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Automated analysis of finger blood pressure recordings provides 
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Abstract
Sympathovagal balance is important in the pathogenesis of hypertension and independently associated with mortality. We evaluated 
the value of automated analysis of cross-correlation baroreflex sensitivity (xBRS) and heart rate variability (HRV) and its relation-
ship with clinical covariates in 13,326 participants from the multi-ethnic HELIUS study. Finger blood pressure (BP) was continu-
ously recorded, from which xBRS, standard deviation of normal-to-normal intervals (SDNN), and squared root of mean squared 
successive difference between normal-to-normal intervals (RMSDD) were determined. A subset of 3356 recordings > 300 s was 
used to derive the minimally required duration by comparing shortened to complete recordings, defined as intraclass correlation 
(ICC) > 0.90. For xBRS and SDNN, 120 s and 180 s were required (ICC 0.93); for RMSDD, 60 s (ICC 0.94) was sufficient. We 
included 10,252 participants (median age 46 years, 54% women) with a recording > 180 s for the regression. xBRS, SDNN, and 
RMSDD decreased linearly up to 50 years of age. For xBRS, there was a signification interaction with sex, with for every 10 years 
a decrease of 4.3 ms/mmHg (95%CI 4.0–4.6) for men and 5.9 ms/mmHg (95%CI 5.6–6.1) for women. Using splines, we observed 
sex-dependent nonlinearities in the relation with BP, waist-to-hip-ratio, and body mass index. Future studies can help unravel the 
dynamics of these relations and assess their predictive value.
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1 Introduction

Sympathetic and parasympathetic autonomic control, or 
sympathovagal balance, is important in the pathogenesis 
of hypertension and cardiovascular disease (CVD). Sym-
pathovagal balance can be quantified by measurement 
of the cross-correlation baroreflex sensitivity (xBRS) 

and heart rate variability (HRV). Alterations in HRV 
and xBRS towards more sympathetic and less parasym-
pathetic control are predictive of future cardiovascular 
events in subjects with and without established CVD 
[1]. The baroreflex is directly involved in the regulation 
of blood pressure, and changes can precede the devel-
opment of hypertension and its complications [2, 3]. 
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Additionally, increased sympathetic activity has been 
associated with other disease states leading to cardiovas-
cular morbidity, including metabolic syndrome, obesity, 
and low-grade inflammation [4, 5].

Automatic analysis of these parameters using con-
tinuous non-invasive blood pressure recordings enables 
assessment of the sympathovagal balance in large-scale 
cohort studies and may provide additional insight in 
disease pathogenesis, treatment, and outcome predic-
tion. The gold standard for the assessment of BRS is by 
measuring the heart rate response to pharmacologically 
induced blood pressure alterations. We have recently 
shown that it corresponds well to the cross-correlation 
BRS determined by cross-correlation of spontaneous var-
iations in BP to changes in heart rate [6]. However, the 
performance of current algorithms to determine HRV and 
(x)BRS from continuous finger BP recordings at large 
scale remains to be determined. In this study, we devel-
oped a method to automatically process continuous BP 
tracings to allow for an integrated assessment of xBRS 
and short-term HRV and tested its accuracy in a large 
population-based study.  Thereafter, we applied our auto-
mated analysis of xBRS and HRV to the complete dataset 
and assessed its relation with age, sex, blood pressure, 
and body composition.

2  Methods

2.1  Study design and measurements

For the present analysis, we used baseline data from the 
ongoing multi-ethnic HEalthy LIfe in an Urban Setting 
(HELIUS) prospective cohort  study, which has been 
described in detail elsewhere [7]. In brief, 24,789 par-
ticipants aged between 18 and 70 were included between 
2011 and 2015. They were invited after random sampling 
stratified by ethnicity (Dutch, South-Asian Surinamese, 
African Surinamese, Ghanaian, Turkish, Moroccan origin) 
from the municipality register of the city of Amsterdam. 
All participants provided written informed consent and the 
study was approved by the medical research ethics com-
mittee of the Amsterdam UMC, location AMC, and fol-
lowed the principles of the Declaration of Helsinki. The 
HELIUS data are owned by the Amsterdam UMC, location 
AMC, in Amsterdam, the Netherlands. Any researcher can 
request the data by submitting a proposal as outlined at 
http:// www. heliu sstudy. nl.

