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Abstract
We propose a concise mathematical framework in order to compare detector configurations efficiently for x-ray beam
monitoring in radiotherapy of cancer. This framework consists of the singular value decomposition (SVD) of the system
matrix and the definition of an effective information threshold based on the relative error inequality utilizing the condition
number of a matrix. The goal of this paper is to present the mathematical argument as well as to demonstrate its use for
modeling the best detector configuration for monitoring x-ray beams in external beam therapy. This analysis depends neither
on specific measurements of a given set of x-ray beams, nor does it depend in specific reconstruction algorithms of the beam
shape, and therefore represents a configuration meta-analysis. In the results section, we compare three possible detector
designs, each leading to a highly underdetermined system, and are able to determine their effective information content
relative to each other. Furthermore, by changing design parameters, such as the geometric detector configuration, number
of detectors, detector pixel size, and the x-ray beam blur, deeper insight in this challenging inverse problem is achieved and
the most sensitive monitoring scheme is determined.

Keywords Multi leaf collimator Radiotherapy Singular values System analysis

1 Introduction

In radiotherapy of cancer with ionizing radiation, such as
megavoltage x-rays produced by a medical linear accelera-
tor, it is necessary to dynamically collimate and modulate
treatment beams [19]. This is accomplished with a multileaf
collimator (MLC), which is a collimator composed of many
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thin ( 2–5mm 8 cm 20 cm) tungsten leaves shap-
ing the treatment beam with submillimeter precision. The
leaves are moving in and out orthogonally to the x-ray beam
blocking it in some regions and allowing radiation to pass in
another region as the linac irradiates tumor volume. Tumor
and normal organs, which have to be spared from radia-
tion as much as possible, have different sizes ( 0.5–40 cm)
and shapes and therefore the motion of MLC leaves and the
resulting x-ray dose can be complex. In this process, real-
time monitoring and verification of MLC performance are
crucial [9, 15, 27]. Development of beam monitoring detec-
tors capable of determination of MLCmotions and dose rate
delivered to cancer patient in real time is of great interest to
radiotherapy.

Due to technological challenges in the development
and practical use to radiation detectors, several types of
detector types and detection schemes have been considered:
ionization chambers or diode arrays [1, 8], integral dose
ionization chamber [20], flat panel detector array (TFT)
[21], or high energy current (HEC) detectors [3]. During
treatment, some of the x-rays interact with these radiation
detectors before reaching the patient and give rise to a
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signal, which is converted to information about dose rate
and/or MLC positions via various algorithms. The signal
of the detectors arises from x-ray energy deposited inside
the detector and converted to charge carriers, which are
collected by a system of electrodes. The algorithms that
derive clinically relevant information (MLC positions, dose
rate inside detector, patient dose) depend on which features
are actually measured by the specific detector and this in
turn depends on the data acquisition scheme of the detector.

The question of which acquisition configuration gives
rise to the most accurate estimation of dosimetric param-
eters in general is essential for the development of new
detectors. In this study, the configuration of the detector is
defined by the number of strip detector arrays [11], their
orientation (angle) with respect to the x-ray beamline of
the MLC collimator and with respect to the other arrays.
Throughout this paper, we use the term detector configu-
ration when we speak of our particular MLC monitoring
device and system configuration when we refer to the more
general mathematical framework.

In this paper, we propose and utilize a higher level
mathematical configuration meta-analysis of different
detection schemes for a specific detector type. The reason
to call it a configuration meta-analysis is that it relies
not on a specific set of shapes of x-ray fields collimated
by the MLC, but on the entirety of all possible MLC
apertures, and therefore, allows the evaluation of the
system/detector configuration itself. The method we present
is employing the concept of singular value decomposition
(SVD), which offers a more general framework of
evaluation of hypothetical detector performance for various
configurations. This means, in this investigation, we are
not concerned with the actual reconstruction of specific
x-ray field parameters (MLC shapes) from the measured
detector signals, and therefore do not rely on any specific
reconstruction algorithm, but want to investigate the quality
of the detector configuration itself for arbitrary x-ray fields,
which is summarized in the system matrix. The system
matrix does not depend on specific measurements but is a
general property of the detector configuration.

System configuration comparison based directly on SVD
has been applied in a few specific fields, e.g., in fluorescence
diffuse optical tomography [4, 6, 13] and near-infrared
tomography [26] under the name singular value analysis of
those observation systems. It showed to be a very efficient
and simple measure to utilize the number of singular values
above a certain noise threshold, which are most useful
for performing the tomographic reconstruction. There were
also critical discussions [14], which showed that although
singular value analysis is a very good overall measure for

tomography setups, there are specific imaging applications
for which other concepts are more helpful.

