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Abstract
In December 2019, the spread of the SARS-CoV-2 virus to the world gave rise to probably the biggest public health problem 
in the world: the COVID-19 pandemic. Initially seen only as a disease of the respiratory system, COVID-19 is actually a blood 
disease with effects on the respiratory tract. Considering its influence on hematological parameters, how does COVID-19 
affect cardiac function? Is it possible to support the clinical diagnosis of COVID-19 from the automatic analysis of elec-
trocardiography? In this work, we sought to investigate how COVID-19 affects cardiac function using a machine learning 
approach to analyze electrocardiography (ECG) signals. We used a public database of ECG signals expressed as photographs 
of printed signals, obtained in the context of emergency care. This database has signals associated with abnormal heartbeat, 
myocardial infarction, history of myocardial infarction, COVID-19, and healthy heartbeat. We propose a system to support 
the diagnosis of COVID-19 based on hybrid deep architectures composed of pre-trained convolutional neural networks for 
feature extraction and Random Forests for classification. We investigated the LeNet, ResNet, and VGG16 networks. The best 
results were obtained with the VGG16 and Random Forest network with 100 trees, with attribute selection using particle 
swarm optimization. The instance size has been reduced from 4096 to 773 attributes. In the validation step, we obtained an 
accuracy of 94%, kappa index of 0.91, and sensitivity, specificity, and area under the ROC curve of 100%. This work showed 
that the influence of COVID-19 on cardiac function is quite considerable: COVID-19 did not present confusion with any 
heart disease, nor with signs of healthy individuals. It is also possible to build a solution to support the clinical diagnosis 
of COVID-19 in the context of emergency care from a non-invasive and technologically scalable solution, based on hybrid 
deep learning architectures.

Keywords COVID-19 clinical diagnosis · COVID-19 computer-aided diagnosis · Electrocardiography · Deep learning · 
Hybrid deep architectures

1 Introduction

1.1  Motivation

In December 2019, in the city of Wuhan, China, the most 
critical outbreak in the last hundred years began: corona-
virus disease 2019 (COVID-19), transmitted by the SARS-
CoV-2 virus, a virus of zoonotic origin until then unknown 
[15, 21, 23, 52, 64]. SARS-CoV-2, when compared to its 
predecessors (SARS-CoV and MERS-CoV), proved to 
be much more resistant and infectious. The most com-
mon symptoms are fever, dry cough, and tiredness [15, 
23, 32, 52, 64]. Pain and discomfort, sore throat, diar-
rhea, conjunctivitis, headache, loss of taste or smell, rash 
on the skin, and discoloration of the fingers or toes may 
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also appear [12, 15, 46, 52, 60, 64]. Its severe symptoms 
are difficulty in breathing or shortness of breath, pain or 
pressure in the chest, and loss of speech or movement [12, 
15, 23, 32, 46, 52, 60, 64]. Despite the lower lethality, the 
virus spreads very quickly, producing a large volume of 
deaths and leaving sequels that are often permanent [12, 
23, 46, 60]. Due to their high rate of contagion, public 
health system resources are rapidly depleted [23]. The 
COVID-19 pandemic is perhaps the biggest health crises 
in decades.

Accurate diagnosis plays an important role against 
COVID-19. The test established as the gold standard for 
the diagnosis of COVID-19 is the reverse transcription 
polymerase chain reaction (RT-PCR), used to search for 
the presence of the SARS-CoV-2 virus, translated from 
RNA into DNA, in samples of saliva and human secre-
tions [27]. However, the RTPCR process can take hours or 
even days, considering both the volume of tests required 
and the logistics of transporting the samples, given the 
pandemic situation [27]. Late diagnosis can result in late 
patient care, which can make recovery difficult. In addi-
tion, non-isolated infected people can spread the virus.

There are also some rapid tests based on the identifica-
tion of serological evidence of the presence of the virus as 
antibodies or antigens. However, these tests are nonspe-
cific because they do not detect the presence of the virus 
directly. Therefore, the performance of the tests depends 
on other factors, such as the time of onset of the disease 
and the viral concentration in the sample of interest [40, 
62]. Another complementary method in the process of 
diagnosing COVID-19 is the computerized tomography 
(CT) X-ray scan [2, 3, 44, 54]. Combined with RT-PCR 
has a great clinical value, since in CT images, it is possible 
to analyze the COVID-19 effects as bilateral pulmonary 
parenchymal ground-glass and consolidative pulmonary 
opacities in a precise way [39]. As a disadvantage, CT is 
an expensive exam, requiring a dedicated room with dif-
ficult isolation, becoming a risk factor for contamination.

Several studies have sought to highlight the nature of 
COVID-19 as a disease that mainly affects the cardiovas-
cular system [13, 30, 31, 42, 57, 65]. Coronaviruses, such 
as SARS-CoV and SARS-CoV-2, have the angiotensin-
converting zinc metallopeptidase 2 (ACE2), an enzyme 
present in the cell membranes of the arteries, heart, lungs, 
and other organs as a functional receptor. ACE2 is involved 
in cardiac function, hypertension, and diabetes [59]. The 
MERS-CoV and SARS-CoV coronaviruses can cause acute 
myocarditis and heart failure [65]. Some of the impacts of 
coronaviruses on the cardiovascular system are increased 
blood pressure and increased levels of troponin I (hs-cTnI) 
[65]. COVID-19 patients may also develop lymphopenia, 
i.e., low level of lymphocytes [30, 42, 57] and leukopenia, 
i.e., few leukocytes. COVID-19 patients may also experience 

decreased hemoglobin levels, absolute lymphocyte count 
(ALC), and absolute monocyte count (AMC) [30]. Patients 
who have developed severe forms of the disease have sig-
nificantly higher levels of Interleukin-6 and D-dimer than 
patients who have developed a moderate form of COVID-
19 [31]. Therefore, considering that COVID-19 is a disease 
that affects blood parameters, hematological tests can be 
used to help diagnose the disease. According to Mele et al. 
[43], if myocarditis is suspected in a patient with COVID-
19 due to acute-onset cardiac symptoms or ECG changes, 
cardiac troponin and bedside echocardiography should be 
obtained. The same is true for patients who develop electri-
cal or hemodynamic instability [28, 43]. Special attention 
should be given to changes or trends in biomarkers and not 
to values obtained in isolation [28, 43]. The main differential 
diagnoses are stress-induced cardiomyopathy, sepsis-related 
cardiomyopathy, and acute coronary syndrome, especially 
for the fulminant form of myocarditis [43].

