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Abstract
Sleep apnea is probably the most common respiratory disorder; respiration and blood oxygen saturation (SpO2) are major 
concerns in sleep apnea and are also the two main parameters checked by polysomnography (PSG, the gold standard for 
diagnosing sleep apnea). In this study, we used a simple, non-invasive monitoring system based on photoplethysmography 
(PPG) to continuously monitor SpO2 and heart rate (HR) for individuals at home. Various breathing experiments were 
conducted to investigate the relationship between SpO2, HR, and apnea under different conditions, where two techniques 
(empirical formula and customized formula) for calculating SpO2 and two methods (resting HR and instantaneous HR) for 
assessing HR were compared. Various adaptive filters were implemented to compare the effectiveness in removing motion 
artifacts (MAs) during the tests. This study fills the gap in the literature by comparing the performance of different adaptive 
filters on estimating SpO2 and HR during apnea. The results showed that up-down finger motion introduced more MA than 
left-right motion, and the errors in SpO2 estimation were increased as the frequency of movement was increased; due to 
the low sampling frequency features of these tests, the insertion of adaptive filter increased the noise in the data instead of 
eliminating the MA for SpO2 estimation; the normal least mean squares (NLMS) filter is more effective in removing MA in 
HR estimation than other filters.
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1  Introduction

Sleep apnea is a sleep disorder characterized by a repeated 
cessation of airflow (apnea) or a lesser reduction in airflow 
(hypopnea) during sleep. The most common type of sleep 
apnea is obstructive sleep apnea (OSA). OSA is character-
ized by prolonged partial upper airway obstruction and/or 
intermittent complete obstruction that adversely affects ven-
tilation during sleep and disrupts normal sleep patterns [1]. 
Each pause in OSA can last for at least 10 s to a few minutes 
and occur multiple times throughout the night, leading to a 
drop of 3% or more in blood oxygen levels and resulting in 

oxygen desaturation [2]. Statistics indicate that untreated 
OSA can have detrimental impacts on patients, including 
a higher risk of accidents with twice as many accidents per 
mile [3–5]. OSA is also associated with 1.9 times more cases 
of stroke, 3.9 times more cases of congestive heart failure [6, 
7], 40% more cases of excessive daytime sleepiness [8, 9] 
and depression [10], a 30% increased risk of nocturnal car-
diac arrhythmia [11], double the risk of occupational acci-
dents [12], an eight times greater risk of COVID-19 in sleep 
apnea patients [13, 14], a 1.3 to 2.5 times increased risk of 
hypertension [15–17], and a 1.4 to 2.3 times increased risk 
of heart attack [9, 17].

The first comprehensive study to document the global 
prevalence of OSA was published by Benjafield et al. in 
2019 [18]. It revealed that nearly 1 billion people globally 
suffer from this condition, with prevalence rates exceeding 
50% in some nations. PSG is the gold standard procedure 
for OSA diagnosis. However, traditional PSG conducted in 
laboratory setting is overly complex, and only around 30 
hospitals in the UK have the capability to perform PSG tests 
(information from Natus, PSG distributor in 2020). The 
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existing home sleep apnea systems approved by the US Food 
and Drug Administration (FDA) are cumbersome, consisting 
of multiple parts and constructed from rigid materials that 
interface poorly with the skin [19, 20]. These drawbacks 
prompted the development of a low-cost, non-invasive, 
and convenient method to accurately diagnose sleep apnea, 
potentially within the familiar setting of one’s own home.

In 1938, Alrick Hertzman demonstrated the effectiveness 
of PPG as a non-invasive technique for measuring HR [21, 
22]. Over the years, PPG devices have gained significant 
popularity in the healthcare system. They provide a rapid 
and non-invasive way to measure the volumetric variations 
of blood circulation using a light source and a photodetector 
placed on the skin. PPG sensors can detect changes in blood 
flow by measuring the intensity of reflected light from the 
tissue, as blood absorbs light more intensely than the sur-
rounding tissues. Variations in blood volume are inversely 
proportional to the intensity of the reflected light. The PPG 
signal holds great promise as a sensor for detecting sleep 
apnea events because it captures crucial information about 
HR, respiration, and oxygen saturation.

SpO2, which stands for peripheral oxygen saturation, is an 
estimation of the oxygen saturation level, commonly measured 
using a PPG sensor. In individuals with a healthy respiratory 
condition, SpO2 values typically are in the range of 95% and 
100%. A blood oxygen saturation level of less than 94% is 
considered hypoxic by the World Health Organization, while a 
level less than 90% may indicate the need for immediate medi-
cal action [23]. In the case of COVID-19 patients, who often 
experience significant respiratory failure around 10 days after 
initial infection, hypoxic SpO2 readings are a sign of hypoxia 
even in the absence of breathlessness [24].

