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Abstract
Cardiac-related disorders are rapidly growing throughout the world. Accurate classification of cardiovascular diseases 
is an important research topic in healthcare. During COVID-19, auscultating heart sounds was challenging as health 
workers and doctors wear protective clothing, and direct contact with patients can spread the outbreak. Thus, contact-
less auscultation of heart sound is necessary. In this paper, a low-cost ear contactless stethoscope is designed where 
auscultation is done with the help of a bluetooth-enabled micro speaker instead of an earpiece. The PCG recordings 
are further compared with other standard electronic stethoscopes like Littman 3 M. This work is made to improve the 
performance of deep learning-based classifiers like recurrent neural networks (RNN) and convolutional neural networks 
(CNN) for different valvular heart problems using tuning of hyperparameters like learning rate of optimizers, dropout 
rate, and hidden layer. Hyper-parameter tuning is used to optimize the performances of various deep learning models 
and their learning curves for real-time analysis. The acoustic, time, and frequency domain features are used in this 
research. The investigation is made on the heart sounds of normal and diseased patients available from the standard 
data repository to train the software models. The proposed CNN-based inception network model achieved an accuracy 
of 99.65 ± 0.06% on the test dataset with a sensitivity of 98.8  ± 0.05% and specificity of 98.2 ± 0.19%. The proposed 
hybrid CNN-RNN architecture attained 91.17 ± 0.03% accuracy on test data after hyperparameter optimization, whereas 
the LSTM-based RNN model achieved 82.32 ± 0.11% accuracy. Finally, the evaluated results were compared with 
machine learning algorithms, and the improved CNN-based Inception Net model is the most effective among others.

Keywords  PCG signal analysis · Valvular heart disease · Artificial intelligence · Learning rate · Deep neural network · 
Inception network · Recurrent neural network · Dropout rate · Hyper parameters · Machine learning · Feature extraction · 
Classification · Acoustic stethoscope · Acoustic features

1  Introduction

The heart is the primary organ of the human circulatory 
system. The blood circulation within the heart makes the 
sound. The sounds come from the closing and opening of 
the atrioventricular valves. As these valves open and close, 

allowing blood flow to and from the Heart, it produces the 
heartbeat sound in this course. Analysis of heart sounds 
is fundamental to detecting any heart-related disorders. 
Under the investigation of heart sounds, the classification 
of heart-related disease is also crucial for quickly taking 
the correct preventive action. In practice, the background 
noise signals must be removed in the valvular heart dis-
ease [1, 2] analysis after receiving auscultation through 
an electronic acoustic stethoscope. Then the noise-free 
heart sound was digitized for computational needs. Con-
venient feature-extracting algorithms [1, 3] are applied 
in the computational intelligence to extract the essential 
features to classify the heart sound [1, 4] for diseases. As 
PCG signals are produced from the opening and closing of 
valves, they are repetitive and mechanical vibrations that 
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occur at certain fixed time intervals and are analogous to 
an electrical signal. The heart sound can be analyzed in the 
conventional time and frequency domain using different 
developed algorithms and tools applied in various com-
putational intelligence techniques. Artificial intelligence 
with computational intelligence plays a significant role in 
cardiac monitoring, early screening, and identification of 
valvular heart diseases. Inception networks and residual 
networks found suitable applications in heart sound anal-
ysis in terms of their accuracy and low screening time. 
Integration of squeeze and excitation blocks with these 
networks improved their performance depending on their 
respective connection positions. Detailed studies based on 
multiple hyperparameters are required to enhance the per-
formance of the suitable deep-learning classifier on nor-
mal and abnormal heart sounds. Tuning hyperparameters 
in deep neural network models is necessary to avoid over-
fitting and underfitting issues. The study aims to search for 
the best cost-effective, simplified, and improved classifier 
tool for the early screening of heart diseases.

2 � Paper organization

Section 3 provides a literature study of different deep 
learning methods used in heart sound analysis. Sec-
tion 4 provides the objective of the research work. Sec-
tion 5 details about techniques and materials used in this 
research paper. Section 6 explains the hardware develop-
ment of the proposed system. Section 7 explains software 
based developed deep learning models for the proposed 
method and their improvements using hyperparameter 
tuning. Section 8 highlights the result analysis of the 
research work. Eventually, Section  9 summarizes the 
conclusions and future scope.

3 � Related work

In this research, the signal classification of valvular 
heart diseases using a deep learning model is essential. 
According to a literature survey, many researchers have 

Table 1   Recent work done on PCG signal analysis and deep learning-based methods

N, normal heart sounds; M, murmur heart sounds; EXT, extra systole heart sounds; AS, aortic stenosis; MS, mitral stenosis; MR, mitral regurgita-
tion; MVP, mitral valve prolapse; MS, mitral stenosis