Because of logistical reasons, non-invasive continu-
ous blood pressure recordings were performed in a subset 
including 13,326 participants. Five-minute recordings were 
taken in a supine position after at least 10 min of rest using 

the Nexfin device (Edwards Lifesciences, Irvine, CA). Study 
visits were conducted in the morning after an overnight fast 
and participants were asked to refrain from smoking prior to 
the visit. Office BP was determined by taking the average of 
two seated measurements performed using a validated semi-
automatic oscillometric device (Microlife WatchBP Home; 
Microlife AG, Switzerland). Hypertension was defined 
according to current guidelines as either an elevated systolic 
(> 140 mmHg) or diastolic (> 90 mmHg) blood pressure or 
the self-reported use of blood pressure-lowering medication 
[8]. Diabetes was defined based on fasting plasma glucose 
levels (> 7.0 mmol/L) or the use of glucose-lowering medi-
cation. Anthropometric measurements, consisting of weight, 
height, waist circumference at the level midway between the 
lower rib margin and the iliac crest, and hip circumference at 
the widest point over the trochanter major were performed 
twice. Using the average, body mass index (BMI) and waist-
hip ratio (WHR) were calculated. History of cardiovascular 
events was defined based on self-reported stroke, myocar-
dial infarction, and coronary or peripheral revascularization. 
In all participants, an electrocardiogram (ECG) was per-
formed using a MAC 1600 System (GE Healthcare) of 10 s 
to identify the basic heart rhythm. All ECGs were analyzed 
using the Modular ECG analysis system program, which was 
manually verified by a cardiologist as previously published 
[9]. For the present analysis, participants not in sinus rhythm 
were excluded.

2.2  Analysis of sympathovagal balance

For each participant, raw beat-to-beat data consisting of SBP 
values and inter-beat intervals (IBI) derived from the finger 
arterial blood pressure measurement were exported from 
the Nexfin device. These data were further analyzed using a 
custom-written script in Matlab (R2019a; The MathWorks, 
Inc.); an overview of the algorithm is given in supplemen-
tary Fig. 1. First, to account for measurement artifacts and 
ectopic beats, the dataset was filtered using a local mov-
ing median filter. Subsequently, the complete IBI data set 
was filtered by replacing each point with local median of 
the surrounding 9 beats, and the average IBI of this filtered 
set was determined. Then, each beat which was not within 
local median ± 25% of the mean IBI of the filtered set was 
excluded from the original IBI set to derive a normal-to-
normal interval set. If there were > 20% removed beats, the 
recording was excluded. Also, if no segment of at least 30 
beats without automated internal calibration (Physiocal) 
was available, the individual record was excluded because 
of insufficient quality according to the manufacturer’s guide-
lines [10]. During these calibration intervals, heart rate 
data was still available; for xBRS, data was interpolated as 
described below. From the filtered IBI set, the standard devi-
ation of normal-to-normal intervals (SDNN) and the square 
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root of the mean squared successive differences between 
adjacent normal-to-normal intervals (RMSDD) were deter-
mined to quantify HRV, following current standards [11]. 
The xBRS was determined by using the cross-correlation 
method as previously described [12]. To calculate xBRS, the 
filtered IBI and SBP dataset were interpolated at 1 Hz using 
piecewise cubic hermite polynomials (PCHIP). Using a slid-
ing window, for each consecutive sample in the interpolated 
set, a 10-s long interval of IBI was created. Each 10-s inter-
val of IBI was cross-correlated with a 10-s interval of SBP 
measurements, with a time shift varying between 0 and 5 s, 
where SBP precedes IBI. The time delay with maximum 
correlation was chosen, and the xBRS for this segment was 
determined by dividing the standard deviation (SD) of the 
IBI by the SD of the SBP for that segment. Then, the xBRS 
of the complete recording was calculated as the geometric 
mean of all segments with significant positive correlation 
(p < 0.05). The Matlab script used for the calculation of the 
parameters is made available in the online data supplement.