Computational intelligence, especially machine learn-
ing techniques, has been indicated to be used in several 
clinical tasks involving biomedical image classification [7, 
17, 20–22, 24–26, 41, 47–49, 51, 53, 55]. Such techniques 
could provide a secure and semiautomatic way to diagnosis 
COVID-19 in CT X-ray images and in hematological param-
eters [21, 33]. Therefore, they are promising to identify the 
disease in ECG trace.

The training of deep artificial neural networks in large 
image databases can involve a high computational effort, with 
high computational complexity of both memory and process-
ing. This task usually requires expensive computational archi-
tectures, with a lot of data memory and parallelism resources, 
such as graphics processing units (GPUs), demanding days or 
even months of processing, depending on the size of the data-
base under study. Deep convolutional neural networks (deep 
CNNs) are often quite suitable for solving image pattern rec-
ognition problems. However, these neural networks have many 
tuning parameters, such as the number of neurons per layer, the 
number of layers, the learning rate, the maximum number of 
iterations, and the weights of each convolution neuron. Several 
CNN architectures have been proposed, such as LeNet and 
ResNet, from which it is only necessary to adjust the weight 
of the neurons. However, this is still a computationally expen-
sive task, as it is necessary to adjust tens or even hundreds of 
thousands of neurons.

Transfer learning consists of the use of classifiers trained 
for databases of objects of interest different from those used in 
the application: the output of the pretrained classifier is consid-
ered a representation of the input object according to a certain 
universe of representation. In this way, pre-trained classifiers 
are used as feature extractors. Thus, shallow classifiers, which 
can range from shallow neural networks to support vector 
machines, decision trees, statistical classifiers, or regressors, 
can be used for the final classification. Consequently, hybrid 
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architectures based on deep transfer learning and shallow clas-
sifiers allow reducing the computational complexity associated 
with training large image databases, minimizing the problem 
of tuning training parameters and combining well-established 
state-of-the-art learning models. Some works have explored 
the use of CNNs for the problem of supporting the clinical 
diagnosis of COVID-19 by analyzing ECG signals represented 
as images [4–6, 45, 50]. In this work, we investigated hybrid 
models based on deep learning by transfer based on CNNs and 
Random Forests, seeking to minimize the training complex-
ity by reducing the number of adjustable parameters. This is 
a desirable feature in clinical diagnosis support systems: it is 
important that learning machines can be retrained periodically, 
with their models refined as new data becomes available [9, 
21].

Considering that COVID-19 is essentially a disease of 
the cardiovascular system, severely affecting the blood, it is 
to be expected that this disease affects cardiac function and, 
therefore, can be visualized in the expression of electrocardio-
graphic (ECG) signals. Considering a database in which sam-
ples of electrocardiographic signals from healthy individuals 
and those with relatively common heart diseases are present, 
in addition to ECG signals from individuals with COVID-19, 
this work aims to investigate how COVID-19 differs in relation 
to heart diseases considering cardiac function and whether this 
differentiation is sufficient to support the clinical diagnosis of 
COVID-19. In this work, we propose the use of hybrid deep 
neural network architectures, based on pretrained deep net-
works in a transfer learning approach, for feature extraction, 
and output layers with Random Forests, for effective classifi-
cation, in order to support the clinical diagnosis of COVID-
19 and cardiac diseases on ECG signals. As inputs, we used 
images of printed traces of ECG signals obtained in a clinical 
environment.

1.2  Related works

Several studies emphasize the importance of hematologi-
cal parameters to support COVID-19 clinical diagnosis. 
Some of them point to the relevance of using hematological 
analysis as an indicative of COVID-19 severity. Fan et al. 
[30] analyzed hematological parameters of 69 patients with 
COVID-19. A total of 13.4% of patients needed intensive 
care unit (ICU) care, especially the elderly. They found that 
monitoring these parameters can help to identify patients 
who will need ICU assistance. The work from Tan et al. 
[57] also assessed the complete blood count of patients. 
They used data from both cured patients and patients who 
died from COVID-19. Among their findings, there are some 
key indicators of disease progression. Therefore, monitor-
ing these parameters may support future clinical manage-
ment decisions. In this context, both Soares et al. [56] and 
de Freitas Barbosa et al. [21] use methods based on artificial 

intelligence to identify COVID-19 through blood tests. They 
achieved very high sensitivity and specificity results in this 
diagnosis.

Angeli et al. [1] examined 50 patients admitted to hospital 
with proven COVID-19 pneumonia. All patients underwent 
a detailed clinical examination, 12-lead ECG, laboratory 
tests, and arterial blood gas test. ECG was also recorded at 
discharge and in case of worsening clinical conditions. Mean 
age of patients was 64 years and 72% were men. At base-
line, 30% of patients had ST-T abnormalities, and 33% had 
left ventricular hypertrophy. During hospitalization, 26% of 
patients developed new ECG abnormalities which included 
atrial fibrillation, ST-T changes, tachy-brady syndrome, and 
changes consistent with acute pericarditis. Patients free of 
ECG changes during hospitalization were more likely to 
be treated with antiretrovirals (68% vs 15%, p = 0.001) and 
hydroxychloroquine (89% vs 62%, p = 0.026) versus those 
who developed ECG abnormalities after admission. In addi-
tion, the majority (54%) of patients with ECG abnormali-
ties had 2 prior consecutive negative nasopharyngeal swabs. 
ECG abnormalities were first detected after an average of 
about 30 days from symptoms onset (range 1251 days).

Bergamaschi et  al. [10] evaluated 269 consecutive 
patients admitted with confirmed SARS-CoV-2 infection. 
ECGs available at admission and after 1 week from hospital-
ization were assessed. The authors evaluated the correlation 
between ECGs findings and major adverse events (MAE) as 
the composite of intra-hospital all-cause mortality or need 
for invasive mechanical ventilation. Abnormal ECGs were 
defined if primary ST-T segment alterations, left ventricular 
hypertrophy, tachy, or bradyarrhythmias and any new AV, 
bundle blocks, or significant morphology alterations (e.g., 
new Q pathological waves) were present.