PPG recordings can be impacted by various factors, with 
motion artifacts (MAs) being the primary source of signal 
modification. MA occurs when the PPG sensor shifts from 
its original position due to physical activity or body motion. 
This movement alters the path of light and subsequently 
affects the signals. Ambient light leaking into the gap 
between the PPG sensor surface and the skin is a common 
cause of MA. Additionally, changes in blood flow resulting 
from movements [25] can also be a contribution factor of 
MA. Several adaptive techniques have been applied to miti-
gate MA in PPG signals, including the least mean squares 
(LMS) method [26], normal least mean squares (NLMS) 
method [27], and recursive least squares (RLS) method [28]. 
The selection of an appropriate step size for an adaptive filter 
is also critical, which involves striking a balance between 
the adaptation speed and the steady-state noise. Various step 
sizes have been investigated to evaluate the quality of PPG 
signal by many researchers [29–31]. In contrast, the adaptive 
step-size (AS)-LMS algorithm provides both rapid conver-
gence and minimal mean square error, as demonstrated by its 
high signal-noise ratio value [31]. Arunkumar and Bhaskar 

[32] developed a novel denoising algorithm that combined 
RLS, NLMS, and LMS adaptive filters. Their method dem-
onstrated accurate HR estimation for the datasets involving 
activities such as running on a treadmill, arm recovery exer-
cise, and fast arm movements.

While previous research has primarily focused on inves-
tigating the effectiveness of filters in mitigating MA, few 
studies have compared the accuracy of these filters. In this 
paper, we present a straightforward, non-invasive, continu-
ous system for monitoring SpO2 and HR to mimic the sleep 
apnea scenarios at home. To the best of our knowledge, our 
system addresses this research gap by comparing the perfor-
mance of different adaptive filters in estimating SpO2 and 
HR during apnea. Our study here encompasses the develop-
ment of a non-invasive PPG monitoring system; evaluation 
of two measurement techniques for SpO2 and HR; assessing 
the relationship between SpO2, HR, and apnea; and finally 
the comparison of the signal impacts caused by different 
frequencies and directions of the artificial movements.

2 � Methods

2.1 � Human study

This study received ethical approval from the Research Eth-
ics Committee of the Faculty of Science and Engineering at 
the University of Chester. All data were collected directly 
by the researcher herself, who was 33 years old, was 168-
cm tall, weighted 70 kg, had a BMI of 24.8, and was a non-
smoker and non-drinker. The researcher was in a stationary 
sitting position throughout the experiments and was in good 
overall health.

2.2 � Experiment design

According to a study conducted by Sally K et al. [33], the 
finger is considered the most suitable location for measuring 
HR, SpO2, and respiration rate while at rest. The experimen-
tal results of Zhang et al. [34] and Arghya Sur et al. [35] 
demonstrated that the middle finger exhibited a lower root-
mean-square deviation (RMSE) for SpO2 error compared 
to the ring and index fingers. Therefore, for the data collec-
tion purposes of this study, a PPG sensor was placed on the 
left middle finger which was restricted to a fixed range of 
motion (using a vinyl tape with a 7.5-cm diameter). Finger 
movements can create a gap between the finger and the sen-
sor, which allows red and infrared light from the sensor to 
scatter, introducing noise into the measurements. To mini-
mize this noise, the experiment was conducted where the 
arm drove the finger to move while keeping the finger itself 
remains stationary; finger movements are used below to refer 
to this arm-driven movement.
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In order to investigate the relationship between SpO2 
and apnea, breathing experiments were conducted in two 
scenarios: (1) normal breathing + apnea and (2) snore + 
apnea. Each breathing simulation consisted of five 30-s seg-
ments alternating between finger movement and stillness, as 
illustrated in Fig. 1. Once individuals entered the sleep state, 
only the routine body movements associated with breathing 
remained [36]. Therefore, the routine finger movements were 
performed in different directions and frequencies to assess 
the MA, including horizontal left and right directions, as 
well as vertical up and down directions, with motion fre-
quencies of 0.5 Hz and 1 Hz, respectively. A total of eight 
sets of experiments were conducted, and they are (1) normal 
breathing with left and right movements at 0.5 Hz [NLR0.5], 
(2) normal breathing with left and right movement at 1 Hz 
[NLR1], (3) snoring with left and right movement at 0.5 Hz 

[SLR0.5], (4) snoring with left and right movement at 1 Hz 
[SLR1], (5) normal breathing with up and down movements 
at 0.5 Hz [NUD0.5], (6) normal breathing with up and down 
movements at 1 Hz [NUD1], (7) snoring with up and down 
movements at 0.5 Hz [SUD0.5], and (8) snoring with up and 
down movements at 1 Hz [SUD1]). Each set of experiments 
was repeated 10 times, lasting for 2.5 min, with a 10-min 
break between each experiment to allow for breathing recov-
ery before proceeding to the next set.

