was calculated as the variance of the obtained 
radial distances normalized by the mean radial distance.

The geometric index indicates the complexity of frac-
tal patterns by measuring how the details change with 

(1)
WIDF�,� =

�−1
∑

i=0

(� − i)fi

�
,

(2)SI =
PP2

4ΠAt

(3)Dr =

√

(a − ca)
2
+ (b − cb)

2
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the scale. Thus, box-counting was used, where the lesion 
boundary was determined and then covered with a grid to 
count the number of the occupied boxes at that grid. This 
process was repeated using a finer grid with smaller boxes 
until accurately capturing the structure of the pattern. The 
geometric index can be formulated as follows:

where NB is the number of the smallest boxes that covered the 
edge line, and LB is the inverse of the smallest box side length.

The aforementioned MOFs were calculated from the 
binary lesion mask, while the pigment deviation was cal-
culated from the colored image. The pigment deviation 
indicates whether the transition between the skin lesion 
and the surrounding skin is fading slowly or does it have a 
steep change, which is considered as a warning sign. It was 
calculated from the mean and variance of the luminance 
gradient over the lesion’s boundary by converting the RGB 
segmented lesion into the HSV plane, then measuring the 
gradient of the V channel and calculating its mean VM and 
variance VV . Diameter, asymmetry, and color features were 
also extracted [34].

Subsequently, the most discriminative features were 
selected using the supervised infinite feature selection 
(Inf-FS) technique [35]. This resulted in the selection 
of 7 significant features, namely the four WIDF features 
( WIDF10,0,WIDF10,45,WIDF10,90,WIDF10,135), the diameter, 
the geometric index, and the contour steepness. These seven 
features were diagonally aligned to form the single DP.

After features were extracted, watermarking was 
deployed in the proposed guided SAF teledermoscopy 
system for hiding the diagnostic profiles that represent the 
image features in the recorded patient-information signal 
(RPS). A diagonal alignment of the selected feature vector 
was proposed to simplify the watermarking extraction pro-
cess at the receiver using the proposed compacted singular 
value decomposition-based watermarking. In the present 
work, multiple DPs were gathered to form the DMpDP, 
serving many patients in the proposed guided SAF system. 
Then, the DMpDP was embedded into the RPS before its 
transmission.

3.2 � Compacted singular value decomposition 
(SVD)‑based watermarking

Since SVD is commonly used for watermarking, the singu-
lar values are robust against attacks and have high resilience 
when the image is affected by small perturbations [36]. The 
SVD watermarking was used in this proposed system, where 
the generated DMpDP was embedded in the one-dimensional 
(1D) RPS. Different transform domains were investigated for 

(4)GI =
log(NB)

log(LB)

the watermarking process. Afterward, at the receiver edge, a 
reverse procedure was implemented to extract the DMpDP 
from the watermarked recorded signal.

3.2.1 � DMpDP embedding process

The proposed DMpDP was embedded into the RPS, after 
converting the recorded signal from the time domain into a 
frequency domain using discrete cosine transform (DCT), 
discrete sine transform (DST), or discrete wavelet transform 
(DWT). In the present work, three forms of DMpDPs were 
presented, including the horizontally aligned DMpDP, the 
sequential-based DMpDP, and the diagonal-based DMpDP.

The first form is the horizontally aligned DMpDP, where 
the DMpDP is formed using two separated DP for the same 
patient or different patients (Fig. 1).

Each of the DPs in the horizontally aligned DMpDP was 
embedded in the recorded signal separately with a pre-deter-
mined spacing μ between the different DPs. Since the water-
mark P is the 2-D dimensional 7 × 7 2D matrix representing 
the DP “image” R, an RPS segment of 49 samples is required 
to embed each DP.

The second form is the diagonal-based DMPDP, where the 
DMpDP contains N different DPs arranged in a sequence of 
diagonal forms to obtain the diagonal matrix P (Fig. 2).

The matrix P of the DMpDP was embedded into the 
recorded signal. Since P is two-dimensional with size 7N × 7N, 
the required signal segment content for embedding includes 
49N2 samples, where this segment was extracted from the 1D 
transformed recorded signal.

The third form is the sequential-based DMPDP, where the 
DMpDP contains N different DPs arranged in a horizontal 
sequence to obtain the sequential matrix “image” P. In this form, 
the different DP images are arranged sequentially (Fig. 3).

The image P of the DMpDP was embedded into 
the recorded signal. Since the matrix P has dimension 
7 M × 7 M, where M = N/2, a signal segment of 49M2 sam-
ples is required for embedding.

Accordingly, the size of the generated DMpDP image and 
the number of the required samples in the recorded signal in 
the case of the sequential-based DMpDP and the diagonal-
based DMpDP is given as:

where M = N in the case of the diagonal-based DMpDP, and 
M = N/2 in the case of sequential-based DMpDP, N is the 

(5)L = 49M2
,

Spacing Spacing

Fig. 1   The proposed horizontally aligned DMPDP representation
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number of DPs. Using the horizontally aligned DMpDP, M = N 
and the size of the generated DMpDP image as well as the 
required number of samples in the recorded signal is as follows:

where μ is the distance “spacing” between the DPs, (μ = 25 
provides the best classification accuracy). From the previous 
forms of the DMpDP, the recorded speech signal is either 
utilized in the time domain DST, DCT, or DWT. After that, 
the recorded signal was divided to take the part in which the 
number of sample properties with the size of the embedding 
watermark and converted it from 1 to 2D to obtain R matrix. 
Then, the traditional SVD was applied to the R matrix.

where U, S, and V are the left singular, the singular, and the 
right singular vectors for the R matrix, respectively. Where 
U, and V are considered as orthogonal matrices. Then, the 
watermark matrix P was inserted to the S matrix of the R 
matrix.

where α is the controlling scale factor of the watermark’s 
strength. Then, the matrix D was decomposed using SVD:

where Uw , Sw , and Vw are the left singular, the singular, and 
the right singular vectors for the watermarked matrix D, 
respectively. Subsequently, the watermarked recorded signal 

(6)L = 49M + �(M − 1),

(7)R = USVT

(8)D = S + �P,

(9)D = UwSwV
T
w
,

Rw were obtained by utilizing the modified Sw matrix, as 
follows:

Then, the 2D watermarked recorded signal ( Rw matrix) 
was converted into a 1D vector. The 1D watermarked 
recorded signal part was returned to its position in the totally 
transformed recorded signal. Finally, to obtain the transmit-
ted 1D watermarked recorded signals. Then, the inverse 
transform domain was applied if the recorded signal was 
performed in the transform domain.