Unfortunately, the mathematical argumentation in these
publications was lacking and/or the authors failed to
connect the numerical results for the singular values
with the general singular value properties, such as
the relative error inequalities employing the condition
number of the system matrix. The goal of this paper
is therefore to employ the relative error inequality for a
concise mathematical argument suitable for configuration
meta-analysis of alternative detection schemes in beam
monitoring of radiotherapy x-ray fields. The mathematical
framework we propose gains deeper insight into challenging
detector configuration problems which rely on the current
clinical practice.

Although SVD is highly popular in many application
fields, especially in data analysis combined with principal
component analysis, for reconstruction algorithms based on
the pseudo-inverse [24] and also for direct system analysis
[5, 12], to the best of our knowledge, the full mathematical
argument based on SVD and the relative error bound has not
been presented for direct system configuration comparisons.
We believe that this concise mathematical argumentation
and the demonstration for the present challenging problem
can be extended to other applications where different
configurations have to be compared to each other to
determine the most suitable design.

2Methods

In the following, we must distinguish between the specific
radiation device and its application to radiotherapy from
a more general mathematical framework that we propose
for the investigation of potential design configurations
of radiation devices in general. We first present a novel
linear formulation of a mathematical model for a specific
detector for radiotherapy beam monitoring with multiple
strip detector arrays (SDA) [11]. Second, we present the
essential summary of linear algebra relevant for the general
singular value analysis, which allows the comparison of
different linear system configurations in general (e.g., see
[23] for example as a standard reference). Third, we
present numerical results for the application of the general
mathematical framework to the specific radiotherapy beam
monitoring device (SDA). Finally, we provide a critical
discussion of the proposed mathematical method and its
most salient features as well as possible other uses of the
method to radiotherapy problems requiring comparison of
different design configurations of instrumentation.
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2.1 Mathematical formulation of MLC QA
measurements in radiotherapy

2.1.1 Application and detector

During cancer patient treatment, a medical linac radiates
a high-energy megavoltage photon beam via a delivery
system composed of a rotating linac gantry with a rotating
dynamic multileaf collimator (MLC). The patient is lying
on a robotic treatment table. The MLC of a medical linac is
composed of typically 120 thin leaves and is able to shape
this photon beam right at the exit of the gantry head. Based
on the clinical target and organs at risk, a radiation plan is
generated which exactly defines the motion of the rotating
medical linac as well as all the MLC positions at each time
point. Furthermore, the beam intensity is also modulated
by the monitor units (MUs) for each MLC segment. All
treatment parameters are used in the treatment planing
system (TPS) to compute the dose in the patient and are
exported to the linac for delivery of the treatment.

The clinical parameters (e.g., the MLC leaf positions and
the MU) in the TPS constitute the ideal or the reference
for the actual delivery. Thus, a detector that monitors the
actual treatment delivery measures signals from which
the clinical parameters are derived and provides deviations
from the ideal TPS parameters. The deviations between
these MLC/MU parameters lead to dose differences in the
patient anatomy. In the present paper, we limit the work to
MLC leaf positions and MU fraction per segment as clinical
parameters (i.e., typically 121 free parameters) which are
hypothetically determined by a specific detector that has
a number of possible embodiments (configurations). The
purpose in this paper is not to determine the actual values of

particular clinical beams (as for example performed in [11])
but the efficacy of each detector configuration to provide
a certain level of accuracy in determination of the clinical
parameters for arbitrary clinical beams.

The detector configuration is presented and discussed in
the subsequent Section 2.1.6. The detector is mounted on
the linac below the MLC. The MLC is composed of two
leaf banks (left and right), and each bank typically consists
of 60 parallel leaves aligned along x-axis (Fig. 1). The
leaves move and formMLC segments that are delivered with
a certain amount of radiation controlled by monitor unit
fraction.

The detector configuration considered here is the
following: The detector consists of parallel strip detectors
and each strip detector measures dose independently as
an integral dose along the whole length of the strip.
The strip array covers the whole irradiation region plus
extra margins. Therefore, the strip detector array measures
projected/cumulative doses. The strip detector array can
be oriented a priori at any angle with respect to the
MLC. However, in this paper, we consider only 3 possible
angles, which have certain motivation behind: 0 (along x-
axis), 90 (along y-axis), 45 /135 (diagonal). A similar
detector design was studied in reference [2] using a different
mathematical framework.