S. No Reference Method Features used Segmentation Optimizer Types of heart sound Accuracy on 
test dataset

1 Deng et al., 2020 [30] CNN + RNN Improved MFCC No Adam N A 98.01%
2 Abduh et al., 2019 

[29]
2D-DNN MFSC No Adam N, A 95.50%

3 Tarik Alafif et al., 
2020 [23]

2D-CNN + transfer 
learning

MFCC No SGD N, A 89.50%

4 Cheng et al., 2019 
[22]

2D-CNN Spectrograms No SGD N, A 88.00%

5 Fatih et al., 2019 [16] 2D-CNN Spectrograms No Adam N, M, EXT 80.00%
6 Xiao et al., 2020 [18] 1D-CNN 1D time-series 

signals
No SGD N, A 93.00%

7 Khan et al., 2020 [24] LSTM MFCC No Adam N, A 91.39%
8 Raza et al., 2018 [25] LSTM 1D time-series 

signals
No Adam N, M, EXT 80.80%

9 Ryu et al.,2016 [26] 1D-CNN 1D time-series 
signals

No SGD N, A 87.75%

10 Rubin et al., 2016 
[31]

2D-CNN MFCC Yes Adam N, A 95.21%

11 Maknickas et al., 
2017 [36]

2D-CNN MFSC No RMSprop N, A 87.66%

12 Li et al., 2019 [37] 1D -CNN Spectrograms No Adam N, A 96.48%
13 Wu et al., 2019 [45] Ensemble CNN Spectro-

grams + MFSC
 + MFCC

No Adam N, A 87.91%

14 Yang et al., 2016 [39] RNN 1D time-series 
signals

No SGD N, A 82.87%

15 Yaseen et al., 2018 
[50]

SVM + DNN MFCC + DWT No Adam Normal MR, MVP, 
MS, and AS

87.08%
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worked in this area. The authors [1] 2005 did work on 
different stages in heart sound signal for PCG signal 
analysis.

The authors [3] 2009 did work on heart sound anal-
ysis using an adaptive fuzzy inference system based 
on a Mamdani-type fuzzy inference classifier. The 
experiment was carried out on a standard heart sound 
repository. It was an offline method and not tested with 
human subjects. The authors [5] 2013 did work on heart 
sound analysis using different feature extraction tech-
niques and methods. However, no artificial intelligence 
was involved in this. The authors [6] (2014) reviewed 
the papers on the classification of PCG signals. The 
authors [4] (2015) researched the analysis of second 
heart sounds, which involves computing the length and 
the energy of normalized heart sounds. However, they 
did not classify heart sounds. The authors [7] (2018) 
researched PCG signal sensing using several machine-
learning methods for abnormal heart sound detection. 
However, it was used to discriminate between different 
types of heart sounds.

The authors [8] in 2018 and [9] in 2013 researched 
PCG signal analysis using the wavelet transform 
method. However, it had restrictions in real-time signal 
analysis. The authors [10] 2015 did work on the classi-
fication of heart sounds using multimodal features and 
obtained an accuracy of 85%. The authors [11] (2020) 
researched the classification of heart sound using CNN 
and achieved an accuracy of 88%. The authors [12] 
(2017) paper investigated PCG signal analysis for mur-
mur diagnosing using Shannon energy and obtained 
an accuracy of 83%. The authors [13, 14] in 2017 and 
2018 did work on a simple technique for heart sound 
detection and identification using the Kalman filter in 
real-time analysis, where various feature extraction 
techniques were discussed. Thus, improving data sci-
ence models and artificial intelligence is necessary for 
PCG signal analysis. Table 1 shows some of the recent 
works that have been done on PCG signal analysis and 
classification methods.

4 � Objective

The main objective of this paper is to design and 
develop an artificial intelligence-based ear-contactless 
electronic stethoscope that is low-cost, portable, and 
accurate. The developed stethoscope can also effec-
tively diagnose various heart sound types where aus-
cultation occurs through a bluetooth-enabled micro 
speaker.

5 � Methods and materials

5.1 � Heart sound dataset description

The research was based on four heart sound data reposito-
ries. A massive number of heart sound data (70,000 heart 
sound samples) are taken from these four heart sound 
data repositories for training and testing purposes of the 
modeling. The training and testing ratio is 80:20. Similar 
classes’ heart sounds are considered during training. The 
heart sound banks are the only source available on the inter-
net used by many researchers, as the literature says. These 
sounds are highly authentic and reliable, as described in 
the following: https://​github.​com/​yasee​n21kh​an/​Class​ifica​
tion-​of-​Heart-​Sound-​Signal-​Using-​Multi​ple-​Featu​res [15].

Five categories of heart sound samples have been consid-
ered, as shown in Fig. 1: normal sound, mitral regurgitation, 
mitral stenosis, mitral valve prolapse, and atrial stenosis. 
Each heart sound lasts for a time duration of 5 s to 10 s and 
has a bandwidth of 65 Hz to 500 Hz.

Heart sound dataset 2, as shown in Fig. 2, is obtained 
from the classification of heart sound recordings-pascal chal-
lenge dataset B [15, 16]. Three categories of heart sounds 
have been considered: normal, murmur, and extra–systole.

Figure 3 details the physio net challenge training set [17, 
18], comprising five training databases (A through E) con-
taining 3126 heart sound samples.

Kaggle heartbeat sounds [19, 20] dataset consisting of 
normal, abnormal, noisy normal, and noisy abnormal is also 
used for our heart sound analysis.

Mainly, two categories of heart sounds are used for analy-
sis: normal and abnormal.