2.3  Statistical analysis

We first performed an analysis of the subset of the partici-
pants with optimal recordings, based on a minimal length 
of 300 s after the attainment of a stable signal defined as 
an interval of at least 30 beats without automatic internal 
calibration and a maximum of 20% excluded beats. For this 
subset, HRV and xBRS were calculated using progressive 
shortened recordings starting from both the start and the end 
of the original recording. Time periods of 30 s, 60 s, 120 s, 
180 s, 240 s, and 300 s were chosen to assess the minimally 
required duration by comparing the measurements with the 
complete recording using Bland–Altman analysis and ICC 
coefficients [13]. We considered an ICC > 0.90 to be indica-
tive of an acceptable correlation [14, 15]. Recordings with 
a length of 180 s shortened from the beginning and from 
the back were compared using a paired t-test to assess sys-
tematic differences resulting from prolonged resting meas-
urements. In addition, we analyzed a random subset of 100 
records manually, where we selected an optimal segment 
between 180 and 300 s and visually inspected the record-
ing for noise and other outliers. These were compared to 
the complete, automatically analyzed recording to verify the 
automatic analysis. Based on these findings, we used all the 
subset of recordings of sufficient length and quality for the 
second part of the analysis. Baseline characteristics of the 
subset with optimal recordings, recordings of sufficient qual-
ity, and recording of insufficient quality were subsequently 
compared to explore differences between groups (Table 1). 
In the complete set with recordings of sufficient quality, we 
then performed linear regression analyses using restricted 
cubic splines to examine associations of xBRS and HRV 

with age, SBP, BMI, and WHR. Given the earlier observed 
sex differences in autonomic function, we tested whether the 
relation was different between men and women by adding an 
interaction term for sex to each model [16]. For SBP, WHR, 
and BMI, we included a linear term for age in the model and 
depicted the results with respect to a mean age of 45 years. 
The outcome variables were winsorized by replacing outliers 
below and above to the 1st and 99th percentile with the 1st 
and 99th percentile, and the values of the xBRS were log-
transformed prior to analysis. All statistical analyses were 
performed using R version 3.6.1. A p-value < 0.05 was con-
sidered to indicate statistical significance.

3  Results

We automatically analyzed the recordings of a total of 
13,326 participants. There were 3356 recordings of optimal 
quality with a minimal length of 300 s. The median record-
ing length in this subset was 339 s (range 300–657 s). Using 
the complete recording, we found a geometric mean xBRS 
of 11.6 ms/mmHg (geometric SD 1.8), a mean SDNN of 
52.4 ms (SD 23.6), and a mean RMSDD 46.9 ms (SD 28.2). 
Analysis of the shortened recordings showed that for xBRS 
and SDNN, there was a poor agreement between records 
with a length between 30 and 60 s and the complete record-
ing, with ICCs ranging between 0.69 and 0.83. For RMSDD, 
adequate agreement was already reached after 60 s, with an 
ICC of 0.94 and difference between − 17.8 and 23.2 ms in 
the Bland–Altman plot. For xBRS and SDNN, a minimum 
duration of respectively 120 s and 180 s was required, to 
reach an ICC > 0.90 (ICC 0.93 for both xBRS and SDNN, 
supplemental Fig. 2). RMSDD was lower when starting at 
the end of the recording compared with starting at the begin-
ning with a mean RMSDD of 47.9 ms compared to 45.3 ms 
(p < 0.001) for a 180-s recording (Table 2). A similar, but 
less pronounced difference was observed for SDNN (51.6 ms 
vs 49.5 ms; p < 0.001) that coincided with an elevated heart 
rate (63.5 vs 63.8 beats per minute; p < 0.001). For xBRS, 
no systematic difference was observed (p = 0.675). In the 
subset of 100 recordings that were analyzed by hand, we 
found overall good agreement between the manually selected 
segments and the complete recording for xBRS (ICC 0.99), 
SDNN (ICC 0.90), and RMSDD (ICC 1.00); see supple-
mental Table 1.