Abnormal ECG at admission (106/216) and elevated 
baseline troponin values were more common in patients who 
developed MAE (p = 0.04 and p = 0.02, in this order). Con-
cerning ECGs recorded after 7 days (159), abnormal find-
ings were reported in 53.5% of patients and they were more 
frequent in those with MAE (p = 0.001). Among abnormal 
ECGs, ischemic alterations and left ventricular hypertrophy 
were significantly associated with a higher MAE rate. The 
multivariable analysis showed that the presence of abnormal 
ECG at 7 days of hospitalization was an independent predic-
tor of MAE (HR 3.2; 95% CI 1.28.7; p = 0.02). Patients with 
abnormal ECG at 7 days more often required transfer to the 
intensive care unit (p = 0.01) or renal replacement therapy 
(p = 0.04).

He et al. [34] reported two COVID-19 cases that exhib-
ited different ECG manifestations as the COVID-19 caused 
deterioration. The first case presented temporary SIQIIITIII 
morphology followed by reversible nearly complete atrio-
ventricular block, and the second demonstrated ST-segment 
elevation accompanied by multifocal ventricular tachycardia. 
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According to the authors, the underlying mechanisms of 
these ECG abnormalities in the severe stage of COVID-
19 may be attributed to hypoxia and inflammatory damage 
incurred by the virus.

COVID-19 and other cardiovascular diseases (CVDs) 
were detected using deep-learning techniques by Rahman 
et al. [50]. A public dataset of ECG images consisting of 
1937 images from five distinct categories, such as normal, 
COVID-19, myocardial infarction (MI), abnormal heartbeat 
(AHB), and recovered myocardial infarction (RMI) were 
used. Six different deep CNN models (ResNet18, ResNet50, 
ResNet101, InceptionV3, DenseNet201, and MobileNetv2) 
were used to investigate three different classification 
schemes: (i) two-class classification (normal vs COVID-
19); (ii) three-class classification (normal, COVID-19, and 
other CVDs), and finally, (iii) five-class classification (nor-
mal, COVID-19, MI, AHB, and RMI). For two-class and 
three-class classification, Densenet201 outperforms other 
networks with an accuracy of 99.1% and 97.36%, respec-
tively; while for the five-class classification, InceptionV3 
outperforms others with an accuracy of 97.83%. ScoreCAM 
visualization confirms that the networks were learning from 
the relevant area of the trace images.

Attallah [4] proposed a pipeline composed of five deep 
learning models called ECG-BiCoNet. Features mined from 
higher layers were fused using discrete wavelet transform 
and then integrated with lower-layers features. Afterward, a 
feature selection approach was utilized. Finally, an ensemble 
classification system was built to merge predictions of three 
machine learning classifiers. ECG-BiCoNet accomplishes 
two classification categories: binary and multiclass. The 
results of ECG-BiCoNet present a COVID-19 performance 
with an accuracy of 98.8% and 91.73% for binary and mul-
ticlass classification categories.

Ozdemir et al. [45] proposed to automatically diagnose 
COVID-19 by using hexaxial feature mapping to represent 
12-lead ECG to 2D colorful images. Gray-level co-occur-
rence matrix (GLCM) method was used to extract features 
and generate hexaxial mapping images. These generated 
images were then fed into a new convolutional neural net-
work (CNN) architecture. Two different classification sce-
narios were conducted on a publicly available ECG image 
dataset. In the first scenario, ECG data labeled as COVID-
19 and no-findings (normal) were classified. The proposed 
approach reached an accuracy of 96.20% and F1score of 
96.30%. In the second scenario, ECG data labeled as nega-
tive (normal, abnormal, and myocardial infarction) and 
positive (COVID-19) were classified to evaluate COVID-
19 diagnostic ability. The experimental results presented an 
accuracy of 93.00% and F1-score of 93.20%.

Attia et al. [6] trained a CNN with 26,153 ECGs, from 
which 33.2% were of COVID-19 positive patients. They 
acquired ECGs both before and after diagnosis. A third 

ECG was recorded 14 days after PCR result. After train-
ing, the CNN model was validated with 3826 ECGs. Test 
was performed with 7870 ECGs not included in other sets. 
Therefore, AUC for detection of COVID-19 in the test group 
was 0.767, with sensitivity of 98% and specificity of 10%. In 
Table 1, we present all the state-of-the-art results presented 
here in comparison to our approach.

2  Methods

2.1  Proposed method

In this study, we detail the development of the machine 
learning analysis step. Our method proposes and assesses 
the performances of some deep transfer learning hybrid 
architectures to perform both feature selection and classi-
fication of the input ECG images (Fig. 1). These architec-
tures use pre-trained deep networks for feature extraction: 
LeNet, ResNet, and VGG16. We adopted the 5-layer ver-
sion of LeNet, trained considering the MNIST dataset [8, 
36–38]. LeNet was pretrained with the MNIST database 
and extracted 500 features. We employed the ResNet-50 
version of ResNet [38, 58, 61]. Both ResNet and VGG16 
were pretrained with IMAGENET dataset, furnishing 2048 
and 4096 features, respectively [38, 58]. We used the follow-
ing configuration for all deep CNNs: β1 mean decay = 0.9, 
lr = 0.001, β2 var decay = 0.999, ϵ = 1.0E-8, bias initializa-
tion = 0.0, no weight noise, no dropout, batch size = 128, 
weight initialization method = XAVIER, updater = Adam, 
bias updater = Sgd, gradient normalization threshold = 1.0, 
and number of epochs = 10. The optimizer was the stochastic 
gradient descent algorithm. In the output layer, we tested 
several Random Forest algorithms to perform classification.

In order to optimize our method, we investigated two 
approaches: A and B. In the first one, we assessed the clas-
sification performance using the entire set of features. In 
approach B, we added a feature selection step prior to clas-
sification. We selected the features using a Particle Swarm 
Optimization (PSO) algorithm with 20 individuals and 20 
iterations.