2.1.2 X-ray generated treatment fields

For each point in time, there is a well-defined MLC shape
(aperture) collimated by typically 60 leaves on the left
and 60 leaves on the right bank, leading to typically 120
unknown parameters. For each MLC segment, there is a
certain dose delivery at constant rate, referred to as MU

Fig. 1 Schematic demonstration of a MLC aperture configuration and the true leaf positions as blue lines. Left: the binary model representing the
MLC aperture without any dose model, Right: a very simplistic dose model applying a 2D gaussian blur representing
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fraction. Based on the known MLC geometry as well as the
given MUs, the medical linac will generate a 2D flux or
fluence field, where is defined to be parallel
to the leaf pair motions, is defined to be orthogonal,
and is time. The flux depends on the leaf pair
positions, which we will denote as and for the left
and right MLC leaves, and the MU, which we will denote
as , leading to the explicit description of dependencies

.
We assume that based on a beam model we can

sufficiently accurately calculate the 2D fluence field, given
the leaf pair positions as well as the MUs. For the
investigations at hand, we will discuss different dose models
from very unrealisitic to very realistic ones in order to
investigate the dependence of the inverse problem with
respect to the modelling (see Fig. 1 for examples of the 2D
fluence field).

At first, we realize that the original fluence field
is a nonlinear function with regard

to the leaf position, but it is linear with regard to MU.
This can be directly seen by the violation of the scalar
multiplication (for a given ):

since the field intensity is not uniformly changed only if
a subset of MLC leave positions is locally scaled. For this
investigation of the optimal geometry, we try to find an
approximate linear presentation of all possible 2D fluence
fields that can be shaped by the original field parameters

.

2.1.3 X-ray beammodel

The portion of the flux that is stopped by the detector
gives rise to detector signal which can be computed
by convolution of the MLC aperture and Gaussian dose
deposition kernels [16–18]. Since each MLC segment is
composed of small rectangular shapes corresponding to
each open MLC leaf pair, this gives rise to a sum of
beamlets. Such a beamlet representation of dose can also be
used for computation of dose in patients and mathematically
it represents superposition-convolution dose models when
the heterogeneities associated with the patient anatomy
are properly accounted for in the model. In our case, the
detector is homogeneous and thin and thus the Gaussian
convolution model is sufficient [22].

A useful representation in order to describe all possible
field shapes is the pencil beam approach: All fluence fields
can be approximated by the weighted sum of pencil beams.
We utilize here singular pencil beams of 1-mm width and
the corresponding leaf pair height. Since the blur of the
flux can be well approximated by a Gaussian convolution
model, this is not affecting the linearity of the fluence field.

Such a beam model can be extended to slightly different
blur magnitudes for different layers in overlapping detector
geometries. It is pointed out that this would not change the
theory or application of the detector comparison approach
in this paper.

Utilizing the pencil beams for all leaf pairs (e.g., with
a practically useful number of 45 leaf pairs) and 1-mm
gap (e.g., 150 pencil beams per leaf pair, corresponding
to a 15 cm maximum leaf pair opening), we get in total

43 150 6750 individual pencil beams
( 1 ). Then we can approximate the true fluence
field by

1

when still neglecting the time dependency of the field shape.
We get parameters which are the weights of the indi-
vidual pencil beams that approximate the real the fluence
field shape. It is pointed out that the clinical relevant param-
eters can only indirectly be determined by the
parameters . Obviously, this is only an approximation
to real fluence fields, since

1. due to the discretization to 1-mm gaps, we cannot
perfectly generate submillimeter MLC leaf positions
(this can actually be resolved by utilizing smaller gap
sizes and will be done in the results section), and

2. with this linear representation, we can generate many
more fluence fields than are actually possible. For
example, in reality, MLC leaf pairs are open or not — in
this representation, we could generate every millimeter
another totally arbitrary intensity which corresponds to
the huge amount of degrees of freedom.

Despite of these differences between the true fluence fields
and this linear representation, we can still summarize: All
real field shapes can be described with minor differences
with such a pencil beam approximation.

2.1.4 The forward problem of measurement

For the proposed general setup of this paper, we assume
to have one or several 1D detectors, which are directly
mounted to the MLC frame. This means that even if the
MLC is rotating around itself, the detector will rotate
accordingly. This means for the detector, the - and -
directions are always the same as the - and -directions of
the MLC.

Furthermore, we consider narrow strip line detectors, i.e.,
each of those detectors is providing a 1D signal (we call
projections). The strip detectors are thin along the beam
line and narrow/long across the beam line. Essentially, each
detector pixel collects all the intensities of the 2D fluence
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field along a line integral. The line detector is at a fixed
angle relative to the fluence field. Furthermore, let us say,
the line detector has a 1D pixel resolution of and
pixels. Then for pixel the collecting line (the path over
which the integration occurs) can be written as ( ) (see
[11])

cos
sin 2

sin
cos

.

We assume that the strip detector array is oriented at some
fixed angle with respect to the MLC coordinate system.
The detector signal at pixel can then be calculated as
(see [11])

1 2 d .

For example, see Fig. 2 for an illustration of the integral
paths of one strip array detector and the resulting detector
signal.

2.1.5 Derivation of the systemmatrix based on the forward
problem

When inserting the 2D fluence field decomposition to the
forward problem, we get for every detector pixel

1 2 d

1

1 2 d

1

1 2 d

and when calculating the full 1D detector signal for all
pixels, we get

1

...