3.1  Regression analysis

We included 10,252 (77%) with a minimal recording duration 
of 180 s, for the regression analysis. A total of 2577 recordings 
were excluded because the physical calibration criterion was 
not met, 82 because the recording was shorter than 180 s, and 
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336 recordings were excluded because ECG data were lack-
ing or did not show sinus rhythm, while 79 recordings were 
excluded because more than 20% of the beats were removed 
as a result of excessive variations in the local median IBI (sup-
plementary Fig. 3). In this subset, the median age was 46 years 
(range 18–73), 54% were women, 33.8% had a history of hyper-
tension, and 14.8% had a CVD history. There were no impor-
tant differences between the complete cohort and the subset of 
optimal quality. The distribution of the ethnicities and the use 
of blood pressure-lowering medication was similar between this 
final set used for the regression analysis, the subset of optimal 
quality, and the complete cohort (Table 1). Between ages 18 and 
50 years, there was a negative linear association between xBRS, 
SDNN, and RMSDD and age in both men and women (p < 0.001 
for all parameters). For xBRS, there was a significant interac-
tion (p < 0.001) between sex and age, with a decrease of 4.3 
(95%CI 4.0–4.6) ms/mmHg for men and 5.9 (95%CI 5.6–6.1) 
ms/mmHg for women. For SDNN and RMSDD, we did not find 
an interaction with sex (p = 0.25 and p = 0.24), with a decrease 
of 10.2 (95%CI 9.6–10.8) ms and 13.4 (95%CI 12.7–14.1) ms 
respectively for every 10 years in both sexes. Above the age of 
50, values stabilized to a mean xBRS of 8.8 ms/mmHg, mean 
SDNN of 45.1 ms, and RMSDD of 36.7 ms for men and women 
(Fig. 1).

In the regression analyses, we found that increases in SBP, 
BMI, and WHR were all associated with a decreased xBRS, 
SDNN, and RMSDD (p < 0.001 for all comparisons with 
correction for age and sex). These relations were all signifi-
cantly dependent on sex; Fig. 2 shows the correlations using 
sex-specific splines. For SBP, xBRS decreased linearly in men 
with a mean of 12.1 (95%CI 11.8–12.4) ms/mmHg at a SBP of 
120 mmHg to a mean of 8.56 ms/mmHg (95%CI 8.30–8.83) 
for a SBP of 160 mmHg. In women however, there was a steep 
decrease in xBRS with a mean of 14.3 (95%CI 13.8–14.8) 
ms/mmHg at a SBP of 100 mmHg and a mean xBRS of 9.3 
(95%CI 9.0–9.5) ms/mmHg at 140 mmHg; hereafter, xBRS did 
not decrease further. In women, we found that xBRS decreased 
up to a BMI of 30 kg/m2 with a mean xBRS of 11.6 (95%CI 
11.4–11.9) ms/mmHg for a BMI of 25 kg/m2 and 10.1 (95%CI 
9.9–10.3) ms/mmHg for a BMI of 30 kg/m2, followed by a 
stabilization at increasing BMI. In men, we found that xBRS 
remained negatively associated with BMI, also in those with 
BMI > 30 kg/m2. In line with this observation, we found that the 
slope between WHR and xBRS tended to stabilize in women 
in WHR for values above 0.90. For SDNN and RMSDD, we 
found similar relations with SBP, BMI, and WHR.

Table 1  Baseline characteristics for complete cohort; the subset of 
optimal quality used for derivation of the quality criteria and the sub-
set of sufficient quality which was used for the regression analysis. 