In addition, two different scenarios were studied for each 
approach: 3 classes (COVID-19, healthy vs. other heart dis-
eases), and 5 classes (COVID-19, healthy heartbeat (nor-
mal), abnormal heartbeat (AHB), myocardial infarction 
(MI), and history of MI). In the case of three classes, the 
class “other heart diseases” comprises all images of patients 
with IM, history of IM, and AHB. Overall, we evaluated the 
performances of the different hybrid architectures using the 
following scenarios:

 (i) Approach A with 3 classes
 (ii) Approach A with 5 classes
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 (iii) Approach B with 3 classes
 (iv) Approach B with 5 classes

Figure 2 illustrates this method and each step is further 
detailed at the following sections. It is important mention-
ing that in all scenarios, we used 75% of the instances for 
training and testing, and 25% for validation. The division 
of these sets was made randomly by the Weka software, 
considering the signals of all patients in the database. In 
training and testing, we used cross-validation of 10 folds in 
30 rounds. The cross-validation subsets were also randomly 
split in the software. In addition, we performed a class bal-
ancing step in the training and testing dataset. We used 
the Synthetic Minority Oversampling Technique (SMOTE) 
with 3 nearest neighbors to perform class balancing [11, 
14]. Figure 2 also presents the number of features selected 
by PSO method for each dataset. For the 3-class problem, 
there was a decrease in 77.6% of the number of features 
extracted by LeNet architecture, 82.6% for ResNet dataset, 
and 80.3% for VGG16. With the datasets with 5 classes, 
there was a reduction in 73.2% of the features extracted 
by LeNet, 78.6% of ResNet, and the number of features 
from VGG16 experienced a decrease in 81.1%. All these 
steps were performed using the Waikato Environment for 
Knowledge Analysis (Weka), version 3.8 [63].

Our interest was to use the ECG database to investigate 
the relationship between COVID-19 and changes in cardiac 
function as a way to support clinical diagnosis. When we 
talk about clinical diagnosis, we refer to the process in which 
the clinician assesses which pathology is most likely using 

nonspecific tests considering a context that supports the diag-
nostic hypothesis to be validated. We understand that, in the 
context of the end of the COVID-19 pandemic, the improve-
ment of clinical diagnosis through computational intelligence 
tools can contribute to clinical decision-making in the context 
in which COVID-19 becomes an endemic disease.

2.2  Dataset

In this work, we adopted the dataset of ECG images of 
cardiac and COVID-19 patients created by Khan et al. 
[35]. This dataset contains 1937 distinct patient records. 
Data was collected using ECG Device “EDAN SERIES-3” 
installed in cardiac care and isolation units of different 
health care institutes across Pakistan. The collected ECG 
images data were manually reviewed by medical profes-
sors using Telehealth ECG diagnostic system, under the 
supervision of senior medical professionals with experi-
ence in ECG interpretation. During several months, the 
specialist committee reviewed five distinct categories: 
COVID-19 (250 images), abnormal heartbeat (AHB) (548 
images), myocardial infarction (MI) (77 images), previ-
ous history of MI (myocardial) (203 images), and healthy 
heartbeat (normal) (859 images). Therefore, the collected 
database has one data per patient and contains 12 lead-
based ECG images. This dataset was designed to evaluate 
machine learning methods in studies focused on COVID-
19, arrhythmia, and other cardiovascular conditions. The 
dataset contains rare categories of patients useful for the 
development of automatic diagnosis tool for healthcare 

Table 1  Summary of related works

Work Main results

Angeli et al. [1] About 26% of the patients developed ECG abnormalities during hospitalization. Some of them presented ECG abnor-
malities about 30 days after the first COVID-19 symptoms

Bergamaschi et al. [10] They found many ECG abnormalities that might be associated to COVID-19, from signals recorded at admission and 
after 1 week from hospitalization

He et al. [34] Their hypothesis is that reported ECG dysfunction may be associated to hypoxia and inflammatory damage due to 
COVID-19, based on ECG signals from two people

Rahman et al. [50] Among the tested CNN models, Densenet201 performed better for two and three classes, with accuracy of 99% for 
binary and 97%, respectively. InceptionV3 model outperformed the others for five-class problem with accuracy of 
almost 98%

Attallah [4] ECG-BiCoNet pipeline to provide COVID-19 diagnosis from ECG signal. Their method used ensembles to combine 
different deep learning models and achieved accuracies of 98.8% and 91.73% for binary and multiclass classification, 
respectively

Ozdemir et al. [45] They extracted features from ECG images using GLCM and trained a CNN architecture to perform binary classification 
in two scenarios. Their model was more successful in the first scenario than in the second, with accuracy of 96%

Attia et al. [6] Their model was trained with a large database, composed of 48,186 ECGs from 12 different countries, and achieved 
98% of sensitivity, 10% of specificity, and AUC around 77%

Our approach We investigated how COVID-19 affects cardiac functions using a hybrid deep transfer learning architecture to assess 
ECG data. We considered two scenarios: 3-classes and 5-classes. We also optimized our model with feature selection 
to reduce computational cost. Our best approach was the 5-class classification. In this scenario, the proposed method 
achieved 94% of accuracy, with kappa of 0.91, and 100% of sensitivity, specificity, and AUC 
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Fig. 1  Proposed method: The main idea is to propose a model of sup-
port system for the diagnosis of COVID-19 based on electrocardiog-
raphy and machine learning signals. The symptomatic patient must 
go to a health center, where an ECG test should be ordered. In the 
following, the physician will be able to photograph the resulting ECG 
signals with the cell phone. A mobile application will be able to ana-
lyze the signals with machine learning. The results we present herein 
this work are related to this backend application. First, the applica-

tion will pre-process the image, standardizing its background. Then, 
two trained classifiers will extract attributes and classify the images 
in two ways: 3 classes (COVID-19, healthy, and other heart diseases) 
and in 5 classes (COVID-19, healthy, myocardial infarction, history 
of MI, and abnormal heartbeat). Both reports will be available to 
assist the medical team in deciding the appropriate clinical manage-
ment for the patient
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institutes. Since the ECG trace images were taken at differ-
ent times and places, we noticed a small variability in their 
background color. Thus, we convert the images to gray-
scale in order to minimize these differences (see Fig. 3). 
This step was called background standardization. Figure 4 
shows samples of images from each class in the database.