Breathing experiments were conducted to simulate the 
respiratory patterns during sleep. For the normal breathing

simulation, the inhalation and exhalation cycles were set 
at 3 s each. Conversely, the simulated snoring experiment 
involved longer inhalation and exhalation cycles, with each 
cycle lasting 5 s.

2.3 � Hardware

The MAX30102 digital PPG chip, developed by Maxim Inte-
grated (San Jose, CA, USA), was used as the PPG sensor in 
this study. The MAX30102 sensor comprises red (peak wave-
length 660 nm) and infrared (peak wavelength 880 nm) light-
emitting diodes and a photodiode to measure the reflected 
light. The MAX30102 sensor includes an analogue to digital 
converter (ADC) and an I2C interface integrated into the sen-
sor itself to minimize noise and artifacts created between the 
photodiode and the ADC. Figure 2 depicts the PPG monitor-
ing system, the MAX30102 sensor, and the connection of the 
sensor to the Arduino board.

Considering factors such as power efficiency, cost-
effectiveness, and the sufficiency of data for analysis, the 

Fig. 1   Schematic diagram of the experimental process. The breathing 
experiments were conducted in two scenarios: (1) normal breathing + 
apnea and (2) snore + apnea. Each breathing experiments consisted of 
five 30-s segments, and each segment involved a combination of fin-
ger movements and stillness. The finger movements were performed in 
different directions, including horizontal left and right directions, and 
vertical up and down directions. “L&R” represents left and right move-
ments. “U&D” represents up and down movements

Fig. 2   a PPG monitoring sys-
tem. b PPG sensor MAX30102. 
c MAX30102 connect with 
Arduino board



832	 Medical & Biological Engineering & Computing (2024) 62:829–842

1 3

data acquisition system was used to capture and digitize 
the analogue PPG signal at a rate of 25 samples per second 
[37–41]. The PPG signal consists of pulsatile (AC) and non-
pulsatile (DC) components [42], as shown in Supplemen-
tary Fig.1. The signal primarily consists of a static (DC) 
component, which captures light unaffected by the pulsatile 
variations in arteries. This DC component is chiefly influ-
enced by ambient light, direct light interference between 
the LED and photodiode (PD), and light reflections from 
tissues, venous blood, and non-pulsating arterial blood. A 
relatively smaller portion of the signal constitutes an alter-
nating component (AC), arising from the pulsations within 
the arterial bed. The AC and DC components were obtained 
and analyzed using Python code.

2.4 � SpO2 extraction and estimation

To calculate SpO2, both an empirical formula and a customized 
formula provided in the Maxim IntegratedTM sample code [33] 
were used. The “findpeaks” function was initially applied to 
locate the actual peaks and valleys, allowing determination of 
the AC and DC value for both the red and infrared channels. 
The function can find all local maxima by simple comparison of 
neighboring values. The AC and DC component of the pulsa-
tive waveform were stored as a mean of two consecutive peaks/
valleys in integer variables (ACRed, ACIR, DCRed, DCIR), which 
maximized retention of original data while reducing errors. A 
ratio (R) of the AC and DC components of the red signal (Red), 
divided by the ratio of the AC and DC components of the infra-
red (IR) signal was then calculated (1) [43]. Subsequently, SpO2 
was calculated using both the empirical formula (2) [44–47] 
and Maxim customized formula (3) [33, 42, 48]:

(1)R =
ACRed∕DCRed

ACIR∕DCIR

(2)SpO
2
= 110 − 25R

Since SpO2 levels below 70% are rarely observed, even in 
patients with severe OSA, a range of 0<R<1.2 was used to 
exclude abnormal R results, to ensure the calculated value 
in a range of 66% < SpO2 < 100% [49, 50].

2.5 � HR extraction and estimation

The AC component of the PPG signal is generated by the 
cardiac synchronous variations in blood volume that arise 
from heartbeats. After determining the peak and valley 
locations, the time difference between two consecutive 
peaks was obtained to calculate the average value of HR 
using (4). This provides the instantaneous HR.

(3)SpO
2
= −45.06R2 + 30.354R + 94.845

(4)HR =
1

N − 1

∑N

i=1

60

t
i+1 − t

i

. N ≥ 2

Fig. 3   Comparison of SpO2 values calculated by empirical (dashed 
line) and customized formulas (solid line). Note “F” in the figure rep-
resents “freeze” and indicates a stationary hand. “U&D” represents 
up and down movements

Table 1   Error rates for both empirical and customized formulas

Error rate (%) Empirical formula Customized formula

SpO2 < 95% SpO2 > 100% SpO2 < 95% SpO2 > 
100%

NLR 0.5 2.5 27.1 1.9 0
NLR 1 1.2 9.3 0.5 0
NUD 0.5 2.1 15.9 1.6 0
NUD 1 0.9 19.7 0.3 0
SLR0.5 2.4 26.5 2.2 0
SLR 1 3.7 13.9 2.7 0
SUD 0.5 2.6 15.7 2.2 0
SUD 1 5.3 17.9 3.5 0
Mean 2.59 18.18 1.87 0

