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Abstract
In clinical practice, ultrasound standard planes (SPs) selection is experience-dependent and it suffers from inter-observer and
intra-observer variability. Automatic recognition of SPs can help improve the quality of examinations andmake the evaluations
more objective. In this paper, we propose a method for the automatic identification of SPs, to be installed onboard a portable
ultrasound system with limited computational power. The deep Learning methodology we design is based on the concept of
Knowledge Distillation, transferring knowledge from a large and well-performing teacher to a smaller student architecture.
To this purpose, we evaluate a set of different potential teachers and students, as well as alternative knowledge distillation
techniques, to balance a trade-off between performances and architectural complexity. We report a thorough analysis of fetal
ultrasound data, focusing on a benchmark dataset, to the best of our knowledge the only one available to date.

Keywords Standard scanplane detection · Fetal ultrasound · Knowledge distillation · Machine Learning

1 Introduction

Abnormalities are one of the leading reasons for perina-
tal mortality in both industrialized and developing countries
[1], thus mid-trimester fetal ultrasound (US) scans are car-
ried out to provide accurate diagnostic information for the
delivery of optimized prenatal care with the best possible
outcomes for mother and fetus. During the obstetric US
examinations, standard planes (SPs, sectional images con-
taining key anatomical structures) are selected with care to
compute biometric measurements to evaluate fetal growth
and congenital malformations. They are also used to estimate
the pre-birth weight and the gestational age of a fetus [1]. SPs
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are identified following international guidelines, promoted
by scientific committees, so that images are obtained fol-
lowing the same protocols, in theory with the purpose of
guaranteeing repeatability and reliability.

In clinical practice, the SPs selection based on the above-
mentioned protocols is experience-dependent, cumbersome,
and suffers from inter-observer and intra-observer variabil-
ity. The situation is even more critical in some countries,
especially in the developing world, where according to the
World Health Organization (WHO) individuals with no for-
mal training carry out ultrasound scans [1]. Hence, the
automatic identification of SPs will facilitate more objective
evaluations and overall workflow improvement.

The task is challenging for several reasons, we highlight
two important ones: first, the properties of US images [3]:
low contrast, low signal-to-noise ratio, non-uniform acoustic
densities and the presence of scattered noise. In addition,
due to the high intra-class and low inter-class variations of
US images, often non-SPs images are very similar to SPs [4,
5], so they are difficult to distinguish.

Second, in the identification of SPs of a given anatomical
district, one should consider their difference with non-
standard planes (non-SPs) of the same district may beminute
— see Fig. 1. Indeed, SPs detection is different from the
related task of US classification, since different images of
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Fig. 1 Examples of fetal abdomens, from [2]. Left: a standard plane compliant to fetal anomaly screening programme [1]: it includes the spine
(green), the umbilical vein (red), and the stomach (blue). Right: a non-standard one, where the umbilical vein is missing

the same anatomical district may be classified differently
(standard or non-standard), while the goal of US classifi-
cation is to associate an anatomical label to each example.

In this paper, we address the above-mentioned challenges
by adopting a data-driven approach. Since the field is also
suffering from a lack of data, data-driven solutions reduce
the challenges related to data quality and variability, but raise
a third issue: because of the legal rights to protect the privacy
of patients, the example collection and annotation workload
make data collection hard or sometimes even impossible. For
this reason, medical images are valuable and often kept pri-
vate: the literature is often reporting results based on private
datasets [5–9], with a negative impact on methods bench-
marking and reproducibility. In our work, we rely on the
FETAL_PLANE_DB1, to the best of our knowledge, the first
publicly available dataset of fetal US scanplanes [2].

Specifically, we focus on the problem of designing a com-
putationally efficient network for SPs detection. Indeed, as
a main functional requirement of our research, we require
the network to be able to run onboard portable ultra-sound
scanners, whose computational power is limited and fully
dedicated to signal acquisition and processing. Portable units
are cheaper and more flexible than traditional ultrasound
machines and more appropriate for the market of developing
countries, where automatic analysis functionality is particu-
larly needed.