2.3  Metrics

To evaluate objectively the classification results, we used 
the following methods: the κ index, the overall accuracy, 
the confusion matrix, the sensitity, the specificity, and the 
AUC. The confusion matrix for a universe of classes of inter-
est Ω = {C1,C2,…,Cm} is a m × m matrix T = [ti,j]m × m where 
each element ti,j represents the number of objects belonging 
to class Cj but classified as Ci [16–20, 29, 41].

The overall accuracy is the probability that the experiment 
will provide correct results, that is, to correct classify ECG 
images as COVID-19, normal or abnormal heartbeat, myocardial 
infarction, and history of MI. In other words, it is the probability 
of the true positives (TP) and true negatives (TN) among all the 
results. The sensitivity metric indicates the rate of true positive, 
while specificity is the rate of true negatives. AUC stands for 
“Area under the ROC curve.” The ROC curve, in turn, is a graph 
showing the true positive rate vs false positive rate. Finally, the 
kappa index is a statistical correlation rate [29]. Thereby, accu-
racy, sensitivity, specificity, and kappa index metrics can be cal-
culated according to the Eqs. 1, 2, 3, and 4 respectively.

where

ρv is the accuracy, and ti,j is the element of the confusion 
matrix in position (i,j), i.e., the number of instances in 
the training set belonging to the i-th class but classified as 
belonging to the j-th class by the machine learning model 
under evaluation, for 1 ≤ i,j ≤ m.

(1)Accuracy = �v =
TP + TN

TP + TN + FP + FN
,

(2)Sensitivity =
TP

TP + FN
,

(3)Specif icity =
TN

TN + FP
,

(4)� =
�v − �z

1 − �z

,

(5)�z =

∑m

i=1

�

∑m

j=1
ti,j

��

∑m

j=1
tj,i

�

�

∑m

i=1

∑m

j=1
ti,j

�2
.

3  Results

3.1  Approach A: without feature selection

3.1.1  The 3‑class problem

Table 2 shows the results of mean and standard deviation for 
all studied deep architectures and classifiers. The average 
results obtained refer to the 30 runs made with each con-
figuration using tenfold cross validation. The table presents 
the three best classifiers in blue, one from each pre-trained 
architecture. Moreover, the boxplots of Fig. 5 compare, in 
terms of kappa statistic, the performance of Random Forests 
with different number of trees using VGG16 architecture for 
feature extraction.

Numerical results are shown according to the follow-
ing standardization: we adopted the standard precision of 
two decimal places for values obtained in a single round; 
additionally, we adopted a precision of four decimal places 
for experiments obtained with multiple repetitions, such as 
cross-validation experiments, since the standard deviation 
obtained was very low and it was only possible to perceive 
it with four decimal places.

Finally, after analyzing the different classification results, 
the best configuration (VGG16 for feature extraction and 
Random Forest with 70 trees) was applied to the validation 
set, which contains 25% of the data from the original data-
base. These results are presented in Fig. 6 below.

3.1.2  The 5‑class problem

Table 3 shows the results of mean and standard deviation 
in the classification of ECG images, considering the sce-
nario with 5 classes. In addition, Fig. 7 shows the training 
performance achieved by all Random Forest settings using 
VGG16 architecture for feature extraction. Ultimately, the 
validation results are presented in Fig. 8 below.

3.2  Approach B: with feature selection

3.2.1  The 3‑class problem

Table 4 shows the average results obtained in the classifica-
tion of 3 classes, using the attributes selected with PSO. 
The number of features for LeNet, ResNet, and VGG16 was 
reduced from 500, 2048, and 4096 to 112, 356, and 805, 
respectively. In addition, the boxplots of Fig. 9 compare 
the performance of Random Forests with different number 
of trees. In this case, feature extraction was performed by 
VGG16, the pre-trained architecture with superior results. 
However, the difference between the classifiers only becomes 
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clearer when we look at the average values in the Table 4. 
Figure 10 presents validation results for classification with 
approach B considering the 3 classes scenario.

3.2.2  The 5‑class problem

Table 5 shows the results from experiments with selected 
attributes and considering 5 classes. Figure 11 also shows 
the boxplots with all ten configurations of Random Forests 
after feature extraction with VGG16. Through the graph, we 
can see a slight increase in the kappa index as the number of 
trees used also increases.

In conclusion, Fig. 12 presents validation performance 
using Random Forest with 100 trees after feature extraction 
with VGG16. This validation step was performed with 25% 
of the original dataset.

4  Discussion

Table 2 presents the results of the investigation of the best 
hybrid architecture, that is, a deep neural network pre-
trained in feature extraction and Random Forest classifier 
in the decision-making stage, for classification with three 
classes in approach A. For this investigation, the balanced 
training and test set version with the SMOTE oversam-
pling technique is considered. Results are presented as 
mean and standard deviation of accuracy, kappa index, 
sensitivity, specificity, and area under the ROC curve 
(AUC). The results show that, for feature extraction with 
LeNet and ResNet networks, the best classification model 
was the Random Forest with 100 trees: average accuracy 
of 81.53%, average kappa of 0.7229, and sensitivity, speci-
ficity, and AUC greater than 0.98 for LeNet; and mean 
accuracy of 85.10%, mean kappa of 0.7764, and sensitiv-
ity, specificity, and AUC greater than 0.99 for ResNet. All 
these results were obtained with low standard deviations, 
which shows considerable stability of performance: 2.29% 
for accuracy, 0.0344 for kappa, 0.0139 for sensitivity, 
0.0041 for specificity, and 0.0003 for AUC, for the LeNet 

network; and 2.46 for accuracy, 0.0369 for kappa, 0.0127 
for sensitivity, 0.0042 for specificity, and 0.0001 for AUC, 
for the ResNet network.