Fig. 4   Comparison of the error rates for SpO2 < 95% during first 
minute and SpO2 > 100% throughout the experiment for both empiri-
cal (green box) and customized (yellow box) formulas. Results show 
that the customized formula has less error in estimating SpO2 than 
empirical formula
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Another method for calculating HR involves counting the 
number of peaks within each 15-s window (as each apnea 
can last for at least 10 s [2]) and then multiply this number 

by 4 to obtain the beats per minute. This HR is referred to 
as resting HR and is frequently used by nurses and doctors 
to quickly check a patient’s pulse. It can also be used for 
routine self-examination.

However, obtaining an accurate estimation of the HR 
is not straightforward since PPG signals are vulnerable to 
noise, which can significantly interfere with HR calcula-
tion. To address this issue, we applied a band-pass filter 
with a frequency range of 0.5–3 Hz to remove low and high 
noise from the signal, accounting for both low and high HR 
(30–180 bpm).

2.6 � MA removal

Adaptive filters are commonly used to mitigate noise inter-
ference in PPG signals. Many types of adaptive filters are 
available, including affine projection (AP), generalized 
maximum correntropy criterion (GMCC), generalized nor-
malized gradient descent (GNGD), least Lncosh (Llncosh), 
least-mean-fourth (LMF), least-mean-square (LMS), nor-
malized least-mean-fourth (NLMF), normalized least-mean-
square (NLMS), normalized sign-sign least-mean-square 
(NSSLMS), online centered normalized least-mean-square 
(OCNLMS), recursive least squares (RLS), sign-sign least-
mean-square (SSLMS), variable step-size least-mean-
square (VSLMS) with Ang’s adaptation, variable step-size 
least-mean-square (VSLMS) with Benveniste’s adaptation, 
and variable step-size least-mean-square (VSLMS) with 
Mathews’s adaptation. A detailed comparison of these filters 
can be found in the “Supplementary information” section. 
After comparing the different filters, it was found that the 
NLMS, RLS, and OCNLMS filters were the most effective.

The selected adaptive filters were applied to the raw PPG 
signal as a preliminary step to calculate the SpO2 and HR, 
while the band-pass filter was used to calculate the HR. It 
should be noted that no band-pass filter was employed in 
measuring SpO2, as its inclusion resulted in a significant 
drift in the SpO2 values.

Fig. 5   Comparison of the performance of raw data (RAW) and data 
processed with NLMS, OCNLMS, and RLS adaptive filters on blood 
oxygen saturation during snore experiment with 1-Hz up and down 
movements. a RAW vs. NLMS. b RAW vs. OCNLMS. c RAW vs. 
RLS. d NLMS vs. OCNLMS vs. RLS. Note “F” in the figure repre-
sents “freeze” and indicates a stationary hand; “U&D” represents up 
and down movements

Table 2   Error rates for raw data and data with different adaptive filters

Error rate (%) SpO2 < 
90% RAW​

SpO2 < 
90% NLMS

SpO2 < 90% 
OCNLMS

SpO2 < 
90% RLS

NLR 0.5 1.93 2.64 1.84 2.61
NLR 1 2.12 3.83 2.14 3.06
NUD 0.5 2.66 4.26 3.86 4.19
NUD 1 2.83 5.95 3.41 3.63
SLR0.5 1.74 3.91 2.2 3.65
SLR 1 1.19 1.97 1.74 1.75
SUD 0.5 2.4 3.27 2.63 2.3
SUD 1 3.46 4.15 4.11 3.98
Mean 2.28 3.74 2.72 3.14
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3 � Experiment and results

3.1 � SpO2

3.1.1 � Empirical formula vs customized formula

In Fig. 3, the results obtained from two different formulas 
for calculating SpO2 are compared. Notably, the empiri-
cal formula demonstrates significant errors, as the calcu-
lated SpO2 levels exceed 100%. In contrast, the custom-
ized formula produces relatively accurate SpO2 values. 
Furthermore, the SpO2 values derived from the empirical 
method tend to be lower than those calculated using the 
customized formula.

During the first minute of the experiment, the researcher 
was instructed to breathe normally and only move their 
finger, resulting in expected blood oxygen values between 
95 and 100% as mentioned previously. Any values below 
95% is considered abnormal. Table 1 shows the number of 
abnormal values observed during the first minute for both 
empirical and customized formulas. Additionally, a statis-
tical comparison was conducted for the abnormal values 
where SpO2>100% throughout the entire experiment.