Following previous works in the literature, we formu-
late SPs detection as a multi-class classification task and
investigate the usage of Knowledge Distillation (KD) [10] to
keep the computational cost under control, transferring the
generalization ability of a high-performing network (called
teacher) into a second one (called student), with a two-fold
benefit (1) reducing the dimension and the complexity of
the model in terms of the number of layers and parame-
ters; (2) mitigating the over-fitting effect due to the limited
amount of training data. We propose a simple strategy dis-

1 https://doi.org/10.5281/zenodo.3904280 Version: 1.0.

tilling knowledge from Logits and from three hidden layers
(see Fig. 2), resorting to a hand-crafted association.

To summarize, the paper contributions are as follows:

• A simple yet effective knowledge distillation strategy,
based on a loss that combines a response-based and a
feature-based distillation.

• A thorough evaluation of candidate choices for teacher
and student models, taking into account a budget on data
availability due to the specific application and inference
time performance limits guided by the target portable US
system.

• An efficient pipeline for standard SPs detectionwe assess
on a fetal image classification benchmark to providemea-
surable evidence of the potential of the approach in the
clinical domain.

2 Methods

2.1 Related works

SPs detection. With the development of deep learning,
general-purpose CNNs have been applied in many medical
applications, including US classification [2, 11, 12]. In the
case of US classification, a recent study assesses the perfor-
mances of several architectures [2], showing the potential of
large CNNs in this domain. It does not discuss CNNs limita-
tions due to the stringent computational requirements of the
device, and the limited availability of data, and this lack of
information motivates our analysis, while the architectures
considered by the authors are the candidates for our teacher
models.

Other works learn the relationship between 2D plane
images and 3D volumes [13], exploit the temporal relation
between the frames in video clips [11, 14], other com-
pletely based their approach on the identification of the
ASs [7]. The limited availability of data in the field, pushed
the researchers to improve the generalization ability of the
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Fig. 2 A sketch of the proposed
knowledge distillation scheme,
involving three convolutional
layers of the student and teacher
networks, and the final logits.
Average pooling is employed to
align the shapes of teacher and
student feature maps, and a
projection of student feature
maps is learnt to reduce the gap
between the capability of the
two networks

models with different strategies, for instance designing ad
hoc features[15], adopting multi-task learning classifying
and localizingASs [8, 16], and including clinical prior knowl-
edge [8, 16] increasing the burden of data acquisition and
annotation, or integrating an attention mechanism so that the
predictions are performed thanks to local features at different
scales [9].

Fewer, ad hoc architectures are also available in the liter-
ature: SonoNet is a family of CNNs specifically designed to
solve the detection of SPs in real-time during theUS scanning
[5].
Knowledge distillation. KD is a class of methods from the
deep learning literature, whose goal is to control the com-
plexity of a network by distilling knowledge from a large
teacher model to a smaller student model mainly comparing
either the logits [17] or the outputs of the hidden layers of
both models [18–21], after the distillation only the student
will be used for inference. In the literature, hidden layer asso-
ciations are either done by hand before training [18–20] or
learnt during the optimization of the student [21]. As it will
be clarified in the following, we adopt the former approach.

Knowledge distillation has been previously applied to SPs
detection in ultrasound imaging to classify echo cine series
into 12 standard views [22], and to detect the abdomen,
femur and head from fetal images [6]; bothmethods proposed
memory-efficient student models, with no specific focus on
the inferring time. Both approaches take into account a richer
input, with respect to our work: [22] analyze US clips,
while [6] complement US images with relevant information
acquired by an eye tracker.

2.2 Proposedmethodology

We formalize SPs detection as a multi-class classification
task, where each image is associatedwith one of n predefined

classes and the set of classes may include SPs and non-SPs
of the same anatomical district, and for this reason, some
classes may be very similar to one another.

The task is complex andfine-grained, for this reason, small
and specific architectures may not be sufficient. At the same
time, large architectures may not be applicable, to the strin-
gent computational requirements. We adopt a KD strategy,
where we distil the knowledge from a more complex general
purpose teacher model to a simpler more specific student
model.

In themethodwe propose,we combine two alternativeKD
approaches: a first approach, BasicKD, using the output of
the last layer before the softmax, called Logits, so the student
is trained to produce Logits equal to those generated by the
teacher [17].

A second intermediate KD considering the outputs of the
hidden layers of the CNN, comparing the feature maps gen-
erated by the student with those of the teacher, involving
compatible layers, otherwise the optimization will lead to
suboptimal solutions. Here, we follow a hand-crafted asso-
ciation, motivated by the fact, we are interested in distilling
knowledge between architectures with the same hierarchical
structure, including layers with similar semantic meanings.