1 2 d

...

with the detector signal vector . Looking at it as
a linear combination of vectors, we can further rewrite this
directly into the matrix equation

...
...

1 1 2 d 1 2 d

...
...

1
...

with the projecting matrix and vector of the
degrees of freedom of the field . Please note, in
every column of this matrix , the detector signal of the
corresponding single pencil beam is stored.

If we not only have one detector, but many, say ,
detectors then this matrix equation still holds, but for the
corresponding line integral paths described by we need
to show the dependency on detector orientation and
rewrite this to . This leads to the system matrix equation
of the measurement which consists of the stacking of the
linear equations of each individual detector under each
other:

1
...

...
...

1 1 1 1 2 d 1 1 1 2 d

...
...

1 1 2 d 1 2 d

...
...

1
...
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Fig. 2 Schematic illustration of the signal generation by the proposed detector type. Left: Examples of integral paths of the 1D detector strip array
(red lines) and the projection axis , with an angle of 30 and 50 pixels. Right: The corresponding signal collected by the strip array
detector

with the left hand side vector being element of as the
vector of all measured detector signals, the
system matrix of the detector signal generation and
the degrees of freedom that describe all possible fluence
field shapes.

2.1.6 Specific detector configurations

In order to demonstrate the potential of the system config-
uration comparison, we will utilize three different detector
configurations shown in Fig. 3, with two configurations
with two detectors (setup A and B) and one configuration
with three detectors (setup C).

2.2 The general singular value analysis process

We now introduce the general mathematical framework for
performing the configuration meta-analysis based on singu-
lar value analysis applied to linear observation equations.
We use the more general term system configuration in order
to highlight the generality of this approach.

2.2.1 SVD of an observational systemmatrix

In a detection scenario, we assume to have a linear or
approximately linear relationship between parameters

we want to learn about and the actually observed signals
:

with the system matrix of the observation , such
as in the presented mathematical formulation of the MLC
QAmeasurements with strip detector arrays. Such equations
appear, e.g., directly in static observations (e.g., see the
explanatory example in Appendix 1), as an observation
equation in stochastic dynamic Kalman filters [23], or as
in our case: as a linearization of a nonlinear observation
equation, see [7] for an example in control theory. In
many practical purposes, we typically have and
a system matrix which has full column rank. In this
situation, one can reconstruct the parameters directly
from observations utilizing the pseudo-inverse or similar
methods.

In this investigation, we are not concerned with the actual
reconstruction of but want to investigate the quality of
the measurement configuration itself which is summarized
in the system matrix (without measurements). Therefore,
we can focus also on completely non-sufficient observation
scenarios. Indeed, in the application, we will present a case
with .

When applying the singular value decomposition (SVD)
to , as a partial result, we get the sorted list of the singular
values 1 2 and the residual list of zeros

1 min 0. In this nomenclature, represents
the rank of matrix . A more detailed description of the
SVD is presented in the Appendix 2. The singular values
contain relevant information about , e.g., the scaling
of coordinates that a vector undergoes when applied
to .
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Fig. 3 Illustration of the three different detector configurations with
an example beam MLC aperture. In addition to the detector geometry
relative to the MLC, the integration path and the projection axis of the
strip array detector are presented. Top left: Setup A with two orthogo-
nal detectors which are aligned to the MLC orientation ( 0 (A1)

and 90 (A2)), Top right: Setup B with two orthogonal detectors which
are rotated by 45 relative to the MLC orientation ( 45 (B1) and
135 (B2)). Bottom: Setup C which is setup B with an additional detec-
tor which is orthogonal to the MLC leaf pair motion ( 0 (C1), 45
(C2), and 135 (C3))

2.2.2 Condition number of the systemmatrix
vs. measurement noise

In general, the condition number of a matrix is defined as

1

with 1 the largest and the smallest singular value greater
than 0. A very well-known fact of numerical linear algebra
is: If the measurement has an additive error , maybe due
to measurement noise or data precision, we get a relative
error bound of the solution [23]

1

which can be read in the following way: If there is
a given relative measurement error (which can be
directly related to the signal-to-noise ratio (SNR) of the
measurement) and we still want to have a worst case relative

error in the result of then — according to this upper

bound — we would be allowed to have a condition number

eff for the sharpest bound ( eff 1). Although it is
not necessary in our investigation, one can always modify
the real system matrix in order to meet this condition
number approximately, i.e., eff, by utilizing the
corresponding low rank approximation [23].

Clearly, this is an upper estimation for the maximum
relative error estimating for all possible and . In real
measurement scenarios, typically this limit is not achieved
since the vectors and would need to point in very specific
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directions (see the explanatory example in Appendix 1 and
the Appendix 2 for a detailed discussion on this).