Features [21] of the heart sound considered for the whole 
study have been limited to:

1.	 Acoustic features: MFCCs, Mel, Chroma, Contrast, and 
Tonnetz.

2.	 Time domain features: RMS, Signal Energy, Signal 
Power, ZCR, THD, DWT, Skewness, and Kurtosis.

Fig. 1   Cardiac sound dataset 1

https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-Using-Multiple-Features
https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-Using-Multiple-Features
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3.	 Time and Frequency domain features: Hilbert Huang 
transform (HHT)

Figure 4 depicts a block diagram of PCG signal clas-
sification [21, 22]. Heart samples are given to a pre-pro-
cessing module, which applies a bandpass filter with a 
bandwidth of 35 to 480 Hz to suppress the ambient error. 
A sample length of 3 s is considered and made constant 
for each heart sample recording undergoing pre-process-
ing. Various features are collected from the pre-processed 
heart sound, and eventually, the heart sound sample is cat-
egorized for validation of the proposed developed system.

where x' (t) is the processed cardiac sound signal.
Each dataset is split into training data (85%) and 

test data (15%). Training data is further divided into 
validation data (15%) and the rest for training the 
model.

HHT is used as one of the feature extraction methods 
where the heart signal is decomposed into various intrinsic 
mode functions (IMFs) using empirical mode decomposi-
tion (EMD). The Hilbert transform is applied to the IMFs 
to obtain the time, and frequency distribution for Hilbert 
spectral analysis (HSA) to detect extra Heart sounds like 
S3 and S4.

(1)x(t) = f(x(t))

Fig. 4   Block diagram of PCG 
signal classification

Fig. 2   Cardiac sound dataset 2

Fig. 3   Cardiac sound dataset 3
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The following algorithms are applied to classify heart 
sounds:

1.	 Proposed SE-based Inception Network
2.	 Proposed CNN-RNN architecture
3.	 Proposed Recurrent Neural Network (RNN)
4.	 Proposed CNN-based Inception Network

All deep learning-based algorithms are written in 
Python ver. 3.9.2 using Thorny python editor (Linux). 
The proposed algorithms mentioned above are briefly 
described under the software development of the proposed 
deep learning models.

The valvular heart sounds considered for the entire 
PCG signal analysis [23, 24] are divided into the following 
categories:

1.	 Normal Heart Sounds
2.	 Mitral Stenosis
3.	 Aortic Stenosis
4.	 Mitral Regurgitation
5.	 Aortic Regurgitation
6.	 Mitral Valve Prolapse
7.	 Extra Systole

6 � The hardware development 
of the proposed system

The schematic diagram of the data acquisition system and 
other interfaces is described in Figs. 5.

The hardware circuit for heart sound data acquisition 
and interface is described in Fig. 5, where it uses a chest 

Fig. 5   Schematic diagram of the proposed heart sound acquisition system
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Fig. 6   The prototype of the proposed system and its components. A 
The uninterruptible power supply. B The Raspberry Pi 4B (left) and 
uninterruptible power supply (right). C Combination of the Rasp-

berry Pi and the power supply. D A 7-inch touch screen, Raspberry 
Pi with power supply, and micro speaker. E A fully assembled device 
containing the components in D

piece for sensing real-time heart sound samples, an electret 
microphone for conversion of the real-time heart sounds into 
an electronic signal, a microphone pre-amplifier for ampli-
fication of the heart sound, a notch filter for removing the 
electrical interferences, an analog tunable band pass filter, a 
buffer amplifier for impedance matching, a Raspberry Pi 4B 
model acting as a CPU, a Bluetooth enabled micro speaker 
for listening to the captured heart sound, a power supply for 
the Raspberry Pi model, 7-inch touch screen for displaying 
the heart sound.

Heart sound in the chest generates pressure waves 
which the stethoscope diaphragm has picked up. The 
electret microphone fitted inside the chest piece and 
the stethoscope tube convert the heart sound signal to 
an electrical signal. This electrical signal is amplified 
by an audio amplifier based on a MAX 9812 IC chip of 
gain 20 and fed to the notch filter to remove electrical 

interferences. The processed signal is fed to an analog 
tunable band pass filter with a 35–470 Hz spectrum. The 
heart sound signal typically [25] belongs to 35–470 Hz 
for normal and abnormal sounds. Finally, the processed 
signal is converted to digital form in a USB sound card 
that contains a 16-bit ADC converter with a sampling 
frequency of 44.1 KHz. The output of the USB sound card 
is connected to the Raspberry Pi 4B computer. The heart 
sound samples are picked up in real-time by a stethoscope 
sensor and saved in WAV format for further processing 
through the Raspberry Pi 4B with developed deep learn-
ing models. A 7-inch LCD touch screen is used to display 
the processed data and AI-based prediction of the disease 
of heart sound sample picked from the chest through the 
developed system in real time.

Figure  6 highlights the prototype of the proposed 
system incorporating all the required elements. The 
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Figure 9 highlights the parameters considered in compar-
ing the three stethoscopes:

1.	 Disinfection in use.
2.	 Ease of handling the stethoscope.
3.	 Safety for patients and health professionals in use.
4.	 Ease of auscultation.
5.	 Easy to afford.
6.	 Digital storage of wav files.
7.	 Compatibility with the wearing of personal protective 

clothing.