However, despite the good performance of these two 
hybrid architectures, the best performance for approach A 
with three classes was obtained with the VGG16 deep net-
work and a 70-tree Random Forest. For this architecture, 
a mean accuracy of 87.20%, mean kappa of 0.8080, and 
mean sensitivity, specificity, and AUC equal to or greater 
than 0.98 were obtained. The standard deviations obtained 
were also considerably low, comparable to those obtained 
with the best models based on ResNet and LeNet: 2.23 for 
accuracy, 0.0334 for kappa, 0.0155 for sensitivity, 0.0013 
for specificity, and 0.0001 for AUC. The boxplots in Fig. 5 
illustrate the behavior of hybrid architectures with VGG16 
and Random Forest, showing that, in Random Forest con-
figurations with 20 to 100 trees, the performance in terms 
of kappa statistics is statistically similar, but that the 
model with 70 trees presents greater stability of perfor-
mance due to its smaller sample variance. Despite this, it 
is interesting to consider the use of fewer trees in practical 
applications, as in the application proposed in Fig. 1. In 
this case, the negligible loss of classification performance 
can be offset by the lower computational cost.

Figure 6 shows the confusion matrix obtained for the 
validation set, for the 3-class problem, approach A. The 
results for this one-shot learning approach are consider-
ably good: accuracy of 96.67%, kappa of 0.94, sensitivity 
and specificity of 0.97, and AUC of 0.99. The confusion 
matrix shows that there is no confusion between COVID-
19 and other cardiac pathologies or healthy cases. How-
ever, there is a not negligible confusion between other 
pathologies and healthy cases. In this case, 194 images 
were classified properly, while 11 images were classified 
as normal/healthy.

Table 3 presents the results of the investigation of the best 
hybrid architecture for the classification with five classes, 
approach A. Here, the balanced training and test set ver-
sion with the SMOTE oversampling technique is consid-
ered. Results are presented as mean and standard deviation 
of accuracy, kappa index, sensitivity, specificity, and AUC. 
The results show that, for the three deep networks, the best 
classification model was the Random Forest with 100 trees, 
as highlighted in orange in the table: average accuracy of 
89.37%, average kappa of 0.8671, and sensitivity, specific-
ity, and AUC greater than 0.99 for LeNet; mean accuracy of 
91.03%, mean kappa of 0.8879, and sensitivity, specificity, 
and AUC greater than 0.99 for ResNet; and mean accuracy 
of 91.36%, mean kappa of 0.8920, and sensitivity, specific-
ity, and AUC equal to or greater than 0.99 for VGG16. All 
these results were obtained with low standard deviations, 
therefore with high stability of performance: 1.62% for accu-
racy, 0.0203 for kappa, 0.0117 for sensitivity, 0.0023 for 

Fig. 2  Description of the training of the two proposed classifiers: 
First, the database was pre-processed in order to standardize the back-
ground of the images. Next, we did an attribute extraction by testing 
three different deep architectures: LeNet, ResNet, and VGG16. The 
networks resulted in 501, 2049, and 4096 attributes, respectively. The 
third step consisted of applying two approaches: approach A, where 
no attribute selection was applied, and approach B, where Particle 
Swarm Optimization was used for feature selection. Then, 75% of the 
data were used for training and testing with tenfold cross-validation. 
For this, the SMOTE method was used to balance classes and dif-
ferent Random Forests were tested for classification. Finally, 25% of 
the data were used to validate the classifiers. This methodology was 
applied to both classifications with 3 and 5 classes

◂
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specificity, and approximately 0 (zero) for AUC, for LeNet, 
ResNet network achieved similar results; and 1.58% for 
accuracy, 0.0197 for kappa, 0.0167 for sensitivity, 0.0009 
for specificity, and practically 0 (zero) for AUC, when using 
VGG16 network.

The boxplots in Fig. 7 present the behavior of hybrid archi-
tectures with VGG16 and Random Forest, illustrating that, 
in Random Forest configurations with 30 to 100 trees, the 
performance in terms of kappa statistics is statistically simi-
lar. Despite the average results, we chose the Random For-
est model with 90 trees to perform validation because it has 
exactly the same performance as the 100-tree model, but with 
fewer trees, which makes it computationally less expensive.

Figure 8 shows the confusion matrix obtained for the vali-
dation set, for the 5-class problem, approach A. The results 
for this one-shot learning approach are considerably good 

and superior to the average results obtained in the train-
ing process in terms of accuracy and kappa index: accuracy 
of 94.38%, kappa of 0.92, sensitivity of 0.94, specificity of 
0.97, and AUC of 0.99. Furthermore, the confusion matrix 
shows that COVID-19 class could be clearly distinguished 
from the others, with all images being correctly classified. 
In contrast, AHB and MI classes had more confusion in clas-
sification, with 8 misclassifications in both cases. It is also 
interesting to note that the biggest confusions are usually 
with the “normal” class.

Table  4 presents the results of the investigation of 
the best hybrid architecture for classification with three 
classes, approach B. In this approach, the PSO algorithm 
was used with a decision tree as an objective function. For 
the LeNet neural network, the number of attributes was 
reduced from 500 to 112; for ResNet, from 2048 to 356; 

Fig. 3  Samples of original images and their respective preprocessed images

Fig. 4  Image samples from the dataset
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for VGG16, from 4096 to 805 attributes. Here, the bal-
anced training and test set version with the SMOTE over-
sampling technique was considered. Results are presented 
as mean and standard deviation of accuracy, kappa index, 
sensitivity, specificity, and AUC. The results show that, 
for the LeNet and ResNet deep networks, the best clas-
sification model was the Random Forest with 100 trees: 
average accuracy of 81.04%, average kappa of 0.7155, and 
sensitivity, specificity, and AUC equal to or greater than 
0.98 for LeNet; and mean accuracy of 85.22%, mean kappa 
of 0.7782, and sensitivity, specificity, and AUC equal to 
or greater than 0.98 for ResNet. The performance of the 
two models was quite stable, with standard deviations of 
2.40% for accuracy, 0.0360 for kappa, 0.0180 for sensitiv-
ity, 0.0052 for specificity, and 0.0016 for AUC, for LeNet; 
and 2.20% for accuracy, 0.0330 for kappa, 0.0145 for sen-
sitivity, 0.0050 for specificity, and 0.0003 for AUC, for 
ResNet.

