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Abstract
Acute myocardial infarction (AMI) or heart attack is a significant global health threat and one of the leading causes of death. 
The evolution of machine learning has greatly revamped the risk stratification and death prediction of AMI. In this study, an 
integrated feature selection and machine learning approach was used to identify potential biomarkers for early detection and 
treatment of AMI. First, feature selection was conducted and evaluated before all classification tasks with machine learning. 
Full classification models (using all 62 features) and reduced classification models (using various feature selection methods 
ranging from 5 to 30 features) were built and evaluated using six machine learning classification algorithms. The results 
showed that the reduced models performed generally better (mean AUPRC via random forest (RF) algorithm for recursive 
feature elimination (RFE) method ranges from 0.8048 to 0.8260, while for random forest importance (RFI) method, it ranges 
from 0.8301 to 0.8505) than the full models (mean AUPRC via RF: 0.8044). The most notable finding of this study was the 
identification of a five-feature model that included cardiac troponin I, HDL cholesterol, HbA1c, anion gap, and albumin, 
which had achieved comparable results (mean AUPRC via RF: 0.8462) as to the models that containing more features. These 
five features were proven by the previous studies as significant risk factors for AMI or cardiovascular disease and could be 
used as potential biomarkers to predict the prognosis of AMI patients. From the medical point of view, fewer features for 
diagnosis or prognosis could reduce the cost and time of a patient as lesser clinical and pathological tests are needed.
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1 Introduction

AMI or heart attack is one of the acute coronary syndromes 
(ACS) which is a consequence of the sudden loss of blood 
supply to the heart muscle due to partial or complete block-
age of a coronary artery. Through the electrocardiogram 
(ECG) findings, AMI is usually classified into ST-segment 
elevated myocardial infarction (STEMI) and non-ST-seg-
ment elevated myocardial infarction (NSTEMI). A STEMI 
occurs when there is a complete blockage in the coronary 

artery and would show significant changes in the ST-seg-
ment on the ECG. In contrast, NSTEMI has a partial block-
age in the coronary artery and would not show any change 
in the ST-segment on the ECG. STEMI patients are having 
a greater risk of death than NSTEMI patients [1].

Various risk factors may cause AMI including smoking, 
hypertension, high body mass index (BMI), hyperglycae-
mia, dyslipidaemia (due to an unhealthy diet), alcohol and/
or drugs harmful use, and physical inactivity [2]. Studies 
had shown that non-communicable diseases and psychologi-
cal, genetic, and environmental factors also can affect AMI 
patients especially post-myocardial infarction (post-MI). 
Demographic parameters such as gender, age, family his-
tory of having cardiovascular diseases (CVD), ethnicity, and 
socio-economy other than comorbidities and air pollution or 
beliefs likewise influence AMI mortality too [3, 4].

According to World Health Organization (2021) and 
International Health Metric Evaluation (2020), an estimation 
of 18.6 million people died from CVD in the year 2019 and 
85% of these mortalities were due to AMI and stroke. Over 
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75% of these deaths occurred in low- and middle-income 
countries [2, 5]. In Malaysia, ischemic heart disease (IHD), 
another term for AMI, is listed as the principal cause of 
death which made up 15% of all death in the year 2019 with 
nearly 70% of IHD death being male [6]. The percentage 
slightly dropped in 2021 to 13.7% due to peaking in death 
from Covid-19 infection which made up 19.8% [7]. Despite 
that, AMI studies in low- and middle-income countries are 
still small against those in developed countries [8]. Hence, 
it is important to carry out studies related to this chronic 
disease such as risk classification and discovering potential 
biomarkers for early diagnosis and prognosis.

1.1  Background study

Currently, traditional risk classification models are still the 
gold standard and are widely utilized in CVD studies. Some 
commonly used conventional models are Thrombolysis in 
Myocardial Infarction (TIMI) [9, 10], Framingham Risk 
Score (FRS) [11, 12], Global Registry of Acute Coronary 
Events (GRACE) [13, 14], and History, ECG, Age, Risk 
factors and Troponin (HEART) [15]. The selection of these 
conventional models is influenced by the features used in the 
models. Some architectures required straightforward features 
(e.g., FRS), while some may require complex pathological 
results (e.g., GRACE and HEART). In addition, all the con-
ventional risk classification models were developed based 
on the Caucasian cohort; thus, some adaptations might be 
needed to modify these models to be more suited for other 
ethnicities. Nevertheless, these conventional models pro-
vided a simple and quick approach where limited resources 
are available.

Precision and personalized medicine, along with improv-
ing risk stratification, especially in CVD medicine, have 
led to the study and proposal of multiple cardiac and non-
cardiac biomarkers. Creatine kinase - myocardial banding 
(CKMB) and cardiac troponins (cTn: cTnI or cTnT) are 
among the most commonly used biomarkers to diagnose 
and stratify AMI patients, according to the review by Aydin 
et al. (2019) [16] and the Universal Definition of AMI [17].

In addition to CKMB and cTn, other biomarkers have 
been proposed, including molecular description, mechanism 
of action, and activity level relative to the disease, involving 
lipids, salivary, and urine biomarkers, apart from common 
blood test components [16, 18].

Machine learning (ML) is a division of artificial intel-
ligence (AI) that uses data and algorithms to mimic the 
way that humans learn and solve problems and improve 
their accuracy through learning [19]. The emergence of 
ML has greatly contributed to the field of AMI risk clas-
sification. Some commonly used ML algorithms in AMI 
or CVD studies are logistic regression (LR), support vec-
tor machine (SVM), k-nearest neighbour (KNN), artificial 

neural network (ANN), and random forest (RF) [20–25]. ML 
can be divided into three types of learning namely super-
vised learning, unsupervised learning, and reinforcement 
learning. In supervised learning, the algorithms are trained 
using labelled data. Conversely, for unsupervised learning 
models, algorithms are trained against unlabeled data. Mean-
while, reinforcement learning is trained based on the reward-
ing behaviours in an environment and provided feedback to 
improve the learning process.