3.2.2 � De‑embedding process of DMpDP

At the receiver edge, the transmitted DMpDP was extracted 
from the received RPS through the de-embedding process. 
IF Uw , Vw, and S matrices are shared separately as images 
between the receiver and transmitter sides to extract the 
DP correctly in the form of R∗

w
 , the transform domain was 

applied on the received RPS, if the transform domain was 
accomplished in the embedding process at the transmitter, 
then converted it from 1 to 2D. Using SVD. Consequently, 
the SVD was applied in the R∗

w
 matrix:

The DMpDP is obtained as:

Figure 4 demonstrates the SVD-based watermark embed-
ding and de-embedding process.

3.3 � Guided SAF teledermoscopy system using 
the Diagnostic Multiple‑patient DermoFeature 
Profile

In the proposed DMpDP-based guided SAF teledermos-
copy system, a CAD (computer-aided diagnosis) system 

(10)Rw = USwV
T

(11)Rw
∗ = U∗S∗

w
V∗T

,

(12)D∗ = UwS
∗

w
Vw

T
.

(13)P∗ =
D∗ − S

�
.

Fig. 2   The proposed diagonal-based DMPDP representation

Fig. 3   The proposed sequential-
based DMPDP representation
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is employed based on the DMpDPs. Several operation 
modes can be applied using the proposed system, namely 
the patient-physician mode, the patient-system mode, the 
physician-physician mode, and the physician-system mode.

In the patient-physican mode, the patient captures one 
image or a sequence of images for the suspicious lesion. Then, 
these images are transformed into the proposed DMpDP and 
inserted as a watermark in a recorded patient information 
record. The watermarked RPS is transmitted over the tel-
edermoscopy channel to the physician, who exploits both the 
retrieved DMpDP and RPS in performing this diagnosis. The 
proposed system provides the classification results as guidance 
to the physician for the final decision. Hence, in the patient-
system mode, the user (i.e., the patient) receives the diagnosis 
based on the proposed automated classification decision of the 
pre-trained classifier using the retrieved DMpDP only.

In the physician-physician mode, also known as the con-
sultation mode, the DMpDPs representing the lesions of 
multiple patients or a single patient over some time are trans-
mitted to a remote physician or medical facility for a second 
opinion. In this case, the DMpDP is embedded in an RPS 
which carries more refined medical information, such as the 
patient(s) demographics, the patient(s) history, symptoms/
complaints, and the history of the patient(s) tumors. There-
fore, the remote physician can provide the diagnosis based 
on his/ her expertise in addition to the proposed automated 

classification decision, which acts as a decision support sys-
tem to guide the physician. Nevertheless, in the physician-
system mode, the physician receives the automated diagno-
sis for the patient(s) from the pre-trained classifier based on 
the DMpDP only. Figure 5 outlines the workflow of the pro-
posed DMpDP-based guided SAF teledermoscopy system.

The transmitter is responsible for the formation and embed-
ding of the DMpDP in the RPS. As it is shown by the dotted 
box in Fig. 5, each fed high-resolution original image is initially 
processed to obtain its corresponding DP. Image enhancement, 
ROI segmentation using wavelet transform-based thresholding, 
and extraction of selected features are performed sequentially for 
each original image. Then, the feature vector is aligned diago-
nally forming the DP for a single image. As the proposed system 
targets the collation of a group of DPs for providing a wide-scale 
service, the generated DPs are organized into the sequential-
based DMpDP form. The DMpDP is embedded in the recorded 
patient-information signal using the DWT transform-based SVD 
watermarking technique before transmission over the teleder-
moscopy channel. The received data is stored in a database 
which is accessed by the receiver’s workstation for checking 
the upcoming requests and responding to them, in addition 
to the experimentation and surveying purposes. Accordingly, 
the received watermarked signal at the receiver is processed at 
the filtering stage followed by extracting the watermark (i.e., 
DMpDP) and retrieving the RPS using the SVD watermark 

Fig. 4   SVD-based watermark 
embedding and de-embedding 
process
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extraction technique. The DPs are extracted and fed to the pre-
trained second-order polynomial support vector machine classi-
fier to produce the automated decision. In the patient-physician 
and physician-physician modes, the medical information in the 
RPS is employed to provide the final decision to the user.

3.4 � Evaluation metrics

The performance of the horizontally aligned DMpDP, the 
diagonal-based DMpDP, and the sequential-based DMpDP 
were studied in respect of the recorded signal quality metrics 
of the SVD-watermarked RPS for different domains: time, 
DWT, DST, and DCT using the log-likelihood ratio (LLR) 
which is used in the statistical hypothesis testing to measure 
the strength of evidence for the original speech signal com-
pared to the watermarked speech signal

where ls and ly are the coefficient vectors for the LPC for the 
original and the watermarked recorded signals, respectively. 
Ry matrix is the autocorrelation of the watermarked speech 
signal. Also, the spectral distortion (SD) quantifies the dif-
ference between the original spectral content of a speech 
signal and the watermarked spectral content.

(14)LLR =

|

|

|

|

|

log

(

lsRyls

lyRyly

)

|

|

|

|

|

(15)SD =
1

N

N−1
∑

0

nsm+ns−1
∑

k=nsm

|S(k) − Y(k)|

where S(k) and Y(k) are the original spectra and wat R 
ermarked recorded signal spectra in dB. The signal-to-
noise ratio (SNR) measures the ratio of the power or 
energy of the original speech signal to the mean square 
error between the original and the watermarked speech 
signal, and the RPS correlation coefficient Cs evaluates 
the correlation between the original and watermarked 
speech signal. Also, the integrity of the extracted water-
mark (i.e., DMpDP) using the SVD at the receiver end 
was evaluated using the watermark correlation coefficient 
Cw.

Moreover, the presented system was evaluated with the 
existence of an additive white Gaussian noise (AWGN) 
attack for the teledermoscopy channel. The AWGN attack 
involves injecting random noise into the watermarked sig-
nal to degrade the quality of the watermark or render it 
undetectable. However, an attacker may try to undermine 
the effectiveness of the watermark by introducing AWGN 
to the watermarked signal. AWGN is a form of noise that 
conforms to a Gaussian distribution, exhibiting random 
amplitude and a consistent power spectral density across 
all frequencies. Since the noise was added to the original 
watermarked signal, it is considered additive. The attack-
er’s goal in adding AWGN is to corrupt the embedded 
watermark and make its accurate extraction more difficult. 
The attacker introduces random noise to the watermarked 
signal, with the noise level or intensity typically specified 
using SNR, often measured in decibels (dB).