Nevertheless, the best performing model was the VGG16 
with Random Forest of 60 trees, having achieved an average 
accuracy of 87.06%, average kappa of 0.8059, and sensi-
tivity, specificity, and AUC equal to or greater than 0.99 
for VGG16. The sample standard deviations were low, so 
the classification performance was highly stable: 2.38% for 
accuracy, 0.0357 for kappa, 0.0162 for sensitivity, 0.0010 
for specificity, and 0.0001 for AUC, for the VGG16 network. 
The boxplots in Fig. 9 show that, for hybrid architectures 
with VGG16 and Random Forest, showing that, in Random 
Forest configurations with 30 to 100 trees, the performance 

in terms of the kappa statistic is statistically similar. So, 
we kept choosing the model with 60 trees. It is interesting 
to note that the results were close to those obtained previ-
ously with all attributes, with slightly lower averages, but 
with overlapping intervals. Thus, it is possible to use a sig-
nificantly smaller number of attributes and maintain a good 
classification performance.

Figure 10 shows the confusion matrix obtained for the 
validation set, for the 3-class problem, approach B. The 
results for this one-shot learning approach show a high 
performance of model generalization: accuracy of 96.26%, 
kappa of 0.94, and sensitivity, specificity, and AUC of 1.00. 
The confusion matrix shows that there is no confusion 
between COVID-19 and other cardiac pathologies or healthy 
cases, but there is a non-negligible confusion between the 
other pathologies and healthy cases, as the “normal” class 
was classified 6 times as “other.”

Table 5 presents the results of the investigation of the best 
hybrid architecture for the classification with five classes, 
approach B. In this approach, the PSO algorithm was used 
with a decision tree as an objective function. For the LeNet 
neural network, the number of attributes has been reduced 
from 500 to 134; for ResNet, from 2048 to 438; for VGG16, 
from 4096 to 773 attributes. Here, the balanced training 
and test set version with the SMOTE oversampling tech-
nique was considered. The results show that, for the three 
deep neural networks, the best classification model was the 
Random Forest with 100 trees: mean accuracy of 88.23%, 
mean kappa of 0.8529, and sensitivity, specificity, and AUC 

Fig. 5  Training performance 
for the 3-class problem using 
the entire set of features. Each 
box shows the kappa statis-
tics achieved by the different 
Random Forest settings using 
VGG16 architecture for feature 
extraction

Fig. 6  Validation performance 
for the 3-class problem using 
approach A
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1 3

equal to or greater than 0.99 for LeNet; mean accuracy of 
90.50%, mean kappa of 0.8812, and sensitivity, specificity, 
and AUC equal to or greater than 0.99 for ResNet; and mean 
accuracy of 91.13%, mean kappa of 0.8891, and sensitiv-
ity, specificity, and AUC equal to or greater than 0.99 for 
VGG16. The performance of the three models was quite sta-
ble, with standard deviations of 1.80% for accuracy, 0.0225 
for kappa, 0.0136 for sensitivity, 0.0026 for specificity, and 
0.0002 for AUC, for LeNet; 1.56% for accuracy, 0.0195 for 
kappa, 0.0079 for sensitivity, 0.0024 for specificity, and 
practically 0 (zero) for AUC, for ResNet; and 1.51% for 
accuracy, 0.0189 for kappa, 0.0137 for sensitivity, 0.0010 
for specificity, and practically 0 (zero) for AUC, for VGG16. 
The boxplots in Fig. 11 show that, for hybrid architectures 
with VGG16 and Random Forest, in Random Forest con-
figurations with 30 to 100 trees, the performance in terms 
of kappa index is similar. So, we kept choosing the model 
with 100 trees.

Figure 12 shows the confusion matrix obtained for the 
validation set, for the 5-class problem, approach B. The 
results for this one-shot learning approach show a high 
performance of model generalization: accuracy of 93.54%, 
kappa of 0.91, and sensitivity, specificity, and AUC of 1. The 
confusion matrix shows that there is no confusion between 
COVID-19 and other cardiac pathologies or healthy cases. 
The confusion between cardiac pathologies and healthy 
cases decreased with the discrimination of pathologies. Only 
a non-negligible confusion between AHB and healthy cases 
remained. This shows that abnormal heartbeats, although 

highly differentiable in the ECG trace of normal cases, can 
still maintain some confusion, albeit small.

The 3-class classification scenario models the 
COVID-19 screening step: ECG signals represented as 
images are classified as healthy (normal), COVID-19, 
or other heart disease. The results considering all the 
characteristics (VGG16 with Random Forest of 70 trees, 
approach A, cf. Figure 6) show that this approach is quite 
effective to integrate a tracking tool, as it was able to 
obtain an accuracy of 97%, a sensitivity of 97%, a speci-
ficity of 97%, and an area under the ROC curve of 99%. 
Looking at the confusion matrix, it is clear that the signs 
of COVID-19 are not confused with either the signs of 
healthy individuals or the signs of individuals with heart 
disease. However, there is a slight confusion between 
electrocardiographic signals from healthy individuals 
and individuals with heart disease: 5 healthy individuals 
were classified as having heart disease, while 11 patients 
with heart disease were classified as healthy. The results 
considering only the most relevant characteristics, 
pointed out by the PSO (VGG16 with Random Forest of 
60 trees, approach B, cf. Figure 10), are slightly higher 
in terms of sensitivity and specificity: the model was 
able to obtain an accuracy of 96%, a sensitivity of 100%, 
a specificity of 100%, and an area under the ROC curve 
of 100%. Considering the confusion matrix, the behavior 
was similar: the signs of COVID-19 are not confused 
with either healthy individuals or individuals with heart 
disease. The slight confusion between signals from 

Fig. 7  Training performance 
for the 5-class problem using 
the entire set of features. Each 
box shows the kappa statis-
tics achieved by the different 
Random Forest settings using 
VGG16 architecture for feature 
extraction

Fig. 8  Validation performance 
for the 5-class problem using 
approach A
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healthy individuals and from individuals with heart dis-
ease remains: 6 normal subjects were classified as heart 
disease, while 12 heart disease patients were classified 
as healthy. These results show that the models for clas-
sification of 3 classes, both of approach A and approach 
B, are useful for the screening of COVID-19 from the 
cardiac activity expressed in the electrocardiography 
tracing. The approach B model, however, is more rec-
ommended, as it considers fewer features (805 selected 
features against the original 4096 features), requiring 
less computational effort, which makes it more suitable 
for composing web services to support the screening of 
COVID-19.