Literature studies had proved that ML models outper-
formed conventional risk classification models. For exam-
ple, Alaa et al. [26] proved that the proposed ML model 
outperformed FRS and Cox PH models. Their ML model 
included new predictors such as individuals with a history 
of diabetes, which were not usually used in conventional 
models and showed improvement in risk classification of 
relevant subpopulations. Another 1-year mortality classifica-
tion study by Sherazi et al. [27] had shown that ML models 
outperformed GRACE in patients with the ACS. Moreover, 
ML models also showed better performance than the TIMI 
model in short- and long-term mortality predictions for 
STEMI as TIMI scores had underestimated patients’ risks 
of mortality in the study [28]. Hence, ML could serve as a 
better choice than conventional methods in risk classification 
for CVD studies, as ML could identify hidden patterns and 
include various types of data, whereas conventional methods 
are mainly used to identify the causality between limited 
variables [8].

1.2  Contribution of this work

The objective of this study is to develop an integrated 
machine learning and biomarker-based prognostic model 
for AMI patients. The classification ability of full mod-
els (all features) was compared with the reduced models 
(selected features) using supervised ML algorithms. Fea-
ture selections were implemented to select the optimum 
features subset for the reduced models before being fed into 
the ML classifiers. Next, common clinicopathologic features 
selected among the best two feature selection methods were 
identified and the findings were validated with the literature 
studies. These optimum features identified could be used as 
potential biomarkers for the early detection or treatment of 
AMI patients.

Our contributions are as follows:

1) We proposed an integrated model for AMI using a 
feature selection and machine learning approach for 
biomarker discovery. This approach reduces the time 
required for interpretation and interpolation of hetero-
geneous medical data compared to manual and conven-
tional approaches, which aids faster classification for 
decision-making and risk stratification.
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2) We compared various methods of feature selec-
tion to identify the optimal subset of features for 
in-hospital mortality classification including filter, 
wrapper, and embedded methods. Other AMI/CVD 
studies typically focused on comparing results from 
different classification algorithms (ANN vs SVM vs 
KNN, etc.) without comparing the results from dif-
ferent feature selection methods.

3) After conducting the feature selection task using 
wrapper and embedded, we identified five common 
features between the best two selection models. These 
features have the potential to serve as biomarkers for 
early diagnosis and prognosis of AMI. We verified 
these features with literature reviews, which con-
firmed that they are associated with AMI and con-
sider as important markers.

4) To address the issue of imbalanced data classifica-
tion, we chose the area under the Precision-Recall 
curve (AUPRC) as our primary performance measure, 
instead of the commonly used area under the Receiver 
Operating Characteristic curve (AUROC). Medical 
data often have skewed and imbalanced datasets that 
can affect the performance of the classification mod-
els. Therefore, we used AUPRC and stratified shuf-
fle - split to improve the accuracy of our results and 
mitigate or avoid class imbalance issues.

2  Methods

This research was approved by the Medical Research Ethics 
Committee, University of Malaya Medical Centre (UMMC) 
with MREC ID NO.: 201985–7712. The proposed framework 
for the AMI biomarker discovery using an integrative approach 
of machine learning and feature selection is shown in Fig. 1.

2.1  Data collection

The AMI dataset was collected from the Department of 
Pathology, UMMC. The dataset collected consisted of five 
demographical data (features) and 84 clinicopathologic data 
(features) for 140 AMI patients who were admitted to the 
hospital UMMC between December 2019 and June 2020. 
The data were collected from various clinical and pathologi-
cal reports including complete blood count (CBC), lipid pro-
file (LP), differential count (DC), renal function test (RFT), 
liver function fest (LFT), diabetes, coagulation test (CT), and 
cardiac biomarkers test (CB). Table 1 shows a summary of 
the demographic characteristics of 140 AMI patients.

Fig. 1  The proposed framework for biomarker discovery in AMI 
using machine learning and feature selection. Abbreviations: AMI, 
acute myocardial infarction; ANN, artificial neural network; AUPRC, 
area under the precision-recall curve; DT, decision tree; kNN, k-near-

est neighbours; LR, logistic regression; PCC, Pearson’s coefficient 
correlation; RF, random forest; RFE, recursive feature elimination; 
RFI, random forest importance; SVM, support vector machine (refer 
to Appendix A for the full list of abbreviations)

Table 1  Summary of demographic characteristics of 140 AMI 
patients

Age (Years old) 28 to 96 y.o
(mean = 66.13)

20–29
30–39
40–49
50–59
60–69
70–79
80–89
90–99

1 (0.71%)
6 (4.29%)
11 (7.86%)
23 (16.43%)
42 (30.00%)
31 (22.14%)
20 (14.29%)
6 (4.29%)

Gender Male
Female

90 (64.29%)
50 (35.71%)

Ethnic Malay
Chinese
Indian
Others (Sikh)

43 (30.71%)
44 (31.43%)
52 (37.14%)
1 (0.71%)

Marital status Single
Married
Divorced
Widowed
Unknown

10 (7.14%)
119 (85.00%)
2 (1.43%)
2 (1.43%)
7 (5.00%)
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2.2  Hardware and software

The computer hardware used to perform all the processing 
and computational work is a laptop with Intel core i5 1.6 
Ghz CPU processor and 8 GB RAM. The operating system 
is 64-bit Windows 10/11.

The programs were built and run using Python 3.8.10 and 
IPython 7.32.0 through SPyDEr version 4.1.4. The Python 
libraries used are NumPy, Pandas, matplotlib, Scikit-Learn 
(sklearn), Keras, and TensorFlow.