Fig. 5   The proposed DMpDP-based guided SAF teledermoscopy system
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4 � Results

The CAD system was trained using five-fold cross-vali-
dation. The feature selection process ranked the extracted 
WIDF and MOF feature sets to pick the most significant 
features. The experiments established the high perfor-
mance of the second-order polynomial SVM using the 
selected features resulting in high classification accuracy. 
The SVM model used the sequential minimal optimization 
solver and had a box constraint value of 1, a kernel scale 
of 1, and a kernel offset of 0. The performance of the dif-
ferent formations of DMpDPs was studied in respect of 
the recorded signal quality metrics of the watermarked 
RPS for different domains: time, DWT, DST, and DCT 
using the log-likelihood ratio (LLR). Moreover, the pre-
sented system was evaluated with the existence of the 
AWGN attack for the teledermoscopy channel. Figure 6 
displays sample high-resolution dermoscopy images from 
our dataset in addition to sample DMpDPs in horizontally 
aligned, diagonal-based, and sequential-based forms. Fig-
ure 6d represents the sequential-based form for the four 
sample images, however, with a larger number of images, 
the remaining rows of the DMpDPs shall hold the DPs for 
the corresponding images.

We aimed to discover the best of the DMpDP, the best 
transform domain for the SVD watermarking in terms of RPS 
quality and extracted watermark integrity, the optimal num-
ber of collated DPs within the DMpDP, and the effect of the 

α and β values on the system performance with the existence 
of AWGN attack where α is the weight of embedding the 
watermark on the speech signal and β is the weight multiplied 
by the RPS signal to amplify it before the embedded process. 
Four scenarios were implemented to investigate them.

4.1 � Scenario (0): Study the effect of spacing 
between the DPs of the horizontally aligned 
DMpDP using α = 0.01 and β = 1 on RPS quality

For this scenario, the dataset images were divided into two 
subsets: the first was used to generate the first (i.e. leftmost) 
DP, while the second was used to generate the second (i.e. 
rightmost) DP to present a two-DP horizontally aligned 
DMpDPs (Fig. 1). The SVD transform-based watermarking 
of the proposed horizontally aligned DP involves two main 
factors: the selected transform domain of the watermarking 
technique and the effect of the spacing (i.e., number of sam-
ples) between the two embedded DPs in the RPS on the RPS 
quality. Hence, the different transform domains were inves-
tigated in addition to the effect of different spacing values 
on the recorded signal quality. Spacing values of 0, 25, 50, 
and 75 samples were considered. In this scenario, α = 0.01 is 
used to reduce the watermark weight, while preserving the 
weight of the RPS by assigning β = 1.

The main purpose of scenarios (0) and (1) is to assess the 
RPS quality metrics for the lowest watermark weight, as an 
initial validation for the proposed concept. Figures 6, 7, and 
8 demonstrate the average values for SNR, SD, and LLR 

Fig. 6   Sample dermoscopy images and their corresponding DMpDPs, where dermoscopy images (a); horizontally aligned DMpDPs (b); diago-
nal-based DMpDPs (c); and sequential-based DMpDPs (d)
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of the watermarked RPSs used over all the dataset using 
the horizontally aligned DMpDP for different embedding 
transform domains and spacing values.

Figure 7 demonstrates that the highest average SNR value 
106.8 was obtained using DST-based SVD watermarking, 
while the DCT, DWT, and time domains resulted in nearly 
similar average SNR values of approximately 66.4.

Figure 8 shows that the DST-based SVD achieved the least 
average SD of nearly 5×10–5. Higher SD values were obtained 
using the time, DCT, and DWT domains, such that the least 
SD value obtained using the DCT-based SVD was 0.0055, fol-
lowed by the time-based SVD having a minimum SD 0.0072, 
while the DWT-based SVD achieved a minimum SD 0.0086.

Figure 9 shows that the least average values of the LLRs 
were obtained using the DWT and the DST domains, having 
a minimum 1.77 × 10–5 and 5 × 10–5, respectively.

From Figs. 7, 8, and 9, it can be concluded that the DST-
based SVD watermarking achieves the most optimal recorded 
signal quality metrics. In terms of spacing, Figs. 8 and 9 indi-
cate the least SD values using the DST-based SVD water-
marking for spacing 25, followed by spacing 0, 50, and 75. 
The least LLR values using the DST-based SVD watermark-
ing were obtained for spacing 50, 25, 0, and 75. However, the 
given spacing values had a minor effect on the SNR values 
as displayed in Fig. 7. Yet, the recorded signal correlation 
coefficient Cs = 1 in all of the previous cases due to the low 
value of α. By considering these findings, it is concluded that 
a spacing value 25 represents a fair compromise between the 
RPS quality metrics using the DST-based SVD watermarking.

4.2 � Scenario (1): Study the effect of the number 
of DPs in the horizontally aligned DMpDP using 
spacing 25 samples, ̨ = 0.01 and β = 1 on RPS 
quality

Scenario (1) aims to investigate the effect of the number of 
DPs within the proposed horizontally aligned DMpDP on 
the recorded signal quality metrics to conclude the maximum 

number of DPs that can be collated within the horizontally 
aligned DMpDP. In scenario (0), two DPs were collated to 
form a single horizontally aligned DMpDP. However, in sce-
nario (1), the effect of having 12, 48, 96, and 248 DPs per 
DMpDP on the RPS quality for spacing 25 was investigated 
and applied for all dataset images that transmit in multiple 
recorded signals to measure the mean performance of the 
recorded signal quality. For example, in the case of 12 DPs, 
each class contributes with three DPs, e.g., three patients, and 
was embedded in one recorded signal after that this process 
was repeated for all dataset images to measure the mean qual-
ity. Table 1 displays the average values for SNR, LLR, and 
SD of the watermarked RPS with the proposed horizontally 
aligned DMpDP using different transform domains for SVD 
watermarking for different numbers of DPs.

Table 1 reveals that the average metrics of the recorded sig-
nal quality metrics decrease with the increase in the number of 
DPs. For example, using the DST-based SVD watermarking, 
the average SNR achieved 98.99, 92.97, 89.96, and 85.84 with 
12, 48, 96, and 248 DPs (patients), respectively. A trend of 
increasing the average SD and the average LLR was observed 
with the increase in the number of DPs. Therefore, similarly 
to the conclusion in scenario (0), the DST-based SVD water-
marking achieved the best recovered recorded signal quality 

Fig. 7   Average signal-to-noise ratio of the watermarked recorded signal 
for horizontally aligned DMPDP representation for different spacing

Fig. 8   Average spectral distortion of the watermarked recorded signal 
for horizontally aligned DMPDP representation for different spacing

Fig. 9   Average log-likelihood ratio of the watermarked recorded signal 
for horizontally aligned DMPDP representation for different spacing
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compared to the other domains. It is worth noting that the 
average correlation coefficient Cs of the recorded signal had a 
value of nearly 1 in all scenarios due to low α.

From this scenario (1), it can be concluded that for the 
proposed horizontally aligned DMpDP, the recorded signal 
quality is severely degraded by the increase in the number 
of DPs, which is mostly reflected in the average SD values.