The classification scenario with 5 classes models the 
support for the clinical diagnosis of COVID-19 and heart 
diseases from the ECG analysis. One of the most impor-
tant motivations for this scenario is the need to differenti-
ate the changes in cardiac function caused by the moderate 
and severe forms of COVID-19, often confused in clinical 
practice with opportunistic myocarditis, from those caused 
by cardiopathic conditions, such as abnormal heart beat, 
myocardial infarction, myocardium, and history of myocar-
dial infarction [28, 43]. The results for the best model of 
approach A (VGG16 with Random Forest of 90 trees, cf. 
Figure 8) were quite reasonable: 94% accuracy, 94% sen-
sitivity, 97% specificity, and 99% of AUC. Considering the 
confusion matrix, it can be noted that there is no confusion 
between the ECG signals of patients with COVID-19 and 
healthy and heart disease patients. There is, however, a little 

confusion between patients with a history of myocardial 
infarction and healthy patients (3 subjects); between patients 
with abnormal heartbeats, myocardial infarction (1 patient), 
and healthy individuals (7 individuals); between myocardial 
infarction, abnormal beats (1 subject), and healthy subjects 
(7 subjects); and among healthy subjects, patients with a his-
tory of myocardial infarction (2 patients) and patients with 
abnormal beats (5 patients). The best model of approach B 
(VGG16 with Random Forest with 100 trees, cf. Figure 12) 
had slightly better results: accuracy of 94%, sensitivity, 
specificity, and AUC of 100%. The confusion matrix shows 
small confusions similar to those obtained by the best model 
of approach A, with the advantage of using only 774 fea-
tures of the 4096 original features. These results show that 
the changes in cardiac function caused by the moderate and 
severe forms of COVID-19 are considerably different from 
those caused by the cardiopathies under study.

5  Conclusion

This research aimed to investigate the inf luence of 
COVID-19 on cardiac function expressed through elec-
trocardiography signals, from a machine learning point 
of view. To this, we considered a public database of 
printed ECG photographic images, obtained from records 
in the context of emergency care. We found that COVID-
19 may affect the cardiovascular system and makes some 

Fig. 9  Training performance for 
the 3-class problem using the 
features selected by PSO. Each 
box show the kappa statis-
tics achieved by the different 
Random Forest settings using 
VGG16 architecture for feature 
extraction

Fig. 10  Validation performance 
for the 3-class problem using 
approach B
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pattern changes in ECG trace that could be identified 
by machine learning algorithms. This study provides 
a satisfactory method using hybrid architectures com-
posed of deep neural networks pre-trained in extracting 
features from ECG and Random Forests images in the 
output layer, for classification of the ECG tracing in 
two approaches: COVID-19 against cardiopathies and 
signals from healthy individuals, i.e., a 3class problem; 
and COVID-19 against abnormal heartbeat, myocardial 
infarction, history of myocardial infarction, and healthy 
heartbeat, i.e., a 5 class problem.

On choosing the best classifier architecture: in most 
cases, the classification with Random Forest with 100 
trees presents a higher average result in the training and 
test set. However, considering the standard deviation, 
the results of the various classifiers investigated over-
lap. Therefore, for practical applications, it is interest-
ing to consider an approach with fewer trees as a choice 
criterion, reducing the computational cost and memory 
occupied in the application, as we did in this work.

Considering the feature selection step: for all configu-
rations of extracted attributes, the selection of features 
with PSO selected less than half of the original attributes, 
while the results for the training and testing and valida-
tion steps remained equivalent, with good averages and 
low variances.

Taking into account the difference between approaches 
with and without feature selection, i.e., approaches B and 
A, respectively: the performances were very similar and 

can be considered statistically equivalent, even with a 
significant reduction in the number of attributes, which 
shows that the selection of attributes was an important 
approach to reduce the computational complexity without 
significant loss of ranking performance. This is impor-
tant for the implementation of the solution, especially 
if a client–server architecture is chosen, because if the 
server-side solution has little processing and memory 
requirement, there will be more availability of the service 
to support the diagnosis of COVID-19 and heart diseases 
by electrocardiography imaging.

In both approaches (A and B), both with 3 (screening 
support) and 5 (clinical diagnosis support) classes, there 
was no confusion in the classification of the COVID-19 
class. When looking at the confusion matrices, all COVID-
19 images were classified as COVID-19. However, the 
experimental results showed that the 5-class approach 
was able to achieve better classification performance than 
the 3-class approach. Our hypothesis is that, in the prob-
lem with 3 classes, the grouping of pathologies other than 
COVID-19 contributed to the worsening of the classifica-
tion, due to the fact that these pathologies, i.e., abnormal 
heartbeat (AHB), myocardial infarction (MI), and history 
of MI, are quite different from each other from a physi-
ological point of view and, therefore, in the ECG trace.

Finally, this work showed that the influence of COVID-
19 on cardiac function expressed in the electrocardio-
graphic signal is quite considerable and distinct from 
changes in cardiac function caused by other heart diseases: 

Fig. 11  Training performance 
for the 5-class problem using 
the features selected by PSO. 
Each box shows the kappa sta-
tistics achieved by the different 
Random Forest settings using 
VGG16 architecture for feature 
extraction

Fig. 12  Validation performance 
for the 5-class problem using 
approach B

1078 Medical & Biological Engineering & Computing (2023) 61:1057–1081
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the detection of the COVID-19 class in a classification 
problem with deep learning showed no confusion with 
any heart disease, nor with signs of healthy individuals. 
Thus, this research showed that the scenarios of cardio-
myopathy and thromboembolism caused by COVID-19 
present distinct changes in cardiac function, expressed in 
electrocardiography. However, the database used in this 
research does not present information regarding the days 
after infection by COVID-19. It is only reported that ECG 
signals are captured from patients with moderate or severe 
COVID-19, admitted to a semi-intensive or intensive care 
unit. This research also showed that it is possible to build 
a solution to support both the screening and the clinical 
diagnosis of COVID-19 in the context of emergency care 
from a non-invasive and technologically scalable solution, 
based on machine learning. This solution allows both the 
support of screening and clinical diagnosis and the evalu-
ation of the treatment of patients with COVID-19 or with 
different heart diseases, not requiring in-depth knowledge 
of the interpretation of the ECG regarding the changes in 
cardiac function caused by COVID-19.
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