Our study found that the customized formula performed 
better than the empirical formula in estimating SpO2 values, 
particularly by avoiding any errors for values above 100% 
throughout the entire experiment. The box plots in Fig. 4 
demonstrated that the empirical formula had a significantly 
higher error rate (18.18%) compared to the customized for-
mula, which had an error rate of 0%.

Moreover, during the first minute of the experiment, the 
customized formula had superior performance compared to 
the empirical formula, with an error rate of 1.87% for SpO2 
values less than 95%. This error rate was only slightly lower 

than the empirical formula’s error rate of 2.59%. Based on 
these findings, we have selected the customized formula as 
the preferred method for estimating SpO2 values.

Fig. 6   Comparison of the error rates between raw data (RAW) and 
data processed with different adaptive filters for SpO2<90% through-
out the experiment: RAW vs. NLMS vs. OCNLMS vs. RLS. Results 
indicate data with OCNLMS filter has fewer errors than NLMS and 
RLS filters

Fig. 7   Comparison of raw data (RAW) vs data with NLMS, OCN-
LMS, and RLS adaptive filters on SpO2 during normal breathing 
experiment with 0.5-Hz left and right movements. a RAW vs. NLMS. 
b RAW vs. OCNLMS. c RAW vs. RLS. d NLMS vs. OCNLMS vs. 
RLS. Note “F” in the figure represents “freeze” and indicates a sta-
tionary hand. “L&R” represents left and right movements
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3.1.2 � Adaptive filter comparison

Fig. 5 illustrates the SpO2 results of the snore experiment 
involving vertical up and down movements at a frequency 
of 1 Hz. The x-axis represents the time in seconds, while 
the y-axis represents blood oxygen saturation percentage. 
The red solid line represents the raw data without any 
added filters, while the other dashed lines represent the 
raw data with different filters applied. NLMS, OCNLMS, 
and RLS represent the test raw data (RAW) with NLMS, 
OCNLMS, and RLS filters applied, respectively.

The waveform appears consistent and smooth during 
the freeze finger phase but exhibits variation during the 
motion phase, which verifies that movement has an impact 
on SpO2 values. The lines and values also show varia-
tion with the addition of different adaptive filters. The line 
remains stable in the part where the fingers were station-
ary. However, the raw values in the range of 40–50 s, once 
the filter was applied, moved outside of 98–100% range. 
Apnea can lead to a drop in SpO2 levels, but the SpO2 
level is maintained at high levels for healthy individuals, 
even after a few minutes of breath holding [50, 51]. There-
fore, for the researcher, a 30-s breath holding (mimicking 
apnea) will not result in a SpO2 drop below 90%. Table 2 
presents a comparison of the error rates between the raw 
data and data processed with the NLMS, OCNLMS, and 
RLS filters for SpO2 values less than 90% throughout the 
experiment.

We observed that, regardless of whether an adaptive filter 
is used or not, the quality of most signals deteriorates as 
movement frequency increases, which causes an increase in 
errors of SpO2 estimation.

With respect to the movement direction, the vertical up 
and down movements demonstrated significantly higher 
error rates in the blood oxygen test compared to horizontal 
left and right movements. This indicates that the up-down 
motion introduced more MA than the left-right motion.

Regarding the total error rate, the raw data without the 
adaptive filter exhibited the lowest error rate at 2.28% for 
SpO2<90% throughout the experiment, as depicted in the 
box plots. Comparing the data with the filters, the OCNLMS 
filter had the best result (2.72%), followed by the RLS filter 
(3.14%) and the NLMS filter (3.74%).

The inclusion of the adaptive filter seems to amplify noise 
in the data rather than mitigating motion artifacts, as evident 
from Figs. 6 and 7 portrays an experiment characterized by 
minimal motion artifacts and clean data; however, the situ-
ation alters when the filter is introduced.

The red solid line in Fig. 7 represents the raw SpO2 data, 
which oscillate around 99% for the first 75 s. However, 
after 15 s of apnea event occurrence, the waveform starts 
to decline, and the SpO2 values continue to drop even after 
breathing resumes. It takes approximately 20 s for the SpO2 
values to return to 99% after breathing resumes. Follow-
ing this, the values are still fluctuated slightly compared to 
the initial finger freeze section, but the fluctuations remain 
within 1% and can be considered stable. This observation 
suggests a delay between the onset of apnea and subsequent 
decrease in SpO2 levels. According to a study by Chang et al. 
[52], the average delay time between an apnea (hypopnea) 
event and a 3% drop of SpO2 was found to be 19.3±9.6s. 
The result of our experiment is consistent with the conclu-
sion drawn by Chang et al. The data processed with the 
OCNLMS filter did not change significantly, while the data 
processed with the NLMS and RLS filters were exactly the 
opposite, with the lines drastically fluctuating during the 
finger movement sections, even in the last 30 s.