To give a numerical example, a relative measurement
error 10 2 and a worst case relative solution error

of 10 1 (which means a relative error of 10%)

would simply allow for a condition number of eff 10
for the sharpest bound. With respect to the practically small
probability of the worst case in this upper error bound,
in a very pragmatic way, one could even risk to allow a

maximum relative error of 1 (i.e., at worst relative

errors of the solution up to 100%), which would then lead
to eff 100.

2.2.3 Effective information threshold

We have on the one side, the system matrix and its
singular values, on the other side, we get (by looking at
the maximum allowed relative measurement and solution
errors) a desired condition number eff to fulfill the relative
error bound sharply.

At this point, it is important to conclude, independently
to which one sets these relative errors and what the
original of the system matrix is, there is an effective
information threshold for all singular values of , which
must fulfill

1

1

eff
1

in order to meet these criteria sharply. The number
of singular values that fulfill this effective information
threshold represents the effectively usable number of
linearily independent equations in the system matrix (i.e.,
an effective rank with respect to the magnitude of the
measurement noise). For the practical extraction of these
corresponding equations, one needs to apply the reduced
rank approximation of where all singular values not
fulfilling this bound are set to zero.

By working with 1 eff as a threshold, we essentially
are focussing on thresholding normalized singular value
distributions

1
( 1 ) for comparison of different

system configurations and not on thresholding the absolute
(not normalized) singular values [4, 6, 13, 26].

What does this tell us about comparing different system/
detector configurations and their information content?
Quite straightforwardly, the system with more singular val-
ues above this effective information threshold does contain
more information about than the system that has a smaller
number of above-threshold values. Based on this number,
different system configurations can be directly compared
and optimized. This comparison can be done quickly in an
overview plot of the normalized singular values with the
effective information threshold as in Fig. 4. The further the

Fig. 4 Schematic examples of the normalized singular values plot with
semi-logarithmic scaling. Three system configurations are compared
relative to the effective information threshold (horizontal dashed
line). The number of singular values above the effective information
threshold are the fewest for the worst system (continuous line) and
largest for the best system (dash-dotted line)

intersection of the normalized singular values with the effec-
tive information threshold is to the right, the more effective
information is contained in the system configuration.

2.2.4 Summarizing the singular value analysis process

This framework can be summarized to the following
algorithm:

1. Model the specific observation/detection scheme in a
specific application by expressing it in terms of linear
equations where represent the measurements
and are the unknown parameters.

2. Define the expected level of relative measurement error
by assessing the measurement device. This can be

the typical or maximal error magnitudes, depending on
the perspective in the application.

3. Define the desired or target relative solution error

for the application (keeping in mind that this could a
small or a large number, even 1 in some applications,
see the discussion in the Appendix 2).

4. Calculate the condition number eff corresponding to
the sharpest bound with

eff

5. Perform the SVD of and count the number of singular
values above the effective information threshold

1

1

eff
1 .
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6. Repeating steps 1–5 for several competing system
configurations, one can directly compare them. The
system with the highest number of singular values
above the effective information threshold overall
contains the most information about .

In order to judge the differences between different
configurations, one can directly set the number of
singular values above this threshold relative to the
number of unknown parameters (i.e., the number of
entries of ). As an extreme case, if this ratio achieves
1 (i.e., 100%), then one can completely reconstruct
based on inverting the linear system of equations even
with the presence of a relative measurement error.

We highly recommend the reader to the explanatory
example in the Appendix 1 in order to gain a straightforward
understanding of this approach for a simple reconstruction
problem.

3 Results

3.1 Comparison of specific detection configurations

When looking at the linear system of equations, one realizes
quickly, that for example for 3 detectors with a pixel

resolution of 400 pixels per detector (corresponding
to a pixel width of 0.75 mm) and 6750 pencil beams
we would get an observational system matrix of shape

1200 6750, which is an underdetermined
system. If we would want to solve the inverse problem
with this equation, we definitely would need to incorporate
additional information, such as that not every millimeter
a totally different intensity could occur. For this specific
investigation of comparing different detector geometries,
this is actually not very important. Because the system
matrix itself tells us how much information we gather by
given detector geometries relative to each other as described
in the general theory section.

The system matrices for the three detector configurations
(setup A and B: 800 6750, setup C: 1200 6750) are
shown as maps (blue: nonzero value, white: zero) in Fig. 5.
Each column of each system matrix consists of the detection
signal for each pencil beam. This means, for setup A and
B, we have two signal spots in each column, since we have
two detectors stacked under each other, and for setup C,
we have three signals. Going the columns of the system
matrix to the right, we change the individual pencil beam,
until all possible pencil beam signals are covered by the
system matrix. The order of how we go through the pencil
beams generates the characteristic patterns in Fig. 5. In

Fig. 5 Illustration of the system matrices for setup A (top), B (center), and C (bottom). Blue areas correspond to nonzero entries in the matrix, all
other entries are zero. Rows that are always zero correspond to detector pixels outside the MLC aperture area covered by the pencil beams
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consequence, the system matrix can be viewed as the pencil
beam representation in the detector configuration.