2.3  Data preprocessing

Initially, there were 89 features in the dataset. The percent-
age of the missing values for each of the features was calcu-
lated, and those features with missing values of more than 
50% were removed from the dataset, a standard data pre-
processing technique as suggested by Rengaraju [29]. Hence, 
only 62 features remained after the data-cleansing step. All 
62 features and the proportion of missing values are listed in 
Appendix B. However, there were still 670 missing values 
in the remaining 8680 data points (7.72%) among the 62 
features. Hence, data imputation is needed to fill in these 
missing values. A summary of the data description is listed 
in Table 2.

Data imputation was computed using median imputation 
as all the missing features are continuous data. The median 
was chosen as it has a better representation when the feature 
has a skewed distribution [30]. The median value for each 
feature would be computed and missing values within the 
same feature would be imputed with the same median value. 
After that, data normalization was done by using MinMax-
Scaler which rescaled all the continuous features to a range 
of 0 to 1. This method preserves the shape of the original 
distribution without changing the information embedded in 
the original data. Besides, when the features are relatively 
smaller or closer to the normal distribution, the algorithm 

could converge faster [31]. The normalization step can be 
represented by Eq. (1) below:

where Xi is the value of observation in the feature, and Xmin 
and Xmax are the minimum value and maximum value for the 
feature, respectively. No normalization was needed on the 
categorical features.

2.4  Feature selection

Three types of feature selection were used in this study 
which are (1) filter method — Pearson’s coefficient correla-
tion (PCC); (2) wrapper method — recursive feature elimi-
nation (RFE); and (3) embedded method — random forest 
importance (RFI).

PCC’s values are ranged from + 1 to − 1, where + 1 indi-
cates a total positive correlation and − 1 indicates a total neg-
ative correlation, and 0 represents no correlation between the 
variables [32, 33]. PCC can be calculated by using Eq. (2) 
below:

where cov(x,y) is the covariance of the input feature and the 
target feature (in-hospital mortality), and �x and �y represent 
the standard deviation of the input feature and the target 
feature, respectively.

Whereas RFE method evaluates the variables in subsets 
and uses the heuristic search methods to obtain an optimal 
subset, RFE performs a greedy search to find the best-per-
forming variable subset by removing the features until the 
optimum number of features is identified and ranks the fea-
tures based on the order of their elimination [34].

RFI uses the importance score of each feature based on 
the Gini to select the internal split points of a decision tree 
when training in RF. The higher the importance score indi-
cates the more optimal the feature. In this study, the impor-
tant score was computed as the mean and standard devia-
tion of accumulation of the impurity decrease within each 
tree. The importance score is measured by observing how 
the impurity of the split for each feature is decreasing, and 
the feature with the highest decrement of impurity will be 
selected until the optimum subset of features is chosen [35].

2.5  Classification

Six supervised ML methods were used as the classifiers 
in this study, namely decision tree (DT), random forest 
(RF), k-nearest neighbours (KNN), artificial neural net-
work (ANN), support vector machine (SVM), and logistic 

(1)Z =
Xi − Xmin

Xmax − Xmin

(2)�x,y =
cov(x, y)

�x�y

Table 2  Summary of data description

Refer to Appendix B for the percentage of missing values in each feature

No Item Amount

1 The number of attributes/features:
a) Before preprocessing
b) After preprocessing

89
62

2 Number of samples 140
3 The number of instances/data points:

a) Before preprocessing
b) After preprocessing (including missing values)

12,460
8,680

4 Missing values (after removing features that con-
tain ≥ 50% missing values)

670

2530 Medical & Biological Engineering & Computing (2023) 61:2527–2541
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regression (LR). The classifiers from the Python Scikit-learn 
(sklearn) library and Keras library were used.

DT starts from the root node, and the tree splits into 
branches (decision nodes). This process continues until the 
end of the branches which are the leaf nodes that cannot 
be split further [36]. In this study, Gini impurity was set to 
measure the quality of a split in DT and the minimum number 
of samples at the leaf node (min_samples_leaf) was set to 10.

RF is an ensemble learning algorithm that consists of many 
DT to provide solutions to complex problems and also improve 
the model performance. In this study, the values for number 
of trees (n_estimators) from 50 to 200 were tested and 100 
was selected as the optimal value. Gini impurity was used to 
measure the quality of a split due to its simplicity [37].

KNN works by calculating the distance between the 
unknown samples and the data points [38]. The class of the 
unknown sample is determined by ‘majority voting’ from the 
labels of k-nearest data points. A general rule of thumb in 
choosing the k value is k = square root (N), where N = num-
ber of samples. In this study, k = square root(140) = 11.8 and 
only the odd numbers were selected for k to avoid any ties 
in classification. Hence, k values that range from k = 3, 5, 7, 
9, 11 were tested and k = 5 yielded the optimum results. The 
uniform weight was used where all points in each neighbour-
hood were weighted equally.

ANN is a biological-inspired computational network 
that learns through the interconnected neurons in the lay-
ered architecture which resembles the human brain [39]. In 
this study, we adopted the multi-layer perceptron (MLP) due 
to its simplicity and small dataset. The ANN architecture 
adopted in this study consisted of two hidden layers with 80 
and 40 hidden neurons respectively with rectified linear unit 
(ReLU) as the activation function. The activation function 
for the output layer was set to sigmoid for a binary classifica-
tion. Besides that, other parameters such as epochs = 30 and 
batch size = 10 were set for this study.

The SVM is used to find the optimal hyperplane that 
could classify the classes well in an N-dimensional 
space, where N is the number of features [40]. In this 
study, some commonly used kernel functions such as 

linear, polynomial, and radial basis functions (RBF) were 
tested, and the RBF kernel was set as the optimal kernel 
in this study.