Fig. 7   PCG recordings obtained 
through 3 M Littman stetho-
scope and proposed stethoscope

Fig. 8   Digital heart sound wav files stored in Raspberry Pi using 
Thorny IDE environment and Python 3.9 version

Bluetooth-enabled micro speaker attached to the raspberry 
pi makes the stethoscope ear-contactless.

The stethoscopes are designed to meet specific 
parameters. The proposed stethoscope satisfies all 
these parameters better than others and thus can be 
considered an essential tool in cardiac monitoring 
of heart disease. Figure 7 provides the heart sounds 
captured in real-time through the proposed stetho-
scope and 3 M Littman digital stethoscope. Figure 8 
provides how digital sound wav files are stored using 
the raspberry pi 4B model. Figure 9 shows a com-
parative study of the proposed stethoscope with the 
conventional stethoscope and 3  M Littman stetho-
scope based on the computation of these parameters. 
The third (S3) and fourth heart sounds (S4) are very 
low frequency and have low intensity. Thus, it can 
sometimes be heard using the bell of the stethoscope 
chest piece.

The developed system is ear contactless because 
hear t sound plays through an external bluetooth 
speaker. There is no contact between the stethoscope 
chest piece and the ear. Therefore, it is hygienically 
safe during the COVID-19 chest examination. Auscul-
tation of the heart is essential in patients with COVID-
19. However, proper auscultation of these patients is 
difficult when medical workers wear personal protec-
tive suits.
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Fig. 9   Comparison of the 
proposed stethoscope based 
on the evaluation of specific 
parameters with a conventional 
stethoscope and 3 M Littman 
stethoscope

7 � The software development 
of the proposed model

7.1 � Squeeze and excitation networks applied 
to existing state of art architectures (SOTA)

The residual network and inception network work best for 
valvular heart sound analysis [26, 27]. However, their per-
formances can be further improved by integrating squeeze 
and excitation (SE) blocks with the existing state of art 
models, as given in Figs. 10 and 11.



2425Medical & Biological Engineering & Computing (2023) 61:2417–2439	

1 3

Fig. 10   SE—ResNet Block

Fig. 11   SE—Inception Net Block

Fig. 12   Various positions of 
squeeze and excitation blocks
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Figure 12 provides various positions of attached SE 
blocks. Table 2 highlights and compares results based on 
the different positions of SE blocks connected with the 
existing CNN models. Table 2 also provides a standard 
SE block associated with the existing state of the model 
[28, 29], like inception net offers the best result among 
all others.

In SE modules, there exist mainly three parts:

1.	 Squeeze block
2.	 Excitation block
3.	 Scale block

In the squeeze block, a global average pooling operation 
is performed to reduce the C × H × W shape to C × 1 × 1 
shape to get a global picture for each channel.

The excitation network contains two fully connected lay-
ers, first to reduce the dimensions and second to increase 

the dimensions back to the original. The dimensions are 
reduced by a reduction ratio of r = 16. Initially, the vector 
of length C is obtained in the squeeze operation, and the 
next stage is to generate a set of weights for each channel 
which is done with the help of the excitation operation.

Finally, the scaling operation is done with the help of 
a sigmoid layer where outputs of the excitation block are 
multiplied element-wise with the input feature to get the 
final output of the SE Module.

Various learning curves are obtained, as shown in 
Figs. 13 and 14.

7.2 � Proposed CNN‑RNN architecture

A combination of CNN-RNN architecture has been pro-
posed, where features are extracted with a CNN-based 
inception network, and classification is done by the 
RNN model, as given in Fig. 15. The hybrid CNN-based 

Fig. 13   Plot of accuracy vs. epoch during training and validation in 
SE-Inception Net

Fig. 14   Plot of cossentropy loss vs. epoch during training and valida-
tion in SE-Inception Net

Table 2   SE-block connection 
position-based results in CNN-
based models applied to pascals 
dataset

Type of module Position Accuracy (%) Precision (%) Recall (%)

ResNet Residual Block 98.87 97.89 98.04
Standard SE Block 99.13 98.96 98.67
SE-Pre Block 95.67 95.32 94.56
SE-Post Block 94.56 93.19 94.87
SE-Identity Block 93.45 92.41 93.89

Inception Net Inception block 98.48 98.59 97.79
Standard SE Block 99.32 98.93 99.23
SE-Pre Block 97.54 97.24 98.31
SE-Post Block 95.21 94.45 93.27
SE-Identity Block 94.37 95.67 93.68
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Fig. 15   Functional block 
diagram of the proposed CNN-
RNN model

Fig. 16   Plot of accuracy vs. epoch during training and validation

Table 3   Parameter configuration in CNN-RNN model

LSTM, long short-term memory; Candidate Set, different set of val-
ues; Optimized, one particular selected value

Hyper parameters Candidate set Optimized

Window length 5 s
No. of inception layers {1,2,3,4,5,6} 6
Kernel dimensions {3,5,7,9} 3
No. of Kernels {32,64,128,256,512} 256
No. of LSTM layers {1,2,3} 2
No. of hidden units {64,96,128,256} 128
No. of epochs {20,30,40,50} 50
Learning rate {0.1,0.01,0.001} 0.001

inception network model and LSTM-based RNN model 
use some of the acoustic features of the heart sound signal 
like Mel-frequency cepstrum coefficients (MFCCs), Mel, 
Chroma, Contrast, and Tonnetz. The proposed CNN-RNN 
model [28, 30], after hyper-parameter settings, achieved 
an accuracy of 91.17%. It produced better performance 
in terms of accuracy compared to the RNN model after 
optimizing its hyperparameters.