BP blood pressure, SBP systolic blood pressure, HR heart rate, BMI 
body mass index, WHR waist hip ratio

Overall Optimal quality Sufficient quality Insufficient quality

n 13,326 3356 10,252 3074
Age, years (median [IQR]) 46.0 [34.0, 54.0] 45.0 [33.0, 54.0] 46.0 [33.0, 54.0] 47.0 [35.0, 56.0]
Women, n (%) 7654 (57.4) 1850 (55.1) 5555 (54.2) 2099 (68.3)
Ethnicity, n (%)
Dutch 2758 (20.7) 821 (24.5) 2042 (19.9) 716 (23.3)
South-Asian Surinamese 1838 (13.8) 256 (7.6) 1340 (13.1) 498 (16.2)
African Surinamese 2833 (21.3) 790 (23.5) 2076 (20.2) 757 (24.6)
Ghanaian 1761 (13.2) 348 (10.4) 1251 (12.2) 510 (16.6)
Turkish 1992 (14.9) 497 (14.8) 1728 (16.9) 264 (8.6)
Moroccan 2144 (16.1) 644 (19.2) 1815 (17.7) 329 (10.7)
Hypertension, n (%) 4483 (33.7) 1033 (30.9) 3455 (33.8) 1028 (33.5)
Diabetes, n (%) 1235 (9.3) 298 (8.9) 1008 (9.9) 227 (7.5)
Smoking, n (%) 3180 (24.0) 825 (24.7) 2505 (24.5) 675 (22.1)
History of cardiovascular event, n (%) 1950 (14.7) 445 (13.3) 1509 (14.8) 441 (14.4)
BP-lowering drugs, n (%) 2283 (17.1) 527 (15.7) 1701 (16.6) 582 (18.9)
Beta-blockers, n (%) 832 (6.2) 183 (5.5) 601 (5.9) 231 (7.5)
SBP, mmHg (mean (SD)) 127.8 (17.7) 126.4 (17.2) 128.0 (17.6) 126.9 (18.3)
HR, beats per minute (mean (SD)) 68.8 (10.2) 68.7 (10.0) 69.4 (10.2) 66.6 (9.8)
BMI, kg/m2 (mean (SD)) 27.1 (5.2) 27.2 (5.2) 27.6 (5.3) 25.7 (5.0)
WHR (mean (SD)) 0.90 (0.09) 0.90 (0.09) 0.91 (0.09) 0.89 (0.08)
Sinus rhythm on ECG, n (%) 12,909 (98.7) 3356 (100.0) 10,252 (100.0) 2657 (94.0)
Length of recording, s (median [IQR]) 283.8 [277.8, 338.1] 339.4 [334.8, 348.6] 283.1 [278.2, 337.0] 296.2 [273.5, 354.6]
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4  Discussion

We constructed and applied an algorithm for automated analysis 
of autonomic function, calculating xBRS and HRV from con-
tinuous finger blood pressure recordings. This enables the deter-
mination of key parameters for autonomic function in large-scale 
studies. We show that a time period of at least 180 s is necessary 
to reliably assess xBRS and HRV, with an ICC > 0.90 compared 
to the full recording. Forward and backward analyses of short-
ened recordings showed no significant differences in xBRS, but 
revealed a minor increase in heart rate and decrease in SDNN 
and RMSDD after 10 min of supine rest. Given the small differ-
ence at the end of both time courses, we estimate that this time 
period is sufficient for equilibration. The main reason for not 
meeting the quality criteria was failure to reach a stable segment 
without automatic internal calibration. Through our large-scale 
automated analysis, we show that xBRS, SDNN, and RMSDD 
are similar in men and women and decrease linearly with age 
and that above 50 years of age the decline is less steep. Addition-
ally, we show that in women xBRS and HRV tend to stabilize at 
higher BP, BMI, and WHR, while xBRS and HRV progressively 
decrease in men.