Based on these system matrices, the singular value
distribution is present in Fig. 6. Essentially one needs
to focus on the singular values with logarithmic scaling
and at which point the values drop under the effective
information threshold. The number of singular values
above this threshold tells how many useful constraints
(information) is present in Matrix about the values .

A range of scenarios is presented which help interpreting
the results. In this plot also the effective information
threshold is shown. For example, if we assume that the
amplitude of the measurement signal of each detector
pixel is a 100 times higher than the noise (an already

good signal in practice), this corresponds to a SNR

20 log10
signal

noise
dB 20 log10 100 dB 40 dB. If

we further allow in the worst case for a 100% error in
(although it typically is much better), then the effective

condition number is eff 100. In the case, that this
estimation seems too risky, also a lower effective condition
number, such as eff 10, can be chosen, without changing
the result of system comparison. The simulations show
(most effectively looking at the logarithmic graph at the
bottom of Fig. 6):

1. If one uses more detectors, say 6 and arrange them
equiangularly around the MLC this generates truly new
information (green line) which helps reconstructing the

Fig. 6 Singular values of the
setup A, B, and C and an
additional configuration with 6
detectors. Top: representation
with linear -scaling, Bottom:
representation with logarithmic
-scaling. The additional

simulation scenarios include as
follows: using 6 detectors
equiangularly arranged around
the MLC (leading to a
2400 6750 system matrix)
(green line), smaller pencil
beam step sizes of 0.5 mm
which doubles the pencil beams
(leading to 800 13500 and
1200 13500 system matrices)
(dashed lines), reducing the
detector pixel size from 0.75 to
0.375 mm (leading to
1600 6750 and 2400 6750
system matrices) (fat dotted
lines), and doubling the blur in
the fluence signal from 0.5
mm to 1 mm (which is not
changing the system matrix size
relative to the start scenario)
(dash-dotted lines)
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true fluence field. This shows the way of optimal signal
reconstruction: if one increases the number of detectors,
one can reconstruct the original signal better and better.

2. If one uses smaller pencil beams (0.5-mm steps instead
of 1-mm steps, i.e., doubling the number of pencil
beams) in order to approximate true fluence fields even
better (dashed lines), this essentially does not change
information content in these system matrices (although
a slight improvement for the setup A is visible).

3. If one reduces the pixel size of the detector (i.e.,
doubling each detector signal), we see that for setup A,
there is no improvement at all and for setup B and C,
there is improvement, but at a neglectable information
level since this new information is way below the
effective information threshold corresponding to the
condition number 100.

4. If there is twice as much blur in the fluence field,
then the total information content for all detector
configurations is equivalently reduced.

Based on this overview plot, it is clearly favorable
to use setup B compared to setup A, since much more
constraints and information are generated by this detector
configuration. The introduction of another horizontal
projection in setup C compared to setup B shows a rather
minor improvement concerning new information introduced
by this additional detector.

3.2 Determing optimal detection geometry

Since we have a number which allows the comparison of
different detector configurations, we can formally optimize
detector configurations. Before starting optimization, cer-
tain constraints need to be defined, such as number of
detectors, degrees of freedom (e.g., angular position of each
detector), and an inital detector configuration which will
be modified by the degrees of freedom. Furthermore, an
effective information threshold must be set which should be
adjusted to the measurement quality of the observation at
hand.

After this, an optimization scheme (e.g., see Fig. 7) can
be applied. It must be stated that this optimization can
be very time consuming, since possibly very large system
matrices need to be calculated in a loop.

4 Discussion

The singular value decomposition (SVD) and the condition
number of a matrix are a mathematical standard
toolset in order to judge about the practical/numerical
difficulty of inverting a linear equation. Applied to an
inversion problem, it summarizes information about how

challenging this problem actually is, and not how well a
specific inversion algorithm performs. If, e.g., the condition
number of a matrix is very large with respect to the involved
uncertainties (numerical precision, measurement noise,
etc.) of the linear equation, every inversion/reconstruction
algorithm will be confronted with this challenging problem.
The SVD-based analysis of a system allows measuring how
difficult an inversion/reconstruction problem is at its core,
and demonstrates a very useful tool for (linearized) inverse
problems in general.

In this paper, we utilized the relation between SVD and
the condition number in the following way: For competing
configurations of an inverse problem, we state that if
the difficulty of inversion/reconstruction is less for one
configuration than for another, then more useful information
is actually acquired and it is preferable. This corresponds
to maximizing the number of singular values greater than
an effective information threshold. The practical difficulty
of this approach lies in the modeling and mathematical
formulation of a given measurement scenario and an at least
approximate linear formulation of the observation equation,
as presented. The strength of the approach is, once this
modeling worked out, the simple steps in Section 2.2.4 for
comparing different observation scenarios can be directly
applied without any inverse computations.