4.3 � Scenario (2): Study the effect 
of the number of DPs in the diagonal‑based 
and the sequential‑based DMpDPs using 
α = 0.01 and β = 1 without channel noise on RPS 
quality

Based on the limitation on the number of DPs within the 
horizontally aligned DMpDP, the effect of the number of 
DPs within the diagonal-based DMpDP and the sequential-
based DMpDP were also investigated. Hence, in this experi-
ment, α = 0.01, and β = 1.

Using diagonal-based DMpDP, the single DP image has 
size 7 × 7. while the used recorded signal includes 22,000 
samples. Hence, for the diagonal-based DMpDP, the maxi-
mum size of the DMpDP is the square root of the number 
of recorded signal samples, which is 148. The maximum 
number of DPs within the diagonal-based DMpDP accord-
ing to the given recorded signal is 21 DPs (i.e., 148 divided 
by 7). Therefore, the cases of having 12 DPs and 20 DPs 

were studied, as they correspond in having 3 and 4 DPs per 
class, respectively. Table 2 displays the average values of 
SNR, LLR, and SD of the watermarked RPS over all the 
dataset images with the proposed diagonal-based DMpDP 
using different transform domains for SVD watermarking 
for different numbers of DPs.

Table 2 demonstrates that the DST is the best transform 
domain for the SVD watermarking in terms of recorded 
signal quality, as it achieves average SNRs from 96.77 
to 98.99, while the DCT, DWT, and the time domains 
achieved average SNRs from 56.37 to 58.62. Also, the aver-
age LLR values of the DST domain were from 1.6 × 10

−5 to 
2.9 × 10

−5 , while the other domains achieved average LLR 
values from 0.0018 to 0.275. The least average SD values 
were also observed for the DST domain, as the average 
SD values were nearly 0.0002, while the other domains’ 
SD values were from 0.023 to 0.030. It was evident that 
better metrics were obtained in the case of 12 DPs com-
pared to 20 DPs for all transform domains. Hence, it can 
be established that the proposed diagonal-based DMpDP 
can be used with a few number of patients, where the top 
performance was achieved using less number of DPs.

For the sequential-based DMpDP, to obtain the proposed 
matrix fairly carrying the DPs of all classes, each row of 
the matrix was assigned the DPs of a certain class, which 
results in having four rows. Hence, the maximum size of the 
DMpDP is equal to the number of samples in the recorded 
signal divided by the number of classes multiplied by the 
number of samples per DP column (i.e., 4 × 7), which results 
in a maximum of 785 samples per the DMpDP column, 
which is equivalent to 112 DPs. Therefore, cases of hav-
ing multiples of four DPs were studied, such as 12, 48, 96, 
and 248 DPs. Table 3 displays the average values of SNR, 

Table 1   Average quality metric of the recorded signal of the water-
marked RPS with the proposed horizontally aligned DMpDP for dif-
ferent numbers of DPs

SNR LLR SD

Time-domain-based SVD watermarking
12 DPs 58.6392 0.020798 0.022849
48 DPs 52.57345 0.096581 0.045957
96 DPs 49.55431 0.218081 0.067456
248 DPs 45.43792 0.371632 0.107917
DST-based SVD watermarking
12 DPs 98.99601 0.000105 0.000206
48 DPs 92.97239 0.000208 0.000438
96 DPs 89.96139 0.000171 0.000639
248 DPs 85.84434 0.000163 0.001016
DCT-based SVD watermarking
12 DPs 58.59657 0.011649 0.022143
48 DPs 52.56862 0.022978 0.046548
96 DPs 49.55253 0.021679 0.06698
248 DPs 45.43212 0.032149 0.105983
DWT-based SVD watermarking
12 DPs 58.61205 0.000699 0.023538
48 DPs 52.56564 0.007758 0.04794
96 DPs 49.552 0.010089 0.067534
248 DPs 45.43438 0.043101 0.107174

Table 2   Recorded signal quality metrics of the watermarked RPS 
with the proposed diagonal-based DMpDP for different numbers of 
DPs

SNR LLR SD

Time-domain-based SVD watermarking
12 DPs 58.61655 0.275378 0.023611
20 DPs 56.4011 0.041035 0.030124
DST-based SVD watermarking
12 DPs 98.99601 1.64E-05 0.000224
20 DPs 96.77794 2.9E-05 0.00029
DCT-based SVD watermarking
12 DPs 58.59556 0.001906 0.023387
20 DPs 56.37572 0.001892 0.030284
DWT-based SVD watermarking
12 DPs 58.58598 0.001273 0.023511
20 DPs 56.38102 0.027946 0.030749
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LLR, and SD of the watermarked RPS with the proposed 
sequential-based DMpDP using different transform domains 
for SVD watermarking for different numbers of DPs.

Table 3 demonstrates that the DST is the best transform 
domain with the SVD watermarking in terms of preserving 
the recorded signal quality, as it achieves average SNRs 
from 103.48 to 105.33, while the DCT, DWT, and the 
time domains achieved average SNRs from 49.38 to 64.58. 
Also, the average LLR values of the DST domain were 
from 4.2 × 10

−7 to 6.44 × 10
−5  On the contrary, the other 

domains achieved average LLR values from 4.91 × 10
−5 to 

0.0957 . The least average SD values were also observed 
with the DST domain, as the average SD values were 
nearly 0.0001, while the other domains’ SD values were 
from 0.000109 to 0.06782. It was evident that the recorded 
signal quality metrics were relatively constant with the 
increase in the number of DPs, as reflected by the average 
SNR and average LLR values.

From the above results and by comparing the average qual-
ity metrics of the recorded signal quality metrics for the pro-
posed three DMpDP forms, it was concluded that the sequen-
tial-based form provided the best results with the increase in 
the number of DPs followed by the diagonal-based and the 
horizontally aligned forms. Also, it was concluded that apply-
ing the DST domain during the embedding process provided 
the best metrics of the recorded signal quality.

4.4 � Scenario (3): Study the effect of α 
and β on the classification accuracy 
of the diagonal‑based and the sequential‑based 
DMpDPs with the existence of AWGN attack

In this scenario, the classification performance of the pre-
sented system was assessed for α = 0.01, 0.1, 0.5, and 1, in 
addition to β = 2, 10, 100, 200, 300, 400, 500, and 1000. The 
main objective was to evaluate the effect of these values on 
both the diagonal-based and the sequential-based DMpDPs 
using all the dataset images to compare the effect of the pro-
posed β factor to α. Also, scenario (3) aimed to study the 
outcome of selecting the dissimilar transformations on the 
watermark integrity and the classification accuracy. This sce-
nario proposed the existence of an AWGN attack on the tel-
edermoscopy channel considering SNRs − 5, 0, and + 5 dBs.