LR is used to model the relationship between one or 
more independent variables and a dependent variable with 
a linear equation [41]. The liblinear solver (library for 
large linear classification) was used in this study as it is 
suitable for small datasets. The optimal hyper-parameters 
and the Python libraries used in this study are summa-
rized in Table 3.

In this study, firstly, all 62 features were used and trained 
in the full model classification as the input to predict the in-
hospital mortality of AMI patients. Next, feature selection 
methods were applied to the 62 features to select the opti-
mum features. Lastly, common features selected from the 
best two feature selection models were used as the reduced 
model in the ML classification step. For the model develop-
ment, a 10-time repeated five-fold cross-validation (5-CV) 
stratified-shuffle split method was used. The stratified split 
method ensures each set of data contains a similar percent-
age of samples for each class and thus avoids class imbal-
ance problems.

2.6  Performance evaluation

The confusion matrix was adopted to define the performance 
of the classification model. The confusion matrix is a N × N 
matrix that compares the actual values with the predicted 
values. It summarizes the number of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives 
(FN). The model performance such as testing accuracy, pre-
cision, recall, and F1 score (Eqs. 3–6) were measured using 
these four values obtained from the confusion matrix. Preci-
sion is the ratio between the TP and all the positive classes, 
while recall quantifies the amount of TP out of all positive 
examples in the dataset. F1 score gives a harmonic mean 
that balances precision and recall [42]. The equations for 
testing accuracy, precision, recall and F1 score were shown 
in Eqs. 3 to 6, respectively.

Table 3  Optimal hyper-parameters and Python libraries used in this study

Classifier Python library Parameter

DT DecisionTreeClassifier() criterion = Gini; min_samples_leaf = 10
RF RandomForestClassifier() criterion = Gini; n_estimators = 100
KNN KNeighborsClassifier() k = 5; weights = uniform
ANN tf.keras.models.Sequential() 2 hidden layers with hidden_layer_sizes = 80, 40; activation = ReLU 

(hidden layers), sigmoid (output layer); epochs = 30; batch_
size = 10

SVM svm.SVC() kernel = RBF
LR LogisticRegression() solver = liblinear
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Next, the precision-recall curve (PRC) was plotted with 
the precision values as the y-axis and the recall values as 
the x-axis [43]. The area under the PRC (AUPRC) was 
calculated. In an imbalanced classification problem with 
two classes, the positive class is always referred to as the 
minority class. In this study, the “died” class is positive). 
According to Fu et al. [44], the PRC is more suitable than 
the receiver operating characteristic (ROC) curve as the 
performance measurement for the imbalanced datasets due 
to both the precision and the recall being focused on the 
positive class only. Thus, this makes the PRC an effective 
assessment tool for imbalanced classification models.

The precision and recall values were computed from 
the testing set and the average AUPRC of each model was 
calculated. Value ranges of AUPRC are between 0 and 
1. The higher the AUPRC, the better the model performs 

(3)Testing Accuracy =
TP + TN

TP + TN + FP + FN

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)F1 score = 2 ⋅
precison ⋅ recall

precision + recall

in classifying in-hospital mortality of patients from the 
clinicopathologic data. The baseline of AUPRC is equal 
to the fraction of positive class (0.429 in this study), 
calculated using Eq. 7 below:

Hence, an AUPRC that is lower or near 0.429 is consid-
ered a no-skill classifier that cannot discriminate between 
the classes [45]. In this study, the model that acquired the 
best AUPRC based on the testing dataset was selected as 
the best model.

(7)

AUPRC baseline =
Number of patients died (positive class)

Total number of patients

Table 4  Classification results for full models

Bolded text indicated the best results achieved
*Average of testing accuracy, AUPRC, F1 score, and training time 
from 10 times runs of 5-CV

Classifier Testing 
accuracy* 
(%)

AUPRC* F1 score* Training time (s)*

RF 74.93 0.8044 0.6735 1.1980
ANN 69.14 0.6567 0.5943 21.4998
SVM 64.07 0.6117 0.4162 0.1297
LR 67.21 0.6361 0.5691 0.1100
KNN 59.07 0.5351 0.4177 0.1799
DT 64.86 0.6389 0.5768 0.1134

Table 5  Performance of 
reduced models with filter 
feature selection (PCC)

Bolded text indicated the best results achieved. Best model was selected based on AUPRC
*Average testing accuracy, AUPRC, and F1 score from 10 times run of 5-CV

Performance Number of features

30 20 15 14 13 12

Testing accu-
racy* (%)

RF 72.07 70.64 70.79 69.29 67.36 66.36
ANN 71.00 71.07 71.43 71.43 70.07 69.54
SVM 69.64 71.00 69.29 69.14 66.79 66.64
LR 70.64 70.21 71.00 70.50 70.07 68.93
KNN 61.43 61.00 64.21 62.43 61.36 61.00
DT 63.07 63.57 65.57 62.79 59.14 60.71

AUPRC* RF 0.7383 0.7375 0.7450 0.6965 0.6784 0.6366
ANN 0.7059 0.7215 0.6976 0.7190 0.6938 0.6516
SVM 0.6823 0.6992 0.6465 0.6378 0.6177 0.6055
LR 0.6906 0.6937 0.6907 0.6783 0.6791 0.6629
KNN 0.6222 0.5962 0.5902 0.5653 0.5698 0.5424
DT 0.6025 0.5949 0.6295 0.6157 0.5405 0.5806

F1 score* RF 0.6609 0.6384 0.6450 0.6222 0.6015 0.5847
ANN 0.6214 0.6278 0.6329 0.6275 0.6036 0.6099
SVM 0.5867 0.6117 0.5927 0.5889 0.5557 0.5552
LR 0.6078 0.6027 0.6125 0.5972 0.5890 0.5702
KNN 0.4344 0.4355 0.5043 0.5040 0.4856 0.4851
DT 0.5464 0.5699 0.5716 0.5524 0.4854 0.5072
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3  Results

In the full model classification, all 62 features were used 
to train and test with the six classifiers. Table 4 shows the 
results of full models with 5-CV. Each model was run 10 
times, and the average testing accuracy, AUPRC, and F1 
score were taken.