We show that the algorithm gives consistent results when 
using different segments of the recording. We observed that a 
recording time of 60 s was sufficient for RMSDD as it reflects 
short-term variations in HRV. For SDNN, which includes longer 
variations in HRV, we observed a systemic bias of lower values 
in shorter recordings, and we found that a minimum length of 
180 s was required to optimize accuracy. This is in line with 
earlier findings by Munoz et al.  and challenges the recommen-
dation in current guidelines that a minimum recording length of 
300 s is required for reliable assessment of HRV [11, 17]. We 
found no differences in average xBRS for recordings of differ-
ent lengths, but observed that a duration of 120 s was required 
to optimize precision as xBRS consists of averaged 10-s inter-
vals. HRV was 5% lower in recordings starting from the end. 
By this time, heart rate values were slightly higher, which may 
be provoked by increasing restlessness at the end of the period 
of supine rest. It is well known that changes in sympathova-
gal balance as induced by changes in body position or exercise 
level have a direct effect on the outcome parameters [18]. In the 
manually analyzed recordings, we obtained slightly lower values 
for SDNN and RMSDD, which can be attributed to a reduction 
in overall variation when manually selecting a stable segment of 
the complete recording further emphasizing the importance of 
obtaining recordings under standardized conditions. We found 
no relevant differences in baseline characteristics between the 
complete cohort, the subset with optimal quality, and the subset 
with recordings of sufficient quality, supporting the applicability 
of our technique. We observed some differences in the distribu-
tion of the different ethnic groups, but these can be attributed to 

logistical reasons, as not all ethnic groups were included at the 
same time in the study.

In our large-scale analysis of xBRS and HRV, we show that 
all autonomic parameters decreased linearly with age up to age 
50 years, where after xBRS and HRV stabilized in both men 
and women. For xBRS, we found that the decrease with age was 
steeper in women, while we did not find important differences 
in the slope for SDNN and RMSDD. Earlier analyses of the 
RMSDD from 10-s ECG recordings from the Lifelines cohort 
and for the SDNN using 5-min ECG recording from the KORA 
S4 cohort revealed a similar pattern [19, 20]. In the KORA 
S4-cohort, a linear relationship for SDNN with age was reported 
in healthy individuals without hypertension and cardiovascular 
disease aged between 18 and 60 years; however, in contrast to 
that study, we did not find an interaction with sex in our analysis. 
The decrease in HRV has been attributed to age-dependent alter-
ations in heart rate control as a result of decreasing vagal activ-
ity with cardiovascular aging [21, 22]. For BRS, earlier studies 
have shown a negative correlation with age. Ebert has shown a 
linear decrease of cardiac BRS measured using pharmacologi-
cally induced BP changes in 66 individuals aged between 18 and 
71 years [23]. More recently, using frequency domain analysis 
of spontaneous variations in BP and heart rate, a similar relation 
with age was observed in 110 apparently healthy individuals 
aged between 21 and 70 years [24]. However, in our large-scale 
population-based analysis, we observed a non-linear relation 
with an inflection point around 50 years, which may relate to 
similar mechanisms involving heart rate variability as xBRS 
correlates changes in heart rate to changes in blood pressure. 
Indeed, it is well-established that respiratory sinus arrhythmia, 
which—like xBRS—is predominantly mediated through vagal 
control, diminishes with age [25, 26].

In the regression analysis, we observed that xBRS and HRV 
progressively decreased for an increase in SBP, BMI, and WHR 
in men. However, in women, both xBRS and HRV did not fur-
ther decrease at higher BP, BMI, and WHR. Earlier studies 
using autonomic tests with vasoactive drugs have shown that 
the contribution of the sympathetic nervous system in blood 
pressure control is larger in men compared to women, which 
could explain the present findings [27]. Sex differences in the 
association with BMI can, in part, be explained by differences 
in body composition between men and women [28]. Taking the 
sex-specific normal values for WHR of 0.90 for men and 0.85 
for women into account, we found similar differences for the 
relation with WHR, suggesting that this relation is intrinsically 
different between men and women [29].

Earlier studies have shown that both HRV and BRS predict 
future cardiovascular events and cardiac mortality in patients 
with heart failure and coronary artery disease [30, 31]. A 
recent meta-analysis further showed that HRV is an important 
predictor for the first cardiovascular event in both women and 
men [1]. The observed, but disparate, associations of SBP and 
body composition with sympathovagal balance in men and 
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women in our population support these results. Whether the 
observed disparities in the association between sympathova-
gal balance and CVD risk factors between men and women 
also translate in differences in the predictive value of cardio-
vascular morbidity and mortality remains to be determined. 