It is important to notice that this investigation with
SVD of the system matrix essentially only focuses on how
much new information is generated by alternative detector
configurations compared to each other. There still is a
point to be made that redundant information has its own
merit, since this typically increases robustness and reduces
dependencies on measurement noise. Furthermore, even if
in a specific application it is unclear how to determine the
effective information threshold exactly, system comparison
can be performed well, by using several reasonable
thresholds in a given range and compare these systems for
all these thresholds simultaneously.

We are not aware of any other method that would
perform a similar type of high- or general-level analysis
that could be used for the determination of detector/system
configurations. That is performing a meta-analysis without
the need to use specific radiotherapy beam shapes for
specific patient anatomies and specific radiotherapy beam
reconstruction algorithms.

The concrete application of this methodology is to
compare detector geometries for multileaf collimator
measurements in radiotherapy and it demonstrates that this
method can even be applied to not obvious cases and still
allows for a solid judgment. In this specific example, the
linearization also comes at a cost: In our linear model,
we allow for much more 2D fluence fields than would
be practically possible, which enormously increases the
degrees of freedom from 2 45 1 91 degrees of
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Fig. 7 Optimization scheme,
which includes the presented
system performance estimation
and allows for algorithmic
maximization of the information
contained in the system
configuration
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Fig. 8 Illustration of the general approach for performing configuration meta-analysis

freedom (each leaf position MU) to 6750 degrees of
freedom. Still, with this approach, all real 2D fluence fields
can be approximated well, and therefore, this investigation
is practically useful. It is pointed out that the clinical use
of setup C investigated with this singular value analysis
is additionally demonstrated for several patient treatment
plans for a specific reconstruction approach as presented
in [11]. In the schematic Fig. 8 we are summarizing this
general modeling approach directly, which may be applied
also to different technical applications in the future.

In radiotherapy, other applications of this general
approach might be beneficial such as in external beam
treatment planing optimization which is not strictly
speaking a detection or measurement scenario. However,
it can still be expressed in similar terms as follows:
clinical parameters of interest (MLC apertures), the dose
metric prescribed by the physician (which corresponds to
the measurements in the detection design), system matrix
(dose calculation model), and configurations (on which the
dose calculation model depends). In this application, the
modeling, optimization, and analysis of an overall dose
delivery to the patient are typically done by a superposition
(i.e., linearization) of pencil beams. In this example,
optimal beam angles, number of MLC segments per beam
angle, or even comparisons between different dose delivery
techniques, such as conformal treatment, IMRT, and VMAT,
could be investigated as clinically relevant parameters.

Finally, we want to point out that the linearization method
presented in this paper may not necessarily be the best way
for reconstructing the clinical parameters , but it provides
a quality figure of the system configuration. In specific
cases, it is possible (e.g., if more observations are made
than there are degrees of freedom ) to directly invert
the observation equation with a low rank approximation of
the system matrix , leading, e.g., to the pseudo-inverse
[23]. In our specific application, we demonstrate that this

investigation via SVD is still possible and useful, even if
such an inversion is not possible, since we focus on a highly
underdetermined system.

5 Conclusion

We have demonstrated a general approach based on the sin-
gular values of a system matrix, which allows to compare
different system configurations regarding their effective
information content. This presentation contains an exten-
sion to previous argumentation found in the literature with
respect to the definition, meaning, and utility of the informa-
tion content, cp. [4, 6, 13, 25, 26]. In order to demonstrate
the use of this method for a challenging nonlinear example,
we compared possible detection configurations for multileaf
collimator control measurements in external beam therapy
in radiotherapy. Based on this, the application of this method
is demonstrated, including the linearization of the nonlinear
model, and the best system configuration is determined.

Appendix 1. Explanatory example

In order to present the strength of this approach, we are
briefly presenting the following measurement setup taken
from reference [10], presented in Fig. 9.

In this example, we want to measure the 2D point
coordinates 1 2 . Furthermore, we have a rotating
detector which measures the parallel beam projection of the
2D point coordinate in the detector coordinate . First, there
is a horizontal measurement performed and 1 is measured,
then the detector is rotated by and the second detector
point 2 is measured. The configuration parameter simply
corresponds to different detector configurations. It is clear,
if there is no noise in the measurements 1 and 2 and we
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Fig. 9 Explanatory example: The 2D point coordinates 1 2 need
to be reconstructed with a given detector configuration of two detectors
which are rotated relatively to each other by , leading to detection
signals 1 and 2. Different angles correspond to different detector
configurations

use 0 the coordinates 1 2 can be reconstructed
directly by just inverting this linear system of equations. On
the other side, it is clear that using 0 will be worse than

90 if there is measurement noise. In order to quantify
this, we want to apply the proposed process:

Step 1: This leads to the linear observation/detection
model

1

2

0 1
sin cos

1

2
.