For diagonal-based DMpDP using time-domain SVD 
watermarking, as shown by Table 4, the highest accuracies 
were obtained using the DWT-based SVD watermarking with 
α = 1 and β = 10. For 12 DPs, the classification accuracies were 
33.25%, 36.72%, and 37.41% at − 5, 0, and + 5 dB, respectively. 
These values have reached 29.39%, 31.58%, and 35.96% for − 5, 
0, and + 5 dB, respectively, for 20 DPs. From Table 4, we con-
clude that the DWT domain resulted in the highest classifica-
tion accuracy compared to the other embedding domains and, 
hence, the highest watermark correlation coefficient. The pro-
posed recorded signal weight β is more impactful in improving 
classification performance compared to the watermark weight α.

For sequential-based DMpDP, as shown in Table 5, using 
time-domain SVD watermarking, the highest accuracies 
were obtained using α = 1 and β = 1000. For 4 DPs, the clas-
sification accuracies were 76.91% at − 5 dB, 78.65% at 0 dB, 
and 79.34% at + 5 dB. These values increased in the case of 
transmitting 12 DPs to 79.17%, 80.90%, and 82.12% for − 5, 
0, and + 5 dB, respectively. Likewise, with 24 DPs, the clas-
sification accuracies reached 87.33%, 87.93%, and 88.37% 
for the same SNR ratios, respectively. The classification 
accuracies have further increased with the increase in the 
number of DPs reaching 94.01%, 94.18%, and 94.09%, with 
48 DPs, while achieving 96.7%, 97.14%, and 97.48%, with 
96 DPs, and 98.69%, 98.79%, and 98.99%, with 248 DPs.

Using DWT-domain SVD watermarking, the highest accu-
racies are obtained using α = 1 and β = 1000. For 4 DPs, the 
classification accuracies are 76.74% at − 5 dB, 77.08% at 0 dB, 
and 77.43% at + 5 dB. These values increased with transmit-
ting 12 DPs to obtain 81.59%, 81.16%, and 81.07% at − 5, 0, 
and + 5 dB, respectively. In addition, for 24 DPs, the clas-
sification accuracies reached 87.32, 88.02, and 88.72 for the 
same SNR ratios, respectively. The classification accuracies 
have further increased with the increase in the number of DPs 
reaching 93.66, 94.27, and 93.58 for 48 DPs while achieving 
97.05, 97.48, and 97.14 for 96 DPs, and 98.79, 98.79, and 

Table 3   Average quality metrics of recorded signal of the water-
marked RPS with the proposed sequential-based DMpDP for different 
numbers of DPs

SNR LLR SD

Time-domain-based SVD watermarking
12 DPs 64.40107 0.012814 0.011797
48 DPs 62.53639 0.095788 0.014736
96 DPs 62.4464 0.014575 0.015004
248 DPs 62.03616 0.002456 0.015921
DST-based SVD watermarking
12 DPs 105.3324 6.44E-05 0.000109
48 DPs 103.7684 1.16E-05 0.000129
96 DPs 103.8875 7.38E-06 0.000126
248 DPs 103.4882 4.2E-07 0.000133
DCT-based SVD watermarking
12 DPs 63.57467 0.009081 0.013146
48 DPs 56.80779 0.001129 0.028521
96 DPs 53.72022 0.000736 0.039988
248 DPs 49.38283 4.91E-05 0.06782
DWT-based SVD watermarking
12 DPs 64.57648 0.001041 0.011715
48 DPs 63.14224 0.000696 0.013809
96 DPs 63.27903 0.000591 0.013693
248 DPs 62.71788 0.000332 0.014469
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98.99 for 248 DPs. However, less results were obtained using 
the DCT-based and DST-based watermarking.

4.5 � Scenario (4): Study the effect of β 
and filtering techniques on the classification 
accuracy of the sequential‑based DMpDPs 
with the existence of AWGN attack

In scenario (4), only the sequential-based form was considered, 
and the reduction of β was investigated to decrease the system’s 
complexity. Also, the effect of using a filtering stage, such as 
Weiner, adaptive Weiner, spectral subtraction, and wavelet 
denoising techniques, was studied on all the dataset images.

Figures 10, 11, 12, 13, 14, and 15 display the classifica-
tion accuracy of the sequential-based DMpDPs having 4, 
12, 24, 48, 96, and 248 DPs, respectively, for β 100, 200, 
300, 400, 500, and 1000, and in the presence of filtering 
techniques for β = 100. α = 1, and only the DWT domain 
was considered as it realized the best classification perfor-
mance from scenario (3). Accordingly, Figs. 10, 11, and 12 
illustrate the classification accuracy of transmitting different 
numbers of DPs in the form of sequential-based DMpDPs 
for different β values and using different filtering techniques.

Figures 10, 11, and 12 prove that increasing the values 
of β leads to higher performance compared to the use of the 
given filtering techniques in the case of 4, 12, and 24 DPs. 
For example, in Fig. 10, at − 5 dB, the accuracy increased 
from 17.27% for β = 100 to 76.7% at β = 1000, while the 
highest accuracy was obtained with filtering at 25.4%, using 
spectral subtraction. Similarly, in Fig. 11, the accuracy has 
increased from 76.99% for β = 100 to 81.59% for β = 1000, 
while the highest accuracy obtained with filtering was 
79.07%, using wavelet denoising.

In Fig. 12, the accuracy has increased from 86.02% for 
β = 100 to 87.33% for β = 1000, while the highest accuracy 
obtained with filtering was 86.28%, using wavelet denois-
ing. Figures 13, 14, and 15 report the effect of increasing the 
number of the transmitted DPs on the classification accuracy 
in the case of the sequential-based DMpDPs using different 
β values and filtering techniques.

Figure 15 illustrates the mean classification accuracy 
over all the datasets after being transmitted and received 
at the receiver. Table 6 demonstrates in detail the classifi-
cation accuracy for four received 248 images for 248 DP-
sequential-based DMpDPs. At each embedding process for 
248 DP-sequential-based DMpDPs, 248 DP-sequential-
based DMpDPs consist of a combined 62 DP from each 
four classes and are embedded in the recorded speech signal 
as 248 DP-sequential-based DMpDPs. At the receiver, the 
248 DP-sequential-based DMpDPs were extracted from the 
recorded speech signal and measured the classification accu-
racy over the received 248 DP.

Table 4   � and � values resulting in the highest classification accura-
cies at the different embedding domains for diagonal-based DMpDP 
under AWGN attack.