In Table  4, the classifier that showed the best per-
formance in full models was RF (accuracy = 74.93%, 
AUPRC = 0.8044). Conversely, the worst performance 

was obtained by KNN with an accuracy of 59.07% and 
an AUPRC of 0.5351. However, in terms of training time, 
ANN took the longest time with 21.4998 s while LR took 
the shortest time with 0.11 s.

Next, three feature selection methods were implemented 
to build the reduced models. Feature selection using Pear-
son’s coefficient correlation (PCC) was first performed 
with the selection of 30 features, which is about 50% of 
the full model (62 features). Next, PCC was continued 
with the reduced number of features until the best model 

Table 6  Performance of 
reduced models with wrapper 
feature selection (RFE) and 
embedded feature selection 
(RFI)

Bolded text indicated the best results achieved. Best model was selected based on AUPRC
*Average of testing accuracy, AUPRC, and F1 score from 10 times runs of 5-CV

Performance Number of features

15 14 13 12 11

Wrapper (RFE) Testing accuracy* (%) RF 77.00 77.03 76.72 76.00 76.29
ANN 73.78 73.00 72.29 72.93 73.21
SVM 73.57 73.86 73.50 73.93 73.86
LR 71.93 71.93 71.46 71.86 72.22
KNN 69.43 70.14 69.28 72.86 73.64
DT 67.50 67.57 68.21 69.00 68.43

F1 score* RF 0.7062 0.6991 0.7108 0.6949 0.7054
ANN 0.6609 0.6512 0.6395 0.6447 0.6438
SVM 0.6627 0.6711 0.6674 0.6708 0.6646
LR 0.6203 0.6288 0.6207 0.6137 0.6182
KNN 0.6254 0.6361 0.6224 0.6795 0.6840
DT 0.6009 0.5780 0.6045 0.6032 0.6099

AUPRC* RF 0.8048 0.8125 0.8260 0.8120 0.8144
ANN 0.7504 0.7595 0.7530 0.7341 0.7450
SVM 0.7537 0.7482 0.7261 0.7216 0.7331
LR 0.7374 0.7435 0.7443 0.7437 0.7427
KNN 0.7279 0.7342 0.7126 0.7076 0.7256
DT 0.6849 0.6999 0.7196 0.7051 0.7199

Embedded (RFI) Testing accuracy* (%) RF 79.22 78.72 78.57 78.43 77.64
ANN 73.36 73.43 73.86 72.07 66.43
SVM 73.29 73.36 73.02 70.37 69.50
LR 69.21 69.64 69.79 67.71 63.93
KNN 75.64 72.64 73.93 72.00 72.50
DT 69.43 68.50 68.21 70.07 70.93

F1 score* RF 0.7393 0.7358 0.7345 0.7307 0.7223
ANN 0.6337 0.6328 0.6466 0.6156 0.4659
SVM 0.6575 0.6564 0.6546 0.6186 0.5850
LR 0.5559 0.5686 0.5739 0.5635 0.4626
KNN 0.7178 0.6810 0.6987 0.6773 0.6828
DT 0.6106 0.6084 0.6173 0.6463 0.6538

AUPRC* RF 0.8445 0.8498 0.8505 0.8374 0.8301
ANN 0.7198 0.7084 0.7108 0.7279 0.6732
SVM 0.7731 0.7678 0.7540 0.7624 0.6985
LR 0.6922 0.6880 0.7122 0.6947 0.6050
KNN 0.7735 0.7829 0.7865 0.7858 0.7764
DT 0.6671 0.6901 0.6771 0.7041 0.6925
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was obtained. Table 5 shows the classification results with 
PCC feature selection with 5-CV.

In Table 5, it can be observed that 15 features filtered 
using PCC achieved the highest AUPRC of 0.7450 with 
RF. Nonetheless, the overall model performance did not 
improve if compared to the full models.

On the other hand, feature selection using recursive 
feature elimination (RFE) and random forest importance 
(RFI) was initiated with the selection of a 15-feature sub-
set removing the feature one by one until the best result 
was obtained. Next, common features selected among the 
best models from each method (RFE and RFI) were iden-
tified, and these common features were used in a more 
reduced model to classify the patients. Table 6 shows the 
results of RFE and RFI models from 15 to 11 features.

In Table 6, RF performed the best if compared to other 
classifiers with accuracy > 76% and AUPRC > 0.80. The 
best results were achieved by RFE-13 features (Accu-
racy = 76.72%, AUPRC = 0.8260) for the wrapper method 
and RFI-13 features (Accuracy = 78.57, AUPRC = 0.8505) 
for the embedded method. However, RFI-13 features 
model performed slightly better than the RFE-13 features 
model. Furthermore, it can be observed that the perfor-
mance of most of the models achieved AUPRC > 0.7. 
Overall, the performance of reduced models with RFE 
and RFI is better than the performance of PCC and the 
full models for all the classifiers. Figure 2 shows one of 
the confusion matrices and PRC computed from one of the 
5-CV runs in the RFI-13 features model with RF.

The time taken for three of the best feature selection mod-
els is computed and compared in Table 7. PCC with 15 fea-
tures took the longest time to select features, while RFI-13 
had the shortest feature selection time.

Next, common features selected by the two best feature 
selection models (RFE and RFI) were identified. Five com-
mon features were found and extracted into the more reduced 
model for the classification. Table 8 shows the list of com-
mon features selected, while Table 9 shows the classification 
results from the five common features.