Figure2 provides a sketch of themethodologywepropose.
The distillation loss we propose combines a response-

based and a feature-based part, the hyperparameterβ controls
the importance of features:

L = LK D + βLFMD . (1)

LKD: it is a loss computed on the Logits, as the linear
combination of two components, whose relative weight is
controlled by a hyperparameter λ ∈ [0, 1].

LK D = λLSL + (1 − λ)Llogi ts (2)
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The mismatch between the output of the student model
and the ground-truth label is computed with the function H
representing the cross-entropy loss:

LSL = H(so f tmax(as), yr ) (3)

as is the student network logit and yr the ground-truth label.
The difference between the probability distributions gen-

erated by the softmax is computed with theKullback–Leibler
(KL) divergence loss.

Llogi ts = τ 2K L(sof tmax(
at
τ

), so f tmax(
as
τ

)) (4)

A hyperparameter τ , called temperature, controls the soft-
ening of the signal arising from the output of the teacher
network; at and as are the logits of the teacher and student
networks, respectively.More details on this loss can be found
at [17] (Sec. Distillation) where the Cross-Entropy loss is
adopted, but it has been proved it is equivalent to the KL
divergence ([23] Sec. 2).
LFMD: it is computed on the intermediate feature maps,
as a hand-crafted version of the adaptive method proposed
in [21]. As shown in Fig. 2 the knowledge transfer is per-
formed taking into account only three convolutional layers
with RELU activation function for the student and for the
teacher: the first, the intermediate, and the last layers of the
teacher as associated with the corresponding layers of the
student, through an appropriate feature map loss, combining
Mean Square Error (MSE) losses:

LFMD = MSE1 + MSE2 + MSE3. (5)

Since the two networks should be of different size scales and
based on different architectures, in order to align the shapes
of the features between the teacher and the student, an aver-
age pooling [24] is performed to both student and teacher’s
features map. A projection including a stack of convolutional
layers of the size 1 × 1, 3 × 3, and finally 1 × 1 is further
applied to the student’s features to reduce the gap between
capabilities of the networks.

2.3 Implementation details

To estimate the above-mentioned hyperparameters, we per-
form grid search on the following ranges: λ ∈ {i(0.1) |
i ∈ Z, 1 ≤ i ≤ 9}, τ ∈ {i | i ∈ Z, 1 ≤ i ≤ 10},
β ∈ {1, 5, 10, 100, 200, 400, 800}, weight decay regulariza-
tion wt ∈ {5e−5, 5e−6, 1e−5, 1e−6, 1e−7, 1e−8}, learning
rate lr ∈ {0.01, 0.001, 0.0001, 0.00005}.

We train the models with 10% of the training set as a
validation, and the models achieving maximum validation
accuracy, in a given epoch, are selected.

Because of the limited size of the datasets available, we
adopt the following data augmentation:

1. Randomly flipped horizontally, with a probability of
50%;

2. Randomly flipped vertically, with a probability of 50%;
3. Gamma Correction with randomly selected gamma

between 0.3 and 1.7;
4. Normalized so that the values of the pixels range from 0

to 1;
5. Zoomwith a random factor between 80% (zoom out) and

120 (zoom in);
6. Random rotation in a range between −10◦ and 10◦.

Gamma correction is performed to mimic different gain
settings used during the examination to overcome US atten-
uation and different tissue echogenicity, while the other
transformations encode the possible settings the sonographer
could choose to visualize US images on the US scanner and
the possible fetal position in the placenta.

The tables report the validation accuracy (VA) used for
the model selection, and the balanced validation/test accu-
racy (VAB, TAB). The balanced accuracy is computed as
the mean of the diagonal of the confusion matrix and it is not
considered during the optimization phase.

As teachers, we considered state-of-the-art architectures
of different kinds, like DenseNet and ResNet, characterized
by the potential to reach high accuracy but a huge amount
of parameters and layers. For the student, we choose the
SonoNet family, which is characterized by the absence of
fully-connected layers, replaced with convolutions also for
the final prediction before the softmax.

3 Results

In this section, we report and discuss the results we obtain on
the FETAL_PLANE_DB, benchmark, available online [2].