Boxplot is a graphical representation of a dataset’s dis-
tribution; it provides a visual summary of the data’s cen-
tral tendency, spread, and any potential outliers [53]. The 
box in the plot represents the interquartile range (IQR), 
which encompasses the middle 50% of the data. The whisk-
ers extend from the edges of the box to the minimum and 

Table 3   Percentage of data within whiskers for raw data and data 
with different adaptive filters

Percentage of data 
within whiskers (%)

RAW​ NLMS OCNLMS RLS

NLR 0.5 86.87 87.2 88.27 88.67
NLR 1 90.71 89.43 91.13 90.33
NUD 0.5 86.94 86.34 87.67 86.84
NUD 1 87.95 88.53 87.31 88.12
SLR0.5 86.95 87.94 87.8 88.26
SLR 1 88.86 86.82 88.97 91.39
SUD 0.5 85.61 84.78 85.05 85.83
SUD 1 89.26 88.42 87.14 88.24
Mean 87.89 87.43 87.92 88.46

Fig. 8   Comparison of raw data (RAW) vs data processed with NLMS, 
OCNLMS, and RLS adaptive filters on resting HR during snore exper-
iment with 1-Hz up and down movement. Note “F” in the figure rep-
resents “freeze” and indicates a stationary hand. “U&D” represents up 
and down movements
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maximum values within a specified range. Any data points 
outside this range are considered outliers.

Table 3 provides a comparison of the percentage of 
data within the whiskers for both the raw data and the 
data processed with filters. The results indicate that 
OCNLMS and RLS filters have a slightly larger percent-
age of data within the whiskers compared to the raw 
data (87.89%), with percentages of 87.92% and 88.46%, 
respectively. NLMS, on the other hand, has a slightly 
smaller percentage of data within the whiskers, with a 
percentage of 87.43%.

These percentages within the whiskers are important 
because they give an indication of how tightly the data 
is clustered within IQR. A larger percentage within the 
whiskers suggests that the data is more concentrated 
within the IQR and less outliers. In this case, the differ-
ences between the filter types and the raw data are rela-
tively small, suggesting that the filters have a subtle effect 
on the MA removal.

It is worth highlighting that the approach taken in this 
study for removing motion artifacts from SpO2 estimation 
relied solely on the use of an adaptive filter, in contrast to 
other studies [27, 31, 32] that utilize multiple filters. Con-
sequently, it becomes challenging to definitively deter-
mine which specific filter contributed to the improvement 
in results. While this experiment was designed for a direct 
and clear comparison of different filters, the performance 
of the adaptive filter did not meet expectations. In certain 
cases, it introduced additional noise to the data, thereby 
interfering with the analysis. In previous studies [51, 54], 
where the sampling frequency ranged from 200 to 400 Hz, 
and the adaptive filter would effectively smooth out the 
lines. However, the sampling frequency for our experi-
ment was only 25 Hz, which resulted in less satisfactory 
results compared with higher sampling frequencies.

Fig. 9   Comparison of raw data (RAW) vs data with NLMS, OCN-
LMS, and RLS adaptive filters on instantaneous HR during snore 
experiment with 1-Hz up and down movements. a RAW vs. NLMS. 
b RAW vs. OCNLMS. c RAW vs. RLS. d NLMS vs. OCNLMS vs. 
RLS. Note “F” in the figure represents “freeze” and indicates a sta-
tionary hand. “U&D” represents up and down movements. The time 
between 102 and 116 s in a, b, and c was magnified to provide a 
detailed illustration of the adaptive filter's effect on MA, demonstrat-
ing its effective capability to flatten the waveform

Fig. 10   Comparison of resting HR and instantaneous HR using 
Bland-Altman plot during snore experiment with 1-Hz up and down 
movements. Illustrates large discrepancy between the resting HR and 
the instantaneous HR
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3.2 � HR

3.2.1 � Resting HR vs instantaneous HR

Figures 8 and 9 display the results of two methods for deter-
mining HR in an experiment that involved snoring with up 
and down movements at a frequency of 1 Hz. Figure 10 

depicts the Bland-Altman analysis of the experiment, a mean 
bias of 0.38 bpm was obtained, with the upper and lower 
limit of agreement (LOA) bounds being 22.25 and −23.02 
bpm, respectively, at a 95% confidence interval. The results 
indicate a lack of agreement between the two approaches. 