The performance of the 5-feature model was better than 
the full model and was comparable to both the RFE-13 fea-
tures model and RFI-13 features model with the best accu-
racy of 79.22% and the best AUPRC of 0.8462 on the RF 
classifier. Overall, RF outperformed the other classifiers in 
both full models and reduced models with AUPRC > 0.80 
except in the reduced model with PCC. In terms of time con-
sumption, the training time was the longest for ANN with 
1.7286 s and the shortest via DT classifier with 0.0780 s.

4  Discussion

In this study, three performance measures of the classifica-
tion models were taken and AUPRC was used as the top 
measure to select the best model. Accuracy was not chosen 
as the top measure since accuracy may be biased towards 
the majority/dominance class as the dataset is imbalanced 
in this study.

Fig. 2  Performance evaluation from one of the runs in RFI-13 features a reduced model with RF as a classifier on the testing set a confusion 
matrix; b PRC and AUPRC of the 5-CV (mean PRC in blue line)

Table 7  Feature selection 
time for three feature selection 
methods

Feature selection 
methods

Feature 
selection 
time (s)

PCC-15 0.7130
RFE-13 0.4488
RFI-13 0.1646
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For full models and reduced models’ classification, RF 
outperformed other classifiers by achieving the best AUPRC. 
RF is a bagging algorithm in which bootstrapping enables 
RF to work well on relatively small datasets [46]. The per-
formance of the reduced models is better (except in PCC) 
than the full models as the presence of some noisy features 
in the models (PCC models) caused overfitting and reduced 
the models’ performance. Overfitting may occur where 
some of the noisy features entered into the model simply 
by chance [47].

The implementation of PCC did not promote the perfor-
mance of the reduced models. The performances dropped 
slightly (Table 5) if compared to the performance of the full 
models (Table 4). The disadvantage of filter methods is the 
ignorance of feature dependencies as each feature is consid-
ered an independent feature [47]. In this study, clinical and 
pathological features are related and have impacts on each 
other in the in-hospital mortality classification.

Nevertheless, the model performance of the reduced mod-
els increased after the implementation of RFE and RFI fea-
ture selection. This is due to some irrelevant features being 
eliminated, and the noise in the dataset had been reduced. As 
referred to in Table 6, it can be observed that RF achieved 
AUPRC > 0.80 for all the reduced models. RFE (wrapper) 
usually performed better than the PCC method (filter) as it 
can detect the interaction between the variables as well as 
identify the optimal feature subset [48, 49]. Similar to RFE, 

RFI (embedded) also considers the interaction of features. 
The tree-based strategies used in RFI rank by the improve-
ments made to the internal node and identify the most impor-
tant features by pruning trees below a particular node [50].

In Table 9, it can be observed that the performances of the 
5-feature models were comparable with RFI-13 features and 
RFE-13 features models. The five common features selected 
are cardiac troponin I (cTnI), high-density lipoprotein choles-
terol (HDL cholesterol), glycated haemoglobin (HbA1c), anion 
gap, and albumin. These five common features were further 

Table 8  List of features selected by RFI-13 and RFE-13

Embedded (RFI-13 features) Wrapper (RFE-13 features)
HDL cholesterol Age

PT Time RDW

HbA1c (NGSP) HDL cholesterol

Eosinophil Count Total Chol/HDL

Eosinophil % Anion Gap

HbA1c (IFCC) Albumin

LDL cholesterol Magnesium (Mg)

Albumin HbA1c (IFCC)

Total Cholesterol (TC) PT INR

PT Ratio CRP (serum)

Non-HDL cholesterol cTnI

Anion Gap CK mass (serum)

cTnI Lactate

Refer to Appendix A for full list of abbreviations
Abbreviations: CK mass = creatine kinase mass, CRP = C-reactive protein, cTnI = cardiac troponin I, HbA1c (IFCC) = haemoglobin A1c 
using International Federation of Clinical Chemistry and Laboratory Medicine’s standard (in mmol/mol), HbA1c (NGSP) = haemoglobin 
A1c using National Glycohemoglobin Standardization Program’s standard (in %), HDL cholesterol = high-density lipoprotein cholesterol, 
LDL cholesterol = low-density lipoprotein cholesterol, Non-HDL cholesterol = non-high density lipoprotein cholesterol, PT INR = pro-
thrombin international normalized ratio, PT Ratio = prothrombin ratio, PT Time = prothrombin time, RDW = red cell distribution width
*Features with a green colour background are the common features selected

Table 9  Model performance using five common features selected 
from RFI-13 and RFE-13

Bolded text indicated the best results achieved. Best model was 
selected based on AUPRC
*Average of AUPRC, F1 score, testing accuracy, and training time 
from 10 times runs of 5-CV

Perfor-
mance 
model

Testing 
accuracy* 
(%)

AUPRC* F1 score* Training time (s)*

RF 79.22 0.8462 0.7394 0.7062
ANN 67.43 0.7012 0.5245 1.7289
SVM 71.00 0.6572 0.6433 0.0894
LR 67.36 0.7123 0.5124 0.0848
KNN 74.21 0.7373 0.7127 0.0969
DT 71.93 0.7494 0.6503 0.0780
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verified with the previous AMI studies, and all of them were 
proven to be important biomarkers in AMI.