The dataset is composed of over 12400 images from 1792
patients, acquired on 6 different machines by several dif-
ferent operators with similar experience. They are divided
into 6 classes (Table 1): four of the most widely used fetal
anatomical planes (abdomen,brain, femur and thorax), the
mother’s cervix (used for prematurity screening) and a gen-
eral category to include any other less common image planes
(not necessarily fetal or maternal), further dataset statistics
can be found in [2] (Table 1). The authors already divided
into the training and test subsets to simplify the comparison
with the state-of-the-art, containing 7129 and 5271 images,
respectively. The validation is 10% of the training set, as in
[2].
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Table 1 FETAL_PLANE_DB: cardinality of the entire dataset

Anatomical plane N. patients N. images

Fetal abdomen 595 711

Fetal brain 1082 3092

Fetal femur 754 1040

Fetal thorax 755 1718

Maternal cervix 917 1626

Other 734 4213

3.1 Choice of a teacher model

We first aim to find the best performing existing model on
the data in hand, to be the teacher model.

We start by reproducing the results presented in [2]: in
Table 2, we report our performances, higher than the ones
in [2] (average improvement of 2.13%) as we change aug-
mentation andmake the learning rate lr and the weight decay
wd parameters decay exponentially, starting from an initial
value 5e − 5 as weight decay and 1e − 4 as learning rate,
updating every 100 steps and a decay rate of 0.9. The num-
ber of layers and parameters clearly state these architectures
are not appropriate for the task at hand; 0.25-MobileNet is
suitable in terms of the number of parameters but its per-
formances are not sufficient for our purpose. DenseNet169
remains the one achieving the best performances, as reported
in [2], and for this reason, we consider it a valid teacher
model.

We include in our analysis an architecture from the
SonoNet family, SonoNet64, which has a comparable size
and performance to DenseNet169. It will also be considered
in the following, as a teacher candidate.

3.2 Choice of a student model

The smaller architectures from Table 2 do not appear to
be suitable student models because the inferring time is
still quite high. We evaluate a selection from the family of
SonoNet architectures instead, training them with a fixed
learning rate of 1e − 3, a batch size of 16 and ADAM opti-
mizer. The results are in Table 3. While the dataset is rich
enough for bigger networks to get better performances, here,
we are interested in smaller networks in terms of layers (to
decrease the time of the prediction) and in terms of filters (i.e.,
number of parameters). We select SmallNet32 as our student
model, and baseline for the forthcoming experiments because
it represents a trade-off between size (w.r.t. parameters and
layers), accuracy and computational performances.

3.3 Knowledge distillation

Table 4 reports the results comparing our approach to KD
with BasicKD [17] and SemCKD [21]. The best perfor-
mances are achieved with DenseNet169 as teacher and
our hand-crafted KD strategy. In the case of BasicKD the
validation accuracy reaches 97.15%, also surpassing the
performance of the teacher, but the same behavior is not
appreciated in the balanced validation accuracy. SemCKD
is instead ineffective, with a degradation of the results w.r.t.
the baseline studentmodel. It appears that the automatic asso-
ciation of the layers is possibly too challenging (the attention
mechanism needs to learn additional parameters) for the lim-
ited amount of training data available. Moreover, the teacher
and student architecture structures are very similar, there-
fore the data-driven association of SemCKD appears to be
unnecessary. Instead, our hand-crafted association reports
very promising performances, both in terms of validation and

Table 2 FETAL_PLANE_DB:
state-of-the-art CNNs assessed
as teacher models (number of
Layers and Total parameters
from [25])

Network Layers Total parameters Sec/Frame (ms) VA VAB TAB
VGG16 [26] 21 14,717,766 14.9 95.17% 93.74% 93.35%

MobileNet [27] 88 3,235,014 35.4 94.60% 94.88% 93.55%

0.75-MobileNet 88 1,837,590 36.0 94.31% 93.66% 93.59%

0.25-MobileNet 88 220,086 35.6 87.50% 81.77% 83.94%

Inception-v3 [28] 313 21,815,078 104.0 95.88% 95.75% 95.02%

ResNet50 [29] 177 23,600,006 71.9 95.17% 95.52% 94.75%

ResNet101 [29] 347 42,670,470 132.4 96.30% 95.68% 94.69%

ResNet152 [29] 517 58,383,238 196.5 95.31% 94.83% 94.45%

DenseNet121 [30] 429 7,043,654 145.4 96.02% 95.89% 94.66%

DenseNet169 [30] 597 12,652,870 204.7 96.44% 96.27% 95.13%

SonoNet64 53 14,864,350 25.8 96.59% 96.17% 95.10%

Seconds required for the forward stage through the network for 1000 samples and a batch size of 1 with
Quadro RTX 5000
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Table 3 FETAL_PLANE_DB:
candidate student models
assessment