 − 5 dB 0 dB  + 5 dB α β

Time-domain-based SVD watermarking
12 DPs 32.63% 36.71% 42.44% 1 10
20 DPs 29.47% 33.42% 35.79%
DST-based SVD watermarking
12 DPs 26.39% 26.74% 26.82% 1 10
20 DPs 26.67% 26.93% 26.14% 1 100
DCT-based SVD watermarking
12 DPs 14.23% 13.63% 13.98% 1 1000
20 DPs 10.79% 11.14% 10.52%
DWT-based SVD watermarking
12 DPs 33.25% 36.72% 37.41% 1 10
20 DPs 29.39% 31.58% 35.96%

Table 5   � and � values resulting in the highest classification accura-
cies at the different embedding domains for sequential-based DMpDP 
under AWGN attack

 − 5 dB 0 dB  + 5 dB α β

Time-domain-based SVD watermarking
4 DPs 76.91% 78.65% 79.34% 1 1000
12 DPs 79.17% 80.90% 82.12%
24 DPs 87.33% 87.93% 88.37%
48 DPs 94.01% 94.18% 94.09%
96 DPs 96.7% 97.14% 97.48%
248 DPs 98.69% 98.79% 98.99%
DST-based SVD watermarking
4 DPs 76.48% 76.21% 76.13% 1 1000
12 DPs 75.78% 79.34% 79.86%
24 DPs 81.59% 84.80% 86.55%
48 DPs 93.92% 93.75% 93.66%
96 DPs 96.78% 96.96% 97.14%
248 DPs 98.59% 98.99% 98.69%
DCT-based SVD watermarking
4 DPs 75.61% 77.08% 76.82% 1 1000
12 DPs 71.27% 74.31% 79.07%
24 DPs 61.72% 63.63% 69.27%
48 DPs 57.29% 58.68% 65.36%
96 DPs 54.77% 56.51% 63.46%
248 DPs 52.52% 54.23% 60.99%
DWT-based SVD watermarking
4 DPs 76.74% 77.08% 77.43% 1 1000
12 DPs 81.59% 81.16% 81.07%
24 DPs 87.32% 88.02% 88.72%
48 DPs 93.66% 94.27% 93.58%
96 DPs 97.05% 97.48% 97.14%
248 DPs 98.79% 98.79% 98.99%
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Fig. 10   Classification accuracy 
of the 4 DP-sequential-based 
DMpDPs for different β values 
and filtering techniques

Fig. 11   Classification accuracy 
of the 12 DP-sequential-based 
DMpDPs for different β values 
and filtering techniques

Fig. 12   Classification accuracy 
of the 24 DP-sequential-based 
DMpDPs for different β values 
and filtering techniques
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Fig. 13   Classification accuracy 
of the 48 DP-sequential-based 
DMpDPs for different β values 
and filtering techniques

Fig. 14   Classification accuracy 
of the 96 DP-sequential-based 
DMpDPs for different β values 
and filtering techniques

Fig. 15   Classification accuracy 
of the 248 DP-sequential-based 
DMpDPs for different β values 
and filtering techniques
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Figures 13, 14, and 15 demonstrate that the use of the 
filtering techniques achieved comparable performance with 
higher β values, in case of 48, 96, and 248 DPs. For example, 
in Fig. 13, at − 5 dB, the accuracy increased from 93.83% 
for β = 100 to 93.92% for β = 400, while a relatively similar 
accuracy of 93.66% was obtained with filtering using spec-
tral subtraction. Similarly, in Fig. 14, the accuracy increased 
from 96.78% for β = 100 to 97.14% for β = 500, while rela-
tively similar accuracy was obtained using a wiener filter. 

Likewise, in Fig. 15, the accuracy increased from 98.69% 
for β = 100 to 98.79% for β = 400, while relatively similar 
accuracy was obtained using spectral subtraction.

From the above, it can be concluded that the DWT domain 
leads to better classification accuracy and watermark integrity 
compared to the other domains, while the DST resulted in the 
best-recorded signal quality metrics. However, the DWT also 
preserved adequate recorded signal quality metrics. Table 7 
shows the recorded signal quality metrics at the two ends of 

Table 6   The mean classification 
accuracy in details for 
transmitting four of the 248 
DP-sequential-based DMpDPs 
for different β values and 
filtering techniques

Filter Transmitted images  − 5 dB 0 dB  + 5 dB α β

Without filter 1st 248 DP 98.39 98.39 98.39 1 100
2nd 248 DP 98.79 98.39 98.79
3rd 248 DP 98.79 99.19 99.19
4th 248 DP 98.79 98.39 99.19

Without filter 1st 248 DP 98.39 98.39 98.39 1 200
2nd 248 DP 98.39 98.79 98.79
3rd 248 DP 99.19 99.19 98.79
4th 248 DP 98.39 99.19 98.79

Without filter 1st 248 DP 98.39 98.39 98.39 1 300
2nd 248 DP 98.79 98.79 98.79
3rd 248 DP 99.19 98.79 98.79
4th 248 DP 99.19 98.79 98.39

Without filter 1st 248 DP 98.39 98.39 98.39 1 400
2nd 248 DP 98.79 98.79 99.19
3rd 248 DP 98.79 98.79 98.79
4th 248 DP 98.79 98.39 98.79

Without filter 1st 248 DP 98.39 98.39 98.79 1 500
2nd 248 DP 98.79 99.19 99.19
3rd 248 DP 98.79 98.79 98.79
4th 248 DP 98.39 98.79 98.39

Without filter 1st 248 DP 98.39 98.79 99.19 1 1000
2nd 248 DP 99.19 99.19 98.79
3rd 248 DP 98.79 98.79 98.79
4th 248 DP 98.79 98.39 98.39

Adaptive wiener filter 1st 248 DP 29.03 48.79 93.14 1 100
2nd 248 DP 27.82 50.01 91.94
3rd 248 DP 27.02 47.98 93.95
4th 248 DP 28.23 50.41 92.74

Spectral subtraction filter 1st 248 DP 98.79 98.79 98.79 1 100
2nd 248 DP 98.79 98.79 98.79
3rd 248 DP 98.79 98.79 98.79
4th 248 DP 98.79 98.79 98.79

Wavelet denoising 1st 248 DP 98.39 98.39 98.39 1 100
2nd 248 DP 98.39 98.39 98.39
3rd 248 DP 98.39 98.79 98.39
4th 248 DP 98.79 98.39 98.39

Wiener filter 1st 248 DP 98.79 99.59 99.19 1 100
2nd 248 DP 98.39 98.39 98.39
3rd 248 DP 98.79 99.19 98.39
4th 248 DP 98.79 98.79 99.19
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the channel at − 5, 0, and + 5 dB SNRs of the AWGN attack 
using the proposed system using DWT-based SVD water-
marking and sequential-based DMpDP having 248 DPs.

The quality of the original speech signal and the water-
marked signal after embedding the sequential-based DMpDP 
is compared in Figs. 16 and 17 for 248 DPs and 96 DPs, 
respectively.