Figure 16 depicts a plot of the accuracy of the proposed 
CNN-RNN model after hyper-parameter tuning with the 
number of epochs during the training and validation stage. 
It is found from the above plot that accuracy rises as the 
number of epochs grow.

Table 3 produces the hyper-parameter settings of the pro-
posed model.

7.3 � Proposed RNN Architecture

It is a special kind of deep neural network [13, 15] where 
the obtained result from the previous stage is used as input 
to the present stage, as explained in Fig. 17. In PCG signal 
analysis, it plays an important role.

where ht = present state in RNN network. 
ht-1    = Previous state in RNN network
xt	� = Input to RNN network

Whh       �= Weight at recurrent neuron in RNN network
Wxh       �= Weight at input neuron in RNN network
ReLU    �= Activation function used in the hidden layer

(2)ht =
(

ht − 1, xt
)

(3)ht = ReLU
(

Whhht−1 +Wxhxt
)

(4)yt = ⋯ σ
(

Why ht
)
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σ	� = Softmax Activation function used in the output layer
yt	� = output of RNN network

Why	� = Weight at output layer in RNN network.

Each dataset is grouped into training data (85%) 
and test data (15%), as shown in Fig. 18. Furthermore, 

training data is decomposed into validation data (15%) 
and the rest for training the model. Once the proposed 
RNN model [31, 32] gets trained using training data, 
it is then validated using the validation data to adjust 
the hyper-parameters to get better results and choose 
the best-selected model. Test data is commonly used 
to validate the performance of the proposed model. 

Fig. 17   Steps involved in RNN

Fig. 18   Functional block dia-
gram of RNN
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Eventually, statistical parameters are computed for the 
proposed model.

Figure 19 shows the architecture of the proposed RNN 
model applied to dataset 2. The input layer uses six neurons 
followed by two long short-term memory (LSTM) layers. 
The first LSTM layer [28, 33] comprises 50 neurons followed 

by a 35% dropout rate, whereas the second LSTM layer con-
tains 20 neurons followed by a 35% dropout rate. In every 
LSTM layer, the ReLU activation function has been used. 
The softmax activation function has been used in the dense 
output layer, having several neurons depending on the dataset 
to which the proposed model is applied, as shown in Table 3.

Table 4 shows the proposed RNN model [34] summary 
using two LSTM layers with the ReLU activation function and 
a dense output layer with the Softmax function being used.

Figure 20 shows the cross-entropy loss [35] of the pro-
posed RNN model under the training and validation phase. 
The plot of cross-entropy loss with the number of epochs 
indicates that loss reduces as the number of epochs rises 
in the training and validation stage for the proposed RNN 
model.

Fig. 19   Architecture of the 
proposed RNN using LSTM

Table 4   Proposed RNN model summary

Layer Operator Output height Output width Output depth

Input - 01 06 01
LSTM-1 ReLU 01 06 50
Dropout Rate = 0.35 01 06 50
LSTM-2 ReLU 01 01 20
Dropout Rate = 0.35 01 01 20
Dense - 01 01 03
Softmax - 01 01 03

Fig. 20   Plot of cossentropy loss vs. epoch during training and valida-
tion in RNN

Fig. 21   Plot of accuracy vs. epoch during training and validation in 
RNN
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Figure 21 depicts the accuracy of the proposed RNN 
model under the training and validation phase. The plot of 
accuracy with the number of epochs indicates that accuracy 
rises as the number of the epochs grows in the training and 
validation stage for the proposed RNN model.

The effect of various optimizers on the proposed RNN 
model applied on dataset 2 is shown in Fig. 22. The figure 
below shows that the Adam optimizer gives the best result 
among the others.

Table 5 shows the effect of different dropout rates on the 
proposed RNN model. It is observed that on increasing the 
dropout rates, the model’s accuracy increases, and cross-
entropy loss decreases. The tuning of hyperparameters thus 
helps to choose the best proposed RNN model at a dropout 
rate of 0.35. The performance evaluation of the proposed RNN 
model is carried out on the test data by considering a drop-
out rate of 35%, as shown in Table 6. After hyperparameter 
settings, the proposed RNN-based long short-term memory 
(LSTM) model achieved an accuracy of 82.32%.

Table 7 provides the block diagram of proposed Inception 
Net architecture. Table 8 shows the effect of adding inception 
blocks on the proposed inception net model. It is experimentally 
studied and found that increasing the number of blocks increases 
the model’s accuracy and cross-entropy loss decreases.