Network Layers Total parameters Sec/Frame (ms) VA VAB TAB

SmallNet16 18 71,334 9.4 95.88% 93.60% 90.11%

SmallNet32 18 282,950 9.4 95.59% 93.43% 91.29%

SonoNet8 53 234,966 25.3 96.16% 95.14% 93.48%

SonoNet16 53 933,646 25.4 96.44% 93.82% 93.23%

SonoNet32 53 3,722,238 25.1 95.59% 95.15% 91.77%

testing accuracy, with an increase of the balanced accuracy
of SmallNet32 of about 1.73% with respect to the reference
student model.

We also report the performance of SonoNet32 obtained
with BasicKD, leading to higher test accuracy. However, this
model cannot be a suitable candidate because its dimension-
ality is incompatible with our needs (in particular the number
of parameters).

To support the choice of a three-tier association of our
hand-crafted approach, we perform the grid-search with 2
and 4 correspondences, where the Teacher is DenseNet169
and while the Student is SmallNet32. In this case

• 2-layers associates the first and the last layers;
• 4-layers associates the first, the median, the last layer,
plus a layer in the middle of the second half of the model.

We report the results of the selected models in Table 5 where
we notice the three-tier association is the one achieving the
best performances for all the metrics. Considering the size of
the Student, it is not appropriate to associate a higher number
of layers.

For an interpretation of the KD benefits, we compare
the GradCam [31] heatmaps of the SmallNet32 model from
Table 3 with the heatmaps of the best model in Table 4 (thus,
we interpret the results before and after knowledge distilla-
tion). Notice that, even though SonoNet has been designed
with a weakly supervised localisation embedded into the
architecture, here we, use a generic GradCam for an effective
comparison between the two outputs.

Figure3 compares the same abdomens generated from the
baseline model and the distilled one. The abdomen plane

is denoted by the presence of the spine, the umbilical vein
and the stomach (Fig. 1). On the first row (prior KD), the
model focuses on one structure only (either the vein or the
stomach). On the second row (after KD) the model captures
both the umbilical vein and stomach bubble. Both models
never take the spine, possibly because the spine is always
present in abdominal images. The distilled model seems to
rely on wider regions and it allows to generate features maps
with a higher discrimination power.

Finally, Fig. 4 shows the confusion matrices obtained by
SmallNet32, again before and after knowledge distillation.
Each row represents the instances in a ground-truth class,
while each column represents the instances in a predicted
class. Most misclassifications involve the classOther, which
includes non-SPs of several anatomical districts. The errors
are mitigated by knowledge distillation.

4 Discussion

The experimental analysis we carried out confirms that,
with an appropriate choice of a distillation strategy, we may
transfer knowledge from larger well-performing networks to
smaller ones. The latter can be installed on a portable device,
allowing us to achieve high efficiency (since they rely on few
parameters and require a low inference time) while maintain-
ing a good detection performance.

We achieve an inference time improvement with our
best distilled student (SmallNet32) requiring 1

21 of the time
needed by the reference teacher network, DenseNet169
(while the model proposed in [22] is only 1

6 ). As for the

Table 4 FETAL_PLANE_DB,
dataset: knowledge distillation.
Improvement: difference of
balanced test accuracy with
respect to the corresponding
baseline student model. The
distillation may improve (↑) or
worsen (↓) the performances

Teacher Student KD Method VA VAB TAB Improvement

DenseNet169 SonoNet32 BasicKD 97.30% 95.76% 93.89% ↑(2.12%)

DenseNet169 SmallNet32 BasicKD 97.15% 94.13% 92.05% ↑(0.76%)

SonoNet64 SmallNet32 BasicKD 97.15% 96.44% 92.77% ↑(1.48%)