In Fig. 16, 12,152 speech samples were required to embed 
the 248 DPs, which required a speech duration of 1 s; how-
ever, in Fig. 17 when embedding the 96 DPs, 4707 samples 
only were required for the embedding process, which required 
0.5 s of speech duration. The frequency of the used speech 
signal in both cases is 8000 Hz. Also, both figures appear 
similar because the quality of the speech signal is not affected 
by the number of DPs in the sequential-based DMpDP.

Table 7 demonstrates the effect of the AWGN attack on 
the watermarked recorded signal at both ends of the channel. 
It indicates that the quality of the recovered RPS was aver-
age SNR 24.427 at − 5 dB, 2.233 average LLR, 1.148 average 
SD, and 0.9982 average Cs after the channel, while for average 
SNR + 5 dB, better results were obtained, namely 34.325 aver-
age SNR, 1.577 average LLR, 0.378 average SD, and 0.9998 
average Cs . Moreover, the runtime of the presented system was 
5.6 s at the transmitter side, and 4.5 s at the receiver side.

To further verify the importance/impact of our proposed 
system, Table 8 highlights the advantages of the proposed 
novel transmission approach in contrast to the traditional 
transmission of dermoscopy images in respect of the trans-
mission size (in kilobytes), the computational runtime (in 
seconds), and the required number of recorded samples for 
the embedding process.

Table 8 demonstrated that the transmission size of a sin-
gle DP is 392 bytes which results in a total of 97.2 KB for 
transmitting the proposed 248 DP-sequential-based DMpDP, 
which is less than the transmission size of a single original 
dermoscopy image. On the other hand, the required compu-
tational time at the transmitter and receiver sides for a sin-
gle dermoscopy image is approximately 0.73 s, which is 17 
times the required time of a single DP. Hence, 17 DPs can 
be diagnosed using the proposed system during the same 
time interval that is required for diagnosing the dermoscopy 
image. Moreover, the dermoscopy image required 49,400 
recorded samples for the embedding process. Accordingly, 
for transmitting 248 dermoscopy images, 12,251,200 recorded 

audio samples would be required. Conversely, only 1/16 of 
the required recorded samples are needed for transmitting the 
same number of dermoscopy images (248 images) using the 
proposed 248 DP-sequential-based DMpDP representation.

5 � Discussion

Indeed, the data transmission bandwidths are expand-
ing; however, this is not globally achieved yet, especially 
that one of the main application areas of telemedicine is 
in rural areas, where the data transmission bandwidth is 
still a limitation, and a requirement to be met to achieve 
reliable service. Moreover, one of the main transmis-
sion modes of store-and-forward telemedicine systems is 
physician-to-physician mode in which a large number of 
images are transmitted from one physician to another for 
consultation and giving a second opinion. In such case, a 
large bandwidth is needed to transmit the large number 
of high-resolution dermoscopy images, as a single high-
resolution dermoscopy image can reach up to several MBs. 
This is why bandwidth is still a requirement in telemedi-
cine systems, as also mentioned in the following recent 
papers [37, 38].

The presented work aimed to accomplish a new der-
moscopic image representation for telemedicine, namely 
the Diagnostic Multiple-patient DermoFeature Profiles 
(DMpDP) by proposing a small unit representing a single 
dermoscopy image which is called DermoFeature Profile 
(DP). The proposed new representation can be used in diag-
nosis due to its application in a CAD system, and it can be 
embedded in a recorded patient signal (RPS) which provides 
a compact, secure, efficient, and diagnostic form for repre-
senting an integrated patient/s case file for diagnosis at the 
receiver side. Different forms of DMpDPs were investigated 
for the proposed DMpDP-based guided SAF teledermoscopy 
system, namely the horizontally aligned, the diagonal-based, 
and the sequential-based forms. The effect of the parameters 
α and β on the system performance without and with the 
existence of AWGN attack was also investigated, in addition 
to the different embedding transform domains.

The results demonstrated that using the horizontally 
aligned form, a spacing value of 25 samples resulted in 
adequate RPS quality metrics using the DST-based SVD 

Table 7   Average quality metrics 
of recorded signal of the RPS 
at both ends of the channel 
in the case of the proposed 
sequential-based DMpDP for 
248 DPs using DWT-based 
SVD watermarking

Channel SNR Before transmission through channel After transmission through channel 
(recovered at the receiver)

SNR LLR SD Cs SNR LLR SD Cs

 − 5 dB 62.91 0.00041 0.014 1 24.43 2.23 1.15 0.998
0 dB 62.91 0.00041 0.014 1 29.44 1.99 0.66 0.999
5 dB 62.91 0.00041 0.014 1 34.33 1.58 0.38 0.999
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watermarking. However, it was found that the recorded sig-
nal quality severely degrades with the increase in the number 
of DPs, as reflected by the SD values. Hence, the diagonal-
based form and the sequential-based forms were investigated 

to verify their suitability for achieving wide-scale service by 
carrying a large number of DPs while preserving both the 
RPS and the watermark quality. Studying the effect of the 
number of DPs within both forms revealed that in terms of 

Fig. 16   Quality of original and 
watermarked speech signal after 
embedding the sequential-based 
DMpDPs using 248 DPs, where 
signals in time domain (a); 
signals’ spectrograms (b); and 
signals’ histograms (c)
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recorded signal quality metrics, better metrics were obtained 
in the case of 12 DPs compared to 20 DPs in the case of the 
diagonal-based form, while for the sequential-based form, 
the recorded signal quality metrics were relatively constant 
when the number of DPs increases, as reflected by the SNR 
and LLR values. Similar to the horizontally aligned form, 
the DST-based watermarking provided the best-recorded 
signal quality metrics for the RPS.

The classification accuracy of both diagonal-based and 
sequential-based forms was evaluated for different val-
ues of α and β in the existence of AWGN attack at SNRs 
of − 5 dB, 0 dB, and + 5 dB. It was found that increasing β, 
which represents the recorded signal weight, achieved bet-
ter results compared to decreasing α, which represents the 
watermark weight. However, the maximum obtained accu-
racies observed using the DWT-based SVD watermarking 
did not exceed 36% at + 5 dB, which is considered poor 
performance.

On the other hand, for sequential-based form, the classi-
fication accuracies have further increased with the increase 
in the number of DPs reaching 98.79% for transmitting 
248 DPs at − 5 dB at α = 1 and β = 1000. To reduce β to 
minimize the implementation complexity of the proposed 
system, different filtering techniques were investigated. It 
was concluded that at − 5 dB, an accuracy of 98.79% was 
also obtained using β = 400, and relatively equal accuracy 
was obtained at β = 100 using a spectral subtraction filtering 
technique.