Fig. 22   Comparison of different optimizers in RNN

Table 5   Hyper-parameter tuning of samples by applying different 
dropout rates in RNN

Dropout rates Accuracy Loss

0.15 78.77 68.65
0.25 80.24 62.55
0.35 82.32 54.96

Table 6   Summary of test-data results in RNN

Model Dropout rate Accuracy Precision Recall F1-Score

RNN 0.35 0.82 0.83 0.86 0.85

Fig. 23   Effect of learning rate 
during training and validation 
using ADAM optimizer
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Figure 22 provides the comparative study of different opti-
mizers used in deep learning methods like RNN. As it is clear 
from the above figure, the accuracy increases very steeply 
on implementing the said optimizer. The learning rate is a 
configurable and most important hyperparameter in the deep 
learning model. Figure 23 depicts the effect of the learning 
rate on the cross-entropy loss of the proposed RNN model 
under the training and validation phase. It shows that the opti-
mal condition is obtained at a learning rate of 0.001. As the 
combined architecture of the CNN and RNN model [36, 37] 
has low accuracy and more training time, this hyperparameter 
optimization method can easily keep track of that.

Various parameters used to judge any developed sys-
tem’s performance are called accuracy, precision, recall, 
and F-measure. For the computation of these metrics, the 
count of true-positive (TP), false-positive (FP), true-neg-
ative (TN), and false-negative (FN) data are needed, as 
provided:

7.4 � Proposed CNN‑based inception network

Inception networks [9, 19, 38] are often used in classification 
problems related to medical imaging. An inception network 
responds to a set of Heart sounds, performs the required 
operations and analysis on them, and eventually predicts the 
type of heart sound for classification [39]. A CNN-based 
inception network [40, 41] has multiple convolutional layers 
and inception modules to learn the various features in a heart 
sound and predict the class labels accordingly. All incep-
tion network parameters and hyperparameters are adjusted 
during the training phase of the deep learning model. A 
Python-based Keras sequential model [42, 43] has been 
taken for implementation. The entire design of the deep 
learning model is shown in Fig. 24. This model summary 
was obtained after training and validation of the dataset.

Figure 25 provides the skeleton of an inception module 
used. It is a sparsely connected network with a max pool and 
multiple convolutions of kernel sizes 1, 3, and 5 at the same 
layer, followed by an application of concatenation operation 
from all filter outputs.

(5)Accuracy = TP + TN∕TP + FP + FN + TN

(6)Precision = TP∕TP + FP

(7)Recall = TP∕TP + FN

(8)
F1 Score = 2

∗(Recall ∗ Precision)∕(Recall + Precision) Table 6 shows the proposed inception net architecture 
using three inception blocks with a ReLU activation func-
tion, an input layer, and an output layer with a softmax acti-
vation function.

Table  7 ref lects  the architecture of the proposed 
inception net model applied to dataset1. In this model, 
the first hidden convolution layer contains 256 filters, 

Table 7   Proposed Inception Net architecture

Type Kernel size/stride Activation function Input shape

Input layer - - 1000 × 6
Conv 1D 3/1 ReLU 998 × 256
Conv 1D 3/1 ReLU 996 × 256
Dropout 0.25 ReLU 996 × 256
Max pool Size = 2 ReLU 498 × 256
Inception block X 3 ReLU 235 × 288
Dense 1200 ReLU 1 × 1200
Dense 600 ReLU 1 × 600
Dense 150 ReLU 1 × 150
Output layer - Softmax 1 × 5

Table 8   Effect of adding 
inception blocks in CNN-based 
Inception Net model

Inception 
blocks

Accuracy Loss

01 97.85 21.00
02 98.23 19.45
03 98.79 18.05
04 99.25 16.98
05 99.45 14.87
06 99.65 12.27

Fig. 24   Inception net block
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each kernel size equal to 3 using the ReLU activation 
function, followed by the second hidden convolution 
layer containing the same number of filters and kernel 
size. The third hidden layer has three inception mod-
ules, followed by the fourth, fifth, and sixth hidden 
layers. They are the fully connected layer containing 
1200, 600, and 150 nodes, respectively. The output 
layer contains five nodes using the Softmax activa-
tion function to classify five different types of heart 
sound [2, 44]. Learning curves are obtained for the 
proposed model developed with normal and abnormal 

heart sounds and plotted accordingly, as shown in 
Figs. 26 and 27.

Figure 26 shows the cross-entropy loss of the proposed 
inception net model [45] under the training and valida-
tion phase. The plot of cross-entropy loss with the num-
ber of epochs indicates that loss reduces as the number of 
epochs rises in the training and validation phase for the 
proposed inception net model. Learning rate affects the 
cross-entropy loss and accuracy as a lower learning rate 
needs a large number of iterations, and a larger one needs 

Fig. 25   Proposed CNN-based inception net model summary

Fig. 26   Plot of cross entropy loss vs. epoch during training and vali-
dation in CNN-based Inception Net

Fig. 27   Plot of accuracy vs. epoch during training and validation in 
CNN-based Inception Net
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a small number of iterations. Thus, choosing a proper 
learning rate value is a challenging and significant task, 
as shown in Fig. 28.

Figure 27 highlights the accuracy of the proposed 
inception net model under the training and validation 
phase. The plot of accuracy with the number of epochs 
indicates that accuracy rises as the number of epochs 
grows in the training and validation stage for the pro-
posed CNN model.