DenseNet169 SmallNet32 SemCKD 94.46% 93.01% 89.27% ↓(2.02%)

SonoNet64 SmallNet32 SemCKD 96.02% 95.14% 91.58% ↑(0.29%)

DenseNet169 SmallNet32 Ours 96.87% 96.39% 93.02% ↑(1.73%)

SonoNet64 SmallNet32 Ours 96.73% 97.03% 92.80% ↑(1.51%)
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Table 5 FETAL_PLANE_DB,
dataset: knowledge distillation
with hand-crafted association.
The column Associations
reports the number of layers of
the teacher and student used to
perform the distillation

Teacher Student Associations VA VAB TAB

DenseNet169 SmallNet32 2 95.59% 95.66% 92.88%

DenseNet169 SmallNet32 3 96.87% 96.39% 93.02%

DenseNet169 SmallNet32 4 94.74% 94.09% 92.13%

Fig. 3 Heatmaps obtained via gradcam of 6 random abdomen samples from FETAL_PLANE_DB, test set [2], before (top) and after (bottom) KD
(see text)

Fig. 4 Confusion matrix of
distilled SmallNet32 on the
FETAL_PLANE_DB, test set
[2]. Left: before the knowledge
distillation. Right: after
distillation. The colours scale is
logarithmic to better highlight
the misclassifications
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space occupancy of the student network, it contains about 1
22

of the teacher’s parameters and 1
33 layers.

Moreover, with our hand-crafted distillation strategy, we
obtain a test accuracy improvement with respect to the stu-
dent model prior to distillation The improvement mainly
consists of a reduced misclassification on the class “Other”,
the most challenging one because of its internal variability
and its appearance overlap with several classes. This is due
to the way the dataset was built [2], since only images com-
plying with minimum quality requirements were selected by
the clinicians, while low quality and inappropriate anatomi-
cal planes (cropped or badly taken) were labelled as Other,
together with images containing calipers.

Apart from “Other”, the most challenging class that
receivedabenefit from thedistillationprocedure is “Abdomen”,
where most of the errors are mis-classifications with “Tho-
rax” (see Fig. 4 ). Besides this, we could not appreciate any
interpretable pattern in our errors.

It should be noted that SPs detection would be better
addressed ifwedispose of a datasetwith several non-standard
classes, one per anatomical district of interest. Unfortunately,
to date, a dataset with these characteristics is not available.

If we compare the results of the student after distilla-
tion with the original teacher model, we notice a small
performance degradation of 2.11% with SmallNet32, while
SonoNet32 (Table 4) architecture, whose inference time is
1
8 of DenseNet169, leads to a higher test accuracy just with
BasicKD, but a much higher dimensionality with respect to
SmallNet32. Notice that classical CNNs like VGG16 have
a similar inference time, a much larger spatial occupancy
(they have a very high number of parameters, higher than
DenseNet169), and lower performances.

5 Conclusions

In this paper, we addressed the detection of SPs, with the
objective of implementing the method onboard of a portable
US scanner. First, we explored the performances of general
state-of-the-art CNNs but the design of such networks is
incompatible with the system’s computational requirements.
The family SonoNet, explicitly designed for the detection
of SPs, was tested looking for a small and fast but effective
combination. The obtained results are encouraging, but the
performances of the smallest models (e.g., SmallNets) are
not competitive with the state of the art. To reduce this gap,
we identified knowledge distillation strategies: KD allows
to reduce the size of the network while maintaining satis-
factory performances. We transferred the capabilities from a
teacher to a student thanks to the logits and features maps
of intermediate convolutional layers; we found out a man-
ual association leads to better results, possibly because the

available data are not enough to learn an automatic and opti-
mal association. The best solution we obtained is a distilled
SmallNet32, leading led to the best trade-off between speed
and performance on the benchmark dataset.

An interesting direction for future works would be to fur-
ther push the performances of the models with additional
expert knowledge, similarly to [6]. The outcome of this
research will be the development of software tools to help
inexperienced operators with US acquisition tasks, high-
lighting SPs of interest as the examination takes place and
recording them automatically during the exam. From a prac-
tical point of view, it would be highly beneficial to obtain
this automatic classification on board the ultrasound device,
as a guideline to the operator during scanning. The outputs
would also be available for an offline analysis carried out by
an expert ultrasonographer.
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