The proposed system reinforced the efforts intending to 
employ artificial intelligence in transmitting and evaluat-
ing wide-scale teledermoscopy systems by achieving a 
maximum 98.79% diagnostic accuracy using the 248 DPs 
sequential-based form using DWT-based SVD watermarking 
under the existence of AWGN attack.

Table 9 compares the performance of the state-of-the-
art teledermoscopy systems against our proposed system in 
terms of diagnostic accuracy, transmission time, transmis-
sion size, and the applied security methods. A pilot study 
was conducted on telediagnosis of a dermoscopic-patho-
logic procedure for melanocytic skin neoplasms showing 
83% diagnostic accuracy [39]. Fabbrocini et al. [40] com-
pared the efficiency of telediagnosis to the face-to-face 
diagnosis of pink lesions, which revealed that 52% of the 
studied cases had correct diagnosis compared to 66% in 
the case of face-to-face consultations. Kroemer et al. [41] 
captured dermatoscopic and clinical images and evaluated 
104 lesions of 80 patients; however, the dermatoscopic 
images’ quality was poor. The results revealed that 88% 
diagnosis accuracy for clinical tele-evaluation compared 
to 82% for teledermoscopy. Moreover, Bandic et al. [42] 
performed a two-step teledermoscopy process by clini-
cally examining the digital dermoscopic images and then 
evaluating the same images using the ABCD algorithm 
[43]. The results established diagnostic accuracy ranged 
from 81.82 to 90.91%. Ashour et al. [44] proposed the 
compact feature profile (CFP) image that represents the 
main features of the dermoscopy images, then, embedded 

Fig. 16   (continued)
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the CFP in a speech signal using a DWT-based modified 
SVD approach. In the presence of AWGN, single-level 
decomposition with hard thresholding wavelet denoising 
was applied. The results have demonstrated classification 
accuracy of 100% to classify malignant melanoma and 

benign nevus at SNR ranging from 10 to 25 dB, while 
the classification performance at − 5 dB was 62% with 
64% sensitivity. Table 9 includes a comparative study of 
teledermoscopy systems. However, for fair comparison, 
studies that applied the same dataset should be considered 

Fig. 17   Quality of original and 
watermarked speech signal after 
embedding the sequential-based 
DMpDPs using 96 DPs, where 
signals in time domain (a); 
signals’ spectrograms (b); and 
signals’ histograms (c)
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which was not available. Moreover, this work is a novel 
method in describing dermoscopic images using their most 
significant features in a compact, integrated image. Also, 
in Table 9, we have compared our work to state-of-the-art 
methods; however, it is mentioned that most works in this 
domain aimed for using watermarking for patient authen-
tication. Also, the works that applied watermarking for 
data hiding have not introduced a new form to represent 
the high-resolution dermoscopy image.

From the above, the proposed DMpDP realizes the fol-
lowing benefits:

	 I.	 Reduced size of the transmitted image without direct/
traditional compression from an average of 148.2 KB 
for a single dermoscopy image to 97.2 KB for the 
sequential DMpDP composed of 248 DPs, which 
carry the significant information of 248 dermoscopy 
images, which is equivalent to 99.7% reduction in 
size for the single dermoscopy image,

	 II.	 Protected and secure transmission,
	 III.	 Reduced time required for transmission due to the 

size reduction,

Fig. 17   (continued)

Table 8   Comparison of the 
proposed DMpDP transmission 
approach against the traditional 
transmission of the original 
dermoscopy images

Transmitted data Transmission size (KB) Computational 
runtime (s)

No. of 
recorded signal 
samples

Single original dermoscopy image 148.2 0.73 49,400
Multiple dermoscopy images (group of 4 

original images)
592.8 1.27 197,600

Proposed one DP-sequential-based DMpDP 0.39 0.041 3038
Proposed 4 DP-sequential-based DMpDP 1.57 0.16 12,152
Proposed 248 DP-sequential-based DMpDP 97.2 (equivalent to 392 

bytes per DP)
10.1 (equiva-

lent to 
0.041 s per 
DP)

753,424 
(equivalent to 
49 samples 
per DP)
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	 IV.	 Achieved efficient use of the transmission channel 
bandwidth and network resources, by transmitting 
a large number of DPs for different patients or dif-
ferent images for the same patient at once in the 
DMpDP,

	 V.	 Generated diagnostic DP from the significant diag-
nostic features of the skin diseases “in the study” 
based on a computer-aided diagnosis system to 
ensure the generating informative image, and

	 VI.	 Transmitted patients’ information along with the DP 
or DMpDP as a recorded patient-information signal, 
called RPS by embedding the DP or DMpDP in the 
RPS, and disclosed the medical general description 
symptoms, patient(s) demographics, the patient(s) 
history, symptoms and complaints, history of tumors, 
and the general skin lesion’s description for the 
patient or patients in the RPS.

In the future, the proposed system can be used to sup-
port the developed monitoring systems in [45, 46]. Also, 
the potential and cost of providing a dual transmission using 
both DWT and DST domains can be investigated for the 
receiver to achieve optimal DMpDP and RPS quality, using 
the DWT-based transmission and the DST-based transmis-
sion, respectively.

6 � Conclusions

In this work, a framework for a diagnostic store and for-
ward system was proposed for the efficient distant screen-
ing of skin lesions based on a novel representation of der-
moscopy images, namely the Diagnostic Multiple-patient 
DermoFeature Profile (DMpDP). The DPs are collated 
for several patients or a single patient over time forming 
the DMpDP. The generated DMpDP is then embedded in 
the RPS, which carries the medical patient-related infor-
mation using DWT-based SVD watermarking. Several 
attacks may occur during the transmission of the water-
marked signal over the teledermoscopy channel, such as 
the AWGN attack. The filtering technique was applied as 
an initial stage at the receiver. Subsequently, the embed-
ded DMpDP was extracted to obtain both the DPs and 
the RPS. The DPs were applied to pre-trained second-
order SVM, and the RPS was exploited at the receiver to 
produce the final decision. Studying the different forms 
of the proposed DMpDP revealed that the best-recorded 
signal metrics and the highest classification accuracy 
were obtained using the sequential-based form. Moreo-
ver, the sequential-based DMpDP in the proposed work 
may carry up to 248 DPs, i.e., patients, achieving 98.79% 
accuracy using β = 100 and spectral subtraction filtering 

under AWGN attack having SNR of − 5 dB. Therefore, the 
novel proposed DMpDP represents an innovative compact 
form that substitutes the need of transmitting high-reso-
lution dermoscopy images through SAF teledermoscopy 
systems. The transmission of the DMpDP as an embedded 
watermark in the RPS provides an integrated, compact 
and secure representation of the patient(s) case file at the 
diagnostic receiver side.
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