The proposed inception net model’s performance evalu-
ation [46, 47] is carried out on the test data by selecting 
the number of inception blocks as six, as shown in Table 9. 
The best-proposed model has been chosen when the num-
ber of added blocks equals six.

Figure 28 shows the effect of the learning rate on the 
cross-entropy loss of the proposed inception net model 

under the training and validation phase. It shows that the 
optimal condition is obtained at a learning rate of 0.001.

After hyperparameter settings, the proposed CNN-based 
inception net model achieved an accuracy of 99.65%.

7.5 � Comparison to machine learning methods

The proposed model gets compared with the available 
machine-learning methods. A similar set of feature learn-
ing methods is considered and then a perception is made 
about the proposed software base deep learning model.

Dataset 1, dataset 2, and dataset 3 have been used to 
compare all the machine learning algorithms, as shown 
in Fig. 29. All machine learning algorithms [14], like 
Support Vector Machine [43], K-Nearest Neighborhood, 
Naïve Bayes, and Random Forest, are written in Python 
ver. 3.8 using Keras and tensor flow. Datasets have been 
fed to these various machine learning models using five-
fold cross-validation to evaluate their performance and 
statistical analysis [48, 49]. Different models have been 
assessed against three datasets and compared, as given in 
the figure below. It is found that the inception network 
works best among all other machine learning algorithms, 
as shown in Fig. 30.

Fig. 28   Effect of learning rate 
during training and validation 
using ADAM optimizer

Table 9   Summary of test-data results in the Inception Network

Model No. of 
blocks

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%)

Inception 
Net

06 99.37 97.26 98.08 99.07
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Fig. 29   The comparison of the 
machine learning performance 
between the proposed method 
(RNN and CNN) and other 
machine learning

Fig. 30   Comparison of differ-
ent machine learning methods 
with deep learning on various 
datasets
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8 � Result analysis

Table 10 shows the accuracy of the four proposed models. 
The proposed hybrid CNN-RNN model attained better accu-
racy after hyperparameter settings than the RNN model. It 
has been found that the SE-based inception network works 
the best of all.

Tables 11 and 12 depicts the comparison of perfor-
mance metrics in terms of training time and testing time. 
After optimizing hyperparameters, the training time and 
testing time of the proposed hybrid CNN-RNN model 

Table 10   Accuracy of the 
proposed models

Datasets accuracy (in %) RNN CNN + RNN Inception Net Se-inception net

Physio Net Challenge 82.32% 91.17% 98.65% 99.29%
Pascal Challenge 83.14% 92.75% 97.43% 99.32%
Yaseen Khan et al 80.67% 90.35% 96.25% 99.13%
Kaggle Dataset 82.45% 91.45% 96.87% 98.74%

Table 11   Comparison of 
screening time of different deep 
learning models

Datasets run time (in Sec) RNN CNN + RNN Inception net Se-inception net

Physio Net Challenge 520 s 266 s 218 s 209 s
Pascal Challenge 478 s 298 s 215 s 197 s
Yaseen Khan et al 487 s 311 s 265 s 257 s
Kaggle Dataset 357 s 293 s 220 s 206 s

Table 12   Comparison of 
performance metrics of different 
deep learning models

A, accuracy; P, precision; R, recall; F, F1-score

Model A (%) P (%) R (%) F (%) Training time (s) Testing time (s)

RNN 82.32 83.11 86.05 85.80 1567 1345
RNN + CNN 92.11 93.87 92.65 93.87 1244 1174
Inception 98.65 97.45 98.65 98.05 710 974
Se–Inception 99.45 98.97 98.75 99.03 680 943

Table 13   Comparison of 
performance metrics of different 
stethoscopes

A, accuracy, P, precision; R, recall; F, F1-score; Type A, conventional stethoscope; Type B, 3 M Littmann 
stethoscope; Type C, proposed stethoscope

Data sets Yaseen Khan dataset Physio net challenge Pascal challenge

Types of 
stethoscopes

A (%) P (%) R (%) F (%) A (%) P (%) R (%) F (%) A (%) P (%) R (%) F (%)

Type-A 95 94 93 95 94 93 92 94 94 95 94 93
Type-B 96 95 94 95 96 94 95 96 96 95 96 95
Type-C 98 97 98 99 97 98 98 97 98 97 99 98

are lower than the RNN model, and the SE-inception 
network achieved the most down screening time among 
them. Table 12 provides a detailed comparative study of 
the performance of different stethoscopes.

Table 13 describes the detail of the 30 volunteers of 
different age groups and genders considered for the entire 
experimental study. Table 14 analyzes PCG recordings 
obtained using the proposed contactless stethoscope by 
adapting SE-inception network. Different positions like 
upper left sternal border (ULSB), upper right sternal bor-
der (URSB), and lower left sternal borders (LLSB) are 
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considered for this analysis under postures like sitting, stand-
ing, and supine. The recordings are finally compared with 
their past medical history.