A strength of this study is the use of a large multi-ethnic 
population-based cohort study for both the development of the 
algorithm and the cross-sectional analysis. This allowed us 
to perform an initial analysis on a sufficiently large dataset of 
optimal quality. The results from the regression analysis in the 

Fig. 1  Relation between sex, age, and parameters for sympathovagal 
balance. Band depicts 95% confidence interval. xBRS, cross-corre-
lation baroreflex sensitivity; SDNN, standard deviation of normal-
to-normal intervals; RMSDD, the squared root of the mean squared 
successive difference between adjacent normal-to-normal intervals. 

xBRS, SDNN, and RMSDD are all significantly associated with 
age (p < 0.001), with significant interaction between age and sex for 
xBRS (p < 0.001). For SDNN and RMSDD, no interaction with sex 
was found (respectively p = 0.25 and p = 0.24)

Fig. 2  Association between 
systolic blood pressure (SBP), 
body mass index (BMI), and 
WHR (waist-hip ratio) and 
autonomic function param-
eters. Line shows results from 
a regression model, with 
correction for age, depicted as 
the predicted value for an age 
of 45 years. SBP, BMI, and 
WHR were all significantly 
associated with xBRS, SDNN, 
and RMSDD (p < 0.001). All 
depicted models showed a sig-
nificant interaction with sex (all 
p < 0.001, except p = 0.001 for 
BMI and SDNN, and p = 0.03 
for SBP and RMSDD). Band 
depicts 95% confidence interval. 
xBRS, cross-correlation barore-
flex sensitivity; SDNN, standard 
deviation of normal-to-normal 
intervals; RMSDD, the squared 
root of the mean squared suc-
cessive difference between 
adjacent normal-to-normal 
intervals. SBP, BMI, and WHR 
were all significantly associ-
ated with SDNN and RMSDD 
(p < 0.001)
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large cohort of 11,000 participants support the applicability of 
our algorithm. Also, data on combined xBRS and HRV assess-
ment across the complete age range, in particular in younger 
(< 30 years) and older (> 60 years) adults, is to our knowledge 
still lacking. Limitations of our study are its cross-sectional 
design and the lack of ECG-based recordings, which are con-
sidered to be the gold standard of HRV and BRS assessment. 
Earlier studies have shown that the inter-beat interval derived 
from finger blood pressure recordings has excellent correspond-
ence compared to the timing derived from the electrocardio-
gram at rest [32–34]. In addition, we used an automatic filter 
to exclude abnormal or ectopic beats. However, the lack of 
ECG data prevented us from manually excluding ectopic beats 
based on their electrocardiographic morphology. We did how-
ever exclude recordings of individuals who were not in sinus 
rhythm on the ECG which had been performed at the same 
visit. In addition, we manually verified the automatic filtering 
of the recording against manual analysis of HRV and xBRS in 
100 recordings, which showed overall good agreement. Finally, 
the gold standard for assessment of BRS consists of measure-
ment after induction of blood pressure changes using vasocon-
stricting drugs, which is not feasible to perform in large-scale 
studies. A recent study has validated the xBRS against these 
measurements [6].

In conclusion, we have constructed an algorithm to auto-
matically determine sympathovagal balance based on continu-
ous finger blood pressure measurements that can be used in 
large-scale population cohort studies. Our large-scale analy-
sis of xBRS and HRV reveals important relations between 
changes in autonomic function parameters and changes in age 
and other relevant anthropometric parameters. Furthermore, 
our findings show important sex differences in relation with 
blood pressure and body mass composition, pointing towards 
possible differences in the pathogenesis of cardiovascular 
complications. Our newly developed methodology can aid in 
automatically and systematically performing these measure-
ments at large scale. Future large-scale studies could focus on 
unravelling the nature of differences in sympathovagal bal-
ance and its association with CVD risk and its predictive value 
for CVD outcomes in different populations.
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