Step 2: We define the expected level of relative
measurement error, e.g. 10 2.

Step 3: We define a target relative solution error, e.g.,

10 1

Step 4: This leads to the condition number of the sharp
bound eff 10.

Step 5: We calculate the singular values of , which are

1 1 cos 2 1 cos

In this example, the qualitatively most important question is
simply, whether the second measurement contains enough
information for the given relative errors in order to invert the
linear system of equations or not. This means, we need the
second singular value to be above the effective information
threshold

2

1

1

eff

1 cos

1 cos

1

eff
.

This leads to the solutions in 0 180 :

arccos
2
eff 1
2
eff 1

180

arccos
2
eff 1
2
eff 1

11.43 168.57 .

Step 6: The comparison of different detector configura-
tions then is simply: if is in this calculated interval, then
in general, we have enough information to invert the linear
system of equations with the defined target relative solu-
tion error. This is a qualitative step. Inside this interval for
one could further distinguish between all configurations,

which leads to the optimum of 90 corresponding to
the highest possible ratio 2

1
1.

Since we compare system configurations with a large
number of singular values in practice, we typically end
up with a different number of singular values above the
effective information threshold, leading to a well-defined
quantity for comparison. Only if two configurations have
roughly the same number, it makes sense to take the shape
of the distribution of the singular values into account.

Furthermore, we are demonstrating in the Appendix 2
that the relative error inequality bound is sharp, i.e., this
means for specific measurement and noise configurations
, exactly an equality occurs. We want to illustrate this in
this explanatory example. If 0, we can directly solve
this equation system with

1

2

cos 1 2
sin

1

1

2

cos 1 2
sin

1
.

On the other side, we have 1 cos
1 cos and of course

1 2 and 1 2 . Then, the relative error
inequality leads for all and to

2
1 sin2 cos 1 2

2

2
1 sin2 cos 1 2

2

1 cos

1 cos

2
1

2
2

2
1

2
2

.

If we find a configuration of and leading to the equality
of left and right hand side, than we see this bound is sharp
and cannot be improved.

Utilizing the left singular vectors of (see the
Appendix 2 for the general case), we get these vectors
pointing to their worst directions with 1 1 and

1 1 , with arbitrary constants . By

354 Medical & Biological Engineering & Computing (2023) 61:341–356



inserting them into the inequality, we get on both sides
1 cos
1 cos , i.e., the equality holds and the bound is sharp.

On the other hand, we realize that a very specific
configuration is necessary that the equality holds, i.e., 1

2 and 1 2 (remember, the latter is random noise).
In total, this demonstrates that the relative error bound is
sharp, but in practice, equality is probably never reached. In
cases with much higher dimensionality of and , such as
in the application presented next, the likelihood of achieving
equality decreases further since the configurations for the
worst case are getting more specific.

Appendix 2. Worst case discussion
of the relative error bound

In order to actually fulfill the equality of the relative error
upper bound, and would need to simultaneously point in
their worst directions. In order to see this, we start with the
full linear system including the errors:

.

By applying the SVD (here in its compact form, i.e.,
representing the rank of , , and

, and and semi–unitary, i.e.,
), we get

.

with containing the first left singular vectors as
columns, is the diagonal matrix with decreasing order
of the singular values and containing the first right
singular vectors as columns. Due to the semi–unitarity of
we can rewrite this to

.

If we specifically choose to be a scaling of the first left
singular vector, i.e., 1, and to be a scaling of the
th left singular vector, i.e., ( ), we get

0
...
0

0
...
0

1

0
...
0

0
...
0

.

An obvious solution to this is

1
1

with the right singular vectors 1 and . When inserting
these , , , and into the relative error upper bound,
one gets the worst case with equality. In this solution, one
can also directly interpret the worst case interaction between
measurement quality and the system configuration of the
relative error bound: If we have a SNR of the measurement,
say 100, this can be interpreted as 100, then in order to

allow for a maximum error to be in the range of , one
can only allow for 1 100 . For lower condition

numbers , we get
1

, leading to higher quality
solutions in this worst case.

From a practical perspective, in order to actually run
into this worst case region, and simultaneously would
need to be linear combinations of very specific directions,
such for in the span of vectors with the highest singular
values span 1 , and in the span of vectors with
the lowest singular values span . This means, if
is a random detector measurement error, expected to be
independently distributed for each coordinate, this could be
assigned to a certain low probability. Therefore, practically
in many cases, one can expect much better results than
what the relative error upper bound would suggest. See also
the explanatory example, where this argument is directly
demonstrated.
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