Fig. 11   Histogram of resting 
HR of raw data (RAW) and data 
with NLMS, OCNLMS and 
RLS filter on snore experiment 
with 0.5Hz up & down move-
ment. a. RAW vs. NLMS vs. 
OCNLMS vs. RLS b. RAW c. 
NLMS d. OCNLMS e. RLS

Table 4   Kurtosis values of resting HR for raw data and data with dif-
ferent adaptive filters

Kurtosis value (%) RAW​ NLMS OCNLMS RLS

NLR 0.5 2.832 2.878 2.916 3.044
NLR 1 3.535 4.067 4.086 4.154
NUD 0.5 4.739 3.057 3.058 3.351
NUD 1 4.17 3.966 4.081 3.93
SLR 0.5 2.698 2.489 2.462 2.41
SLR 1 3.432 2.374 2.452 2.319
SUD 0.5 3.425 2.848 2.894 2.894
SUD 1 2.34 2.175 2.413 2.152
Mean 3.271375 2.98175 3.0115 3.03175

Fig. 12   Comparison of kurtosis values between raw data (RAW) 
and data with different adaptive filters: NLMS, OCNLMS, and RLS. 
Results indicate that data with NLMS filter has the fewest outliers, as 
it has the lowest kurtosis value
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Furthermore, Fig. 9 demonstrates that the estimated instan-
taneous HR varies significantly during finger movement, but 
remains stable during resting HR. This suggests that MA 
have a greater impact on the instantaneous HR than the rest-
ing HR. Therefore, resting HR was selected to estimate the 
HR value.

Furthermore, as observed in Fig. 8, the HR maintains in 
a steady fluctuation throughout the experiment. It is worth 
noting that when breathing resumes after an apnea period, 
there is a significant rise in HR. This phenomenon com-
monly occurred during sleep and is known as an involuntary 
reflex [55]. When a person stops breathing during sleep, the 
longer the oxygen deprivation, the more likely the HR tends 
to decrease. Subsequently, involuntary reflexes cause the 
person to wake up at the end of breathing cessation period, 
resulting in a rapid increase in HR. Although the experiment 
was performed while awake, a similar involuntary reflex 
occurred during the apnea period where the HR increased to 
obtain more oxygen. A significant rise in HR was observed 
when the breathing resumes, as a large amount of oxygen 
was obtained. These results have been verified in the rest of 
the experiments. It can be concluded that prolonged apnea 
results in an increase in HR to obtain more oxygen, which 
gradually decreases and stabilizes upon resumption of nor-
mal breathing.

3.2.2 � Adaptive filter comparison

Fig. 11 shows the distribution histogram of snore experiment 
with up and down movements at a frequency of 0.5 Hz. The 
raw data along with data processed using NLMS, OCNLMS, 
and RLS filters are overlaid, and there are a significant num-
ber of outliers in the range of 50–60 bpm, whereas the filters 
effectively filter out these outliers.

The kurtosis values of resting HR for the eight sets 
of experiments, both for the raw data and the data after 

applying the NLMS, OCNLMS, and RLS filters, are shown 
in Table 4. Kurtosis is used to detect the presence of outliers 
in the data and provides an indication of the overall degree 
of outliers’ presence. A symmetric distribution is expected 
to have a kurtosis value of 3. The deviation of outliers from 
the normal distribution decreases as the kurtosis decreases 
[56]. According to the graph, the data processed using the 
NLMS filter exhibits the lowest kurtosis (2.98%), followed 
by the OCNLMS filter (3.01%) and the RLS filter (3.03%). 
All of the filters’ kurtosis levels are lower than that of the 
raw data (3.27%), as seen in Fig. 12, demonstrating their 
effectiveness in eliminating outliers of HR values.

The experimental setup, with subject sitting still and 
employing only arm-driven movement, was designed to 
maintain a stable HR trend. In this context, smaller differ-
ences between HR estimates were preferable, as indicated 
by the mean of the differences between HR values when 
comparing raw data to data processed using NLMS, OCN-
LMS, and RLS filters, as presented in Table 5. The results 
indicate that the RLS filter exhibited the smallest difference 
of 1.6257 bpm, followed closely by NLMS with a differ-
ence of 1.628 bpm, and then OCNLMS with a difference of 
1.6388 bpm. All of the filters’ mean difference are smaller 
than the raw data (1.7042 bpm). Considering the presence 
of more outliers in the OCNLMS results, it is reasonable to 
conclude that the NLMS filter outperforms the other two 
filters in accurately estimating resting HR in this specific 
experimental scenario.