For heart sound detection of valvular disease, the 
stethoscope diaphragm should be placed with good con-
tact on the body over the heart at areas defined in Fig. 31. 
In the case of pulse rate measurement, the stethoscope 

diaphragm is placed over bronchial arteries. The almost 
30 mm Hg pressure is higher than the systolic pressure 
during palpation. For every volunteer, nine PCG read-
ings (3 readings from each posture) are obtained using 
the developed system. Table 15 shows the scores on a 1 
to 5 scale by comparing the developed stethoscope read-
ings with the volunteer’s medical history. The developed 
system works quite decently for most volunteers in terms 
of accuracy (Table 16).

Table 15   Analysis of pcg 
recordings obtained in various 
positions with different postures 
applied on different subjects 
using the proposed contactless 
stethoscope

NS, normal heart sounds; EXT, extra systole heart sounds; AS, aortic stenosis; MS, mitral stenosis; MR, 
mitral regurgitation; MVP, mitral valve prolapses; ULSB, upper left sternal border; URSB, upper right ster-
nal border; LLSB, lower left sternal border

Patient Sitting Standing Supine Probability Score

Gender Age ULSB URSB LLSB ULSB URSB LLSB ULSB URSB LLSB NormalSound

Female 28 MR MR NS NS NS NS NS MR MR 61.12%
Male 32 NS NS NS NS NS MR NS NS MR 83.43%
Female 51 NS NS NS NS NS NS NS NS NS 100.00%
Male 59 NS NS NS NS MR NS MR NS NS 83.43%
Female 86 NS NS NS MS NS MR MR NS MR 61.12%
Male 62 NS NS NS NS NS MR NS NS MR 83.43%
Female 37 NS MS NS MS NS NS MR NS NS 61.12%
Male 36 NS NS NS MR NS NS MR NS NS 83.43%
Female 34 NS NS NS MS NS MR NS NS NS 83.43%
Male 38 MS NS NS NS NS MR NS NS NS 83.43%
Male 27 MS NS NS NS NS MR NS NS NS 83.43%
Male 46 MS NS NS NS NS NS NS NS MS 83.43%
Male 25 MR NS NS NS NS MVP NS NS NS 83.43%

Table 16   Analysis OF PCG recordings obtained using the proposed 
stethoscope with past medical history

Patient Comparison of probability score with past 
medical history

Gender Age Medical history Probability of nor-
mal heart sound

Score

Female 28 NS 61.12% 3
Male 32 NS 83.43% 5
Female 51 NS 100.00% 5
Male 59 NS 83.43% 5
Female 86 MR 61.12% 3
Male 62 MS 83.43% 5
Female 37 NS 61.12% 3
Male 36 NS 83.43% 5
Female 34 NS 83.43% 5
Male 38 NS 83.43% 5
Male 27 NS 83.43% 5
Male 46 MS 83.43% 2
Male 25 NS 83.43% 5

Table 14   Description of the volunteers considered

AGE Age group Male Female Number of 
volunteers

25–40 Young adults 09 06 15
41–60 Middle aged adults 07 05 12
61–80 Old adults 02 01 03

Fig. 31   Locations of heart for the acquisition of heart sound
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9 � Conclusion

Machine learning algorithms have certain restrictions in 
real-time valvular heart sound analysis applications. This 
research aimed to use a CNN-based deep learning classi-
fier to develop a low-cost portable contactless stethoscope 
for valvular heart disease prediction in rural places. The 
hardware development provides an electronic stethoscope 
with ear contactless that has a bluetooth-enabled speaker. 
The cost of an echo ultrasound 2D/3D imaging machine 
for cardiac imaging is around 12,000 to 15,000 USD. Our 
total development cost of the AI-based prototype system 
for detecting and predicting heart diseases is about 2500 
USD. The available echo machines for cardiac imaging 
are portable and easy to use in rural villages. However, 
the developed prototype cannot image the cardiac condi-
tion. However, it can predict valvular diseases cheaply 
and can be incorporated into rural village applications 
using artificial intelligence. The designed system was 
experimentally evaluated for its performance with 30 
human volunteers having a medical history of 27 volun-
teers with normal heart, two with mitral stenosis, and one 
with mitral regurgitation, which the physician clinically 
assessed. On experimentation with those human volun-
teers, the developed system predicts the same results. 
The experimental studies aimed to find a suitable and 
improved deep learning classifier using Python-based 
convolutional neural network (CNN) and recurrent neu-
ral network (RNN) on verified normal and abnormal heart 
sounds of three datasets, as described in the text. Integra-
tion of SE blocks with the existing state of art architecture 
prevailed in better performance of the inception and resid-
ual networks where standard SE blocks produced the best 
results, among others. The training dataset trains the deep 
learning model, the validation dataset is used to validate 
the performance of hyperparameters of the model, and the 
test dataset computes the model’s overall performance. It 
has been found that the best results can be obtained from 
any deep learning model by tuning the hyperparameters. 
In this entire experiment, classifier accuracy, precision, 
recall, and F1-scores are evaluated with the different heart 
sound databases. It has also been experimentally studied 
and found that the CNN-based inception network model 
classifier can be chosen as the most effective deep learn-
ing classifier. However, it has some complexity in the 
computational part. A recurrent neural network (RNN) 
is also suitable as an AI classifier of heart sound though 
it takes much time in the learning phase. However, once 
learned, it gives a speedy result.
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