4.1  Literature verification

Cardiac troponin I (cTnI) is a key regulatory protein in 
the cardiac that regulates the contractions of cardiac mus-
cles. A troponin test measures the levels of cTnI proteins 
in the blood. These proteins will be released when the 
heart muscle has been damaged e.g. in a heart attack. A 
study that included 14,061 STEMI patients by Wanamaker 
et al. [51] proved that elevated admission troponin (both 
cTnI and cTnT) level is associated with higher mortality 
in STEMI patients. Likewise, Matetzky et al. [52] col-
lected cTnI from 110 STEMI patients and discovered that 
patients with elevated cTnI were more likely to develop 
congestive heart failure (CHF) and death. cTnI are more 
sensitive than CKMB, while cTnT is poorer than CKMB 
for the diagnosis of AMI [53]. Due to the longer eleva-
tion period (1 to 2 weeks), cTnI is commonly used as a 
prognostic marker.

HDL cholesterol commonly known as “good choles-
terol” absorbs excess cholesterol and takes it back to the 
liver where it is broken down and eliminated from the 
body. High levels of HDL cholesterol can reduce the risk 
of heart disease. In the study of Lee et al. [54] using sam-
ples of AMI patients enrolled in the Korea Acute Myocar-
dial Infarction Registry (KAMIR), patients with decreas-
ing HDL cholesterol showed significantly higher rates of 
12-month major adverse cardiac events (MACE) as com-
pared to the patients with increasing HDL cholesterol. 
Besides, Salonen et  al. also confirmed that total HDL 
cholesterol and HDL2 (subfraction) levels have inverse 
associations with AMI risk, i.e., higher HDL may be a 

protective factor, while an increase in HDL3(subfraction) 
would increase AMI risk [55].

HbA1c develops when haemoglobin joins with glucose in 
the blood, becoming “glycated.” This is an important indica-
tor especially for diabetes mellitus (DM) patients as higher 
HbA1c will increase the risk of developing diabetes-related 
complications. It provides a picture of the blood glucose 
level across a 3–6-month period. A study by Salinero-Fort 
et al. [56], with 114 cases of AMI, showed that patients 
with first AMI had higher values of HbA1c. Similarly, Pan 
et al. [57] in their systematic review proved that HbA1c is an 
important indicator for in-hospital mortality and short-term 
mortality classification in ACS patients without known DM 
and without DM.

The anion gap blood test is used to test whether blood 
has an imbalance of electrolytes, where acidosis indicates 
too much acid in the blood (high anion gap) and alkalosis 
indicates not enough acid in the blood (low anion gap). In 
a study by Sahu et al. [58], they revealed that in-hospital 
death was much higher in patients with initial anion gap 
acidosis (33%) if compared to patients with normal anion 
gap (8%). They also concluded that the admission anion gap 
is an important risk stratification indicator for AMI patients. 
Another study by Tang et al. [59] proved that 30-day and 
90-day all-cause mortalities in patients with CHF (comor-
bidities included AMI) were associated with higher serum 
anion gap.

Albumin is a protein that is produced in the liver and 
helps to carry important substances enter the bloodstream. 
Albumin also helps to prevent fluids from leaking out of 
the bloodstream. Islam et al. [60] concluded that first-attack 
AMI patients with lower albumin (< 3.50 g/dl) had a worse 
in-hospital outcomes. Another study by Kuller et al. [61] 
also concluded that albumin could be a marker for coro-
nary heart disease (CHD) as lower albumin could lead to 

Table 10  Functions and impacts of potential biomarkers on AMI patients

Potential biomarker Functions and impacts on AMI patients References

cTnI • cTnI is a key regulatory protein in the cardiac that regulates the contractions of cardiac muscles. cTnI pro-
teins will be released into the blood when the heart muscle has been damaged

• High cTnI will increase the risk of in-hospital mortality in AMI patients
• Better marker than CKMB

[51–53]

HDL cholesterol • Protects against heart disease by clearing cholesterol (the main source of artery-clogging) from the blood
• Low HDL cholesterol will increase the risk of in-hospital mortality in AMI patients

[54–56, 63, 
64]

HbA1c • Developed when haemoglobin joined with glucose in the blood, becoming “glycated.” Provide an overall 
picture of average blood sugar levels

• High HbA1c will increase the risk of in-hospital mortality in AMI patients

[57, 65]

Anion gap • The difference between the number of cations versus anions in the body. A high anion gap indicates the 
presence of more anions than cations (acidosis)

• A high anion gap will increase the risk of in-hospital mortality in AMI patients

[58, 59, 66]

Albumin • A protein that is produced in the liver helps carry important substances enter the bloodstream and prevents 
fluids from leaking out of the bloodstream

• Low albumin will increase the risk of in-hospital mortality in AMI patients

[60, 61]
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persistent injury in arteries and the progression of athero-
sclerosis and thrombosis. Albuminuria is commonly found 
as a CVD risk factor in diabetic patients [62].

Table 10 summarizes the literature findings for the five 
potential biomarkers and their impacts on AMI patients. The 
findings from this study suggested that these five features 
could be used as potential biomarkers to predict the in-hos-
pital mortality of AMI patients.

4.2  Advantages/strengths

Several strengths of this work as stated in the introduction 
are demonstrated in this section. Table 11 summarizes the 
comparison between some previous studies and this cur-
rent study. In this work, we presented and compared the 
performance of different feature selection methods (filter, 

wrapper, embedded). In comparison, those previous studies 
either not included feature selection methods such as in Zhao 
et al. [67], or the models built were with more than or equal 
to 10 features as in Than et al. [68] and Ranga et al. [25]. 
Besides, there was no comparison between different types 
of feature selection methods (one type only). A recent study 
[69] includes a comparison between two wrapper methods 
(sequential floating forward selection and RFE), but that was 
a single method involved.