Moreover, considering the relatively minor variations 
between the raw data and the filters in resting HR estima-
tion, a comparison of the mean differences in instantaneous 
HR, as presented in Table 6, was undertaken. The influ-
ence of MA tends to have a more substantial impact on the 
estimation of instantaneous HR, resulting in larger mean 
difference values compared to resting HR. The results indi-
cate that the NLMS filter yielded the smallest difference, 
measuring 7.8489 bpm, closely followed by RLS, which 

Table 5   Comparison of mean difference between resting HR

Mean of difference 
between resting HR 
(bpm)

RAW​ NLMS OCNLMS RLS

NLR0.5 1.7474 1.6374 1.6612 1.6376
NLR1 1.7972 1.7339 1.8708 1.7706
SLR0.5 1.6562 1.5123 1.5636 1.5691
SLR1 1.5324 1.6395 1.5322 1.5681
NUD0.5 2.1554 2.0053 1.905 1.9745
NUD1 1.7188 1.7792 1.7583 1.6898
SUD0.5 1.7139 1.4478 1.5546 1.484
SUD1 1.3124 1.2688 1.2647 1.3117
Mean 1.7042 1.628 1.6388 1.6257

Table 6   Comparison of mean difference between instantaneous HR

Mean of difference 
between Instantaneous HR 
(bpm)

RAW​ NLMS OCNLMS RLS

NLR0.5 12.8716 8.6703 9.1568 9.0911
NLR1 9.3442 7.9694 7.9031 8.1363
SLR0.5 13.0859 8.6368 8.9876 8.7172
SLR1 8.7235 6.0588 6.5123 6.1998
NUD0.5 11.4548 8.6011 8.9916 8.852
NUD1 7.7831 7.2354 6.8796 7.1446
SUD0.5 12.3171 7.7666 8.1692 8.0047
SUD1 9.2765 7.8533 7.446 7.52
Mean 10.6071 7.8489 8.0058 7.9582
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displayed a difference of 7.9582 bpm, and then OCNLMS, 
which exhibited a difference of 8.0058 bpm. Likewise, all of 
these filter-based mean differences proved to be smaller than 
that of the raw data, which showcased a mean difference of 
10.6071 bpm.

Indeed, it can be succinctly stated that NLMS consistently 
performs marginally better than the other adaptive filters, 
given the minimal variation in kurtosis values and mean dif-
ference HR values. Furthermore, it is evident that the adap-
tive filter excels in instantaneous HR estimation compared to 
resting HR, as indicated by the significant reduction in mean 
difference values (decreased from 10 to 8 bpm) following the 
application of the adaptive filter.

4 � Conclusion

In this paper, we present a non-invasive and continuous 
experimental set-up designed for monitoring SpO2 and HR 
to assess sleep apnea at home. Various breathing experiments 
were performed to investigate the relationship between SpO2, 
HR, and apnea. We also implemented various adaptive filters 
to compare their effectiveness in removing MA.

Several key findings have emerged from this study. In 
terms of SpO2, both customized and empirical formulas were 
employed for comparison. The data indicates that the bespoke 
formula yielded more accurate results than the empirical 
formula for calculating SpO2, with an error rate of 0% in 
SpO2>100% compared to 18.18% of empirical formula. In 
addition to this, we found up-down finger motion introduced 
more MA than left-right motion, and the errors in SpO2 esti-
mation are increased as the frequency of movement increased. 
A delay between the onset of apnea and the subsequent fall 
in SpO2 levels has been found only in limited experiments 
because of MA. The comparison of the percentage of data 
within the whiskers reveals that both the OCNLMS and 
RLS filters have a slightly larger percentage of data within 
the whiskers when compared to the raw data, which itself 
had a percentage of 87.89%. Specifically, the OCNLMS filter 
achieved a percentage of 87.92%, while the RLS filter reached 
88.46%. In contrast, the NLMS filter exhibited a slightly 
smaller percentage of data within the whiskers, recording a 
percentage of 87.43%. The differences between the various 
filter types and the raw data are relatively small, indicating 
that the filters have a subtle effect on the removal of motion 
artifacts. The inserting of adaptive filters during SpO2 esti-
mation increased noise in certain cases rather than removing 
MA. The adaptive filter’s effectiveness in mitigating motion 
artifacts appears to be limited, likely due to the relatively low 
sampling frequency of 25 Hz for the SpO2 signal.

Regarding HR, MA have a greater impact on the instan-
taneous HR than the resting HR and a prolonged pause 
in breathing leads to an increase in HR to obtain more 

oxygen, followed by a gradually decreases and stabiliza-
tion upon resumption of breathing. Our study also found 
that the NLMS filter have the lowest kurtosis value (2.98 
bpm) among the compared filters. Additionally, the NLMS 
filter exhibits slightly superior performance in terms of 
mean differences for both resting HR (1.628 bpm) and 
instantaneous HR (7.8489 bpm) compared to other adap-
tive filters. Nevertheless, considering the modest nature of 
these variations, our conclusion is that NLMS consistently 
demonstrates a marginal advantage over the other adap-
tive filters. Moreover, the adaptive filter exhibits superior 
performance in instantaneous HR estimation compared to 
resting HR, as demonstrated by the noteworthy MA reduc-
tion in mean difference values (reduced from 10 to 8 bpm) 
following the application of the adaptive filter.

4.1 � Study limitations

Only a researcher herself is permitted to conduct the 
experiment by the university’s ethic committee, which 
may limit the generalization of the findings.
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