The most distinct finding of this study was the identification 
of a five-feature model, which achieved comparable results 
with the models that contained more features. From the medi-
cal point of view, fewer features for diagnosis or prognosis 
could reduce in cost and time of a patient, which indicates 
that fewer clinical and pathological tests are needed. Simi-
larly, from the computational point of view, fewer features will 

Table 11  Comparison between the previous and current studies

Abbreviations: ANN artificial neural network, AUPRC area under precision —recall curve, AUROC area under receiver operating characteristic 
curve, CHD coronary heart disease, cTnI cardiac troponin I, DT decision tree, ECG electrocardiography, EM expectation maximization, GBM 
gradient boosting machine, hs-cTnI high-sensitivity — cTnI, kNN k-nearest neighbour, LR logistic regression, MI myocardial infarction, N.A. 
not available, PCC Pearson’s coefficient correlation, RF random forest, RFE recursive feature elimination, RFI random forest importance, SFFS 
sequential floating forward selection, SVM support vector machine

Reference Sample size (number 
of patients who died)

Methodology Results

Feature selection/ 
number of features

Algorithm Types of input feature

Zhao et al., 2021 [67] 5708 (154 died) N.A LR, SVM, DT, and RF • Demographics
• Presentation charac-

teristics
• Admission pathway
• Treatment

AUROC = 0.919 (16 
features)

AUROC = 0.877 (13 
features)

Ranga et al., 2018 [25] 303 N.A./13 features kNN, ANN, SVM, 
DT, RF, EM, and 
k-mean

• Demographic
• ECG findings
• Vital signs
• Fasting blood sugar
• Severity of CHD

AUROC = 0.889 
(ANN)

Accuracy = 85.95% 
(RF)

Incorrect cluster-
ing = 21.45% (EM)

Than et al., 2019 [68] 11,011 (1253 MI) N.A./4–10 features GBM • Age
• Sex
• Paired hs-cTnI (at 

presentation| other 
flexible time)

• cTnI rate of change
• comorbidities

AUROC = 0.963-test 
set (4–10 features)

Farah et al., 2022 [69] 1700 (271 died) Cox regression, wrap-
per (SFFS, RFE)

LR, DT, LDA, RF, 
SVM, KNN, NB, 
ANN

• Demographic
• Time-to-event
• Clinical
• Pathological

Accuracy 
(LR) = 86.47%, 
weighted F1 
(LR) = 86.92%

Weighted Precision 
(LR) = 87.57%

Weighted Recall 
(LR) = 86.47%

Current study 140 (60 died) Univariate filter 
(PCC), wrapper 
(RFE), and embed-
ded (RFI)/5–15 
features

RF, DT, kNN, ANN, 
LR, and SVM

• Demographic
• Clinical
• Pathological

AUPRC = 0.8505 (13 
features)

AUPRC = 0.8462 (5 
features)
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effectively save the computational cost, and power and speed 
up the training time in building the classification models while 
increasing or retaining the model performance.

On top of that, those previous studies used AUROC 
instead of AUPRC as a model evaluation tool without con-
sidering the class imbalanced issue in their datasets [70]. 
Most CVD studies contained imbalanced datasets, yet 
AUROC or accuracy were chosen to evaluate their perfor-
mance. On the other hand, this work utilized AUPRC as a 
top measurement to measure the model performance.

4.3  Challenges and limitations

There are several restrictions in this study. First, the number 
of samples is small, and the dataset consists of imbalanced 
classes. Hence, more validation works are needed to fur-
ther confirm the reliability and viability of the proposed five 
biomarkers. Class imbalance is one of the most significant 
issues in machine learning. The trained models favoured 
performing poorly on the minority class when the dataset 
is imbalanced.

Secondly, the samples collected in this study were limited 
to only a single hospital (UMMC) compared to other stud-
ies, such as Than [68], which used data from nine centres. 
The richness of data and information would be higher from 
heterogeneous data of various centres. This would increase 
the potential of machine learning ability and robustness of 
the models, as well as increasing the chance of identifying 
better potential biomarkers.

Third, only one type of CVD, namely AMI, was involved 
in this study. Different types of AMI such as STEMI and 
NSTEMI as well as other CVDs such as coronary artery 
disease or peripheral arterial disease can be included.

This study also did not involve ECG findings due to the 
availability of data which is commonly included in AMI 
diagnosis as recommended in clinical practice guidelines 
[17, 71] nor any medical imaging data [8]. Features from 
imaging data like ECG findings are crucial in determin-
ing the type and location of AMI along with the risk of the 
patients.

5  Conclusion

An integrated model of feature selection and machine 
learning–based prognostic model had been developed. It 
was proven that the feature selection method did increase 
the performance of models as only the optimum features 
were selected. RF was the best classifier in all models with 
mean AUPRC > 0.8 (Full model = 0.8044; RFE-13 = 0.8260; 
RFI-13 = 0.8505; 5-feature model = 0.8462). The signifi-
cant findings from this study are the identification of five 
clinicopathologic features for the in-hospital mortality 

classification of AMI patients namely cTnI, HDL choles-
terol, HbA1c, anion gap, and albumin which were verified 
by the previous studies to be the significant risk stratifica-
tion indicators to AMI/CVD. Hence, the combination of 
these five features could be used as potential biomarkers for 
the early detection and treatment of AMI. However, further 
research with larger and more diverse datasets is needed to 
validate the results and ensure generalizability to different 
populations. Then, the data could be classified further into 
different types of AMI such as STEMI and NSTEMI or other 
CVDs such as coronary artery disease or peripheral arterial 
disease. In the case where ECG data or other imaging data 
(cMRI) are to be included, the work could be expanded to 
multiclass classification rather than simple binary classifica-
tion. In addition, a real-time data stream could be added to 
overcome data availability and improve accessibility apart 
from applying advanced technology, e.g., Internet of Things 
(IoT). Last but not least, future work opts to include and 
look into the prospects of different mortality rates among 
different ethnicities to compare the differences among them 
and identify potential disparities in AMI access and out-
comes. Overall, this study presents a promising approach to 
the biomarker discovery of AMI using machine learning and 
feature selection methods.
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