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Abstract
Ultrasound (US) imaging is recognized as a useful support for Carpal Tunnel Syndrome (CTS) assessment through the evalu-
ation of median nerve morphology. However, US is still far to be systematically adopted to evaluate this common entrapment 
neuropathy, due to US intrinsic challenges, such as its operator dependency and the lack of standard protocols. To support 
sonographers, the present study proposes a fully-automatic deep learning approach to median nerve segmentation from US 
images. We collected and annotated a dataset of 246 images acquired in clinical practice involving 103 rheumatic patients, 
regardless of anatomical variants (bifid nerve, closed vessels). We developed a Mask R-CNN with two additional transposed 
layers at segmentation head to accurately segment the median nerve directly on transverse US images. We calculated the 
cross-sectional area (CSA) of the predicted median nerve. Proposed model achieved good performances both in median nerve 
detection and segmentation: Precision (Prec), Recall (Rec), Mean Average Precision (mAP) and Dice Similarity Coefficient 
(DSC) values are 0.916 ± 0.245, 0.938 ± 0.233, 0.936 ± 0.235 and 0.868 ± 0.201, respectively. The CSA values measured 
on true positive predictions were comparable with the sonographer manual measurements with a mean absolute error (MAE) 
of 0.918 mm2. Experimental results showed the potential of proposed model, which identified and segmented the median 
nerve section in normal anatomy images, while still struggling when dealing with infrequent anatomical variants. Future 
research will expand the dataset including a wider spectrum of normal anatomy and pathology to support sonographers in 
daily practice.
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1  Introduction

Carpal tunnel syndrome (CTS) accounts for 90% of peripheral 
entrapment neuropathies, affecting up to 5% of the general 
population [29]. This condition occurs when the median nerve 
is compressed at the wrist as it passes through a narrow osteofi-
brous canal along with the nine finger flexor tendons [20]. The 
median nerve stretches, compresses and translates in response 
to upper extremity motion, but in patients with CTS its mobil-
ity is restricted, which indicates nerve dysfunction [20].

Traditionally, the diagnosis of CTS relies on clinical his-
tory and physical examination [25], sometimes investigated 
further with electrodiagnostic tests, sensitive in examining 
nerve conduction and eventual damages [20]. Aside from 
electrodiagnosis, which is expensive, time-consuming and 
presents limited ability to predict CTS severity or inter-
vention outcome [27], ultrasound (US) imaging can also 
be used. In assessing CTS, US allows to detect structural 
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anomalies through the direct visualization of the nerve, 
its position and morphology: in fact, altered shape of the 
median nerve due to the compression of the surrounding 
nonrigid structures is expected in CTS patients [29].

Among the US parameters which can be evaluated from 
the carpal tunnel, the most common and reliable is the cross-
sectional area (CSA) of the median nerve measured at the 
proximal carpal tunnel. However, the CSA measurements 
are currently performed on US relying on a hand tracing 
method, and their cutoff values for CTS diagnosis vary 
widely, ranging from 9 to 14 mm2 [29].

US imaging presents unique challenges to be faced: it is 
highly dependent on sonographer’s experience, and subjected 
to high inter- and intra-observer variability across different 
manufacturers’ US systems. Moreover, US images can be 
subjected to low imaging quality, intensity inhomogeneities, 
presence of shadows and high noise level. In addition, in car-
pal tunnel imaging the median nerve identification is made 
harder by the presence of many rounded structures, such as 
the wrist bones, transverse carpal ligament and digital flexor 
tendons, and by nerve morphological variations in relation 
with disease severity, with other concomitant pathologies and 
also with height, sex, weight and age of the subjects [29]. A 
sample of carpal tunnel US image is shown in Fig. 1.

To address these challenges, the development of advanced 
automatic US image analysis methods is essential to make US 
a more objective and accurate support tool for CTS assess-
ment. In this respect, Deep Learning (DL), which is a branch 
of machine learning, has already shown its huge potential for 
medical US analysis [22]. At present, multiple types of deep 
networks, especially Convolutional Neural Networks (CNN), 
have been successfully involved in various US images tasks, 
such as lesion/nodule classification, object detection and 
anatomical structure segmentation [22], thus implying DL 

potentiality to improve and standardize even CTS diagnosis 
through an automatic median nerve section identification.

Embracing this idea that DL may provide a reliable support 
to sonographers, we propose the present study in continuity 
with a previous preliminary work in [4]. While deepening our 
DL approach, we extended our dataset including 103 patients 
keeping into account anatomical variants occurrence. The 
contributions of this paper can be summarized as follows:

1.	 Development of an end-to-end CNN, i.e., a Mask 
R-CNN [13], for localization and segmentation of the 
median nerve at the inlet of the proximal carpal tun-
nel, further improved by the insertion of two additional 
transposed layers at segmentation head.

2.	 A comprehensive study conducted on transverse US 
images acquired in daily clinical practice.

3.	 Evaluation of CSA measurement based on the median 
nerve section segmented by the algorithm in comparison 
with manual tracing of nerve boundary performed by 
expert sonographers.

A more medical perspective and an analysis of the clinical 
implication of this work is reported in [26].

1.1 � Related work

Several studies faced the median nerve segmentation problem 
from US imaging involving model-based approaches. In [10], 
the phase-based probabilistic gradient vector flow (PGVF) 
algorithm was used to track sciatic nerve region, obtain-
ing an average Dice Similarity Coefficient (DSC) of 0.90. 
Alkhatib et al. [2], instead, proposed the adaptive median 
binary pattern (AMBP) as the texture feature of a tracking 
algorithm with an accuracy of 95%. Hadjerci et al. [9] pro-
posed a segmentation pipeline including a pre-processing 
stage (filtering, de-noising, contrast enhancement), features 
extraction in a region of interest (ROI) and a support vector 
machine classifier. This method generated an average DSC 
of 0.81. However, even with good results, these approaches 
are parameter sensitive and require a certain degree of time-
consuming manual intervention, especially for selecting the 
initial contour, thus possibly leading to segmentation errors.

After DL has emerged as leading machine learning tool 
in various research fields, including medical US analysis, 
recently some researches approached at the median nerve 
segmentation involving CNNs implementation. Hafiane 
et al. [11] combined a CNN, which detects the ROI around 
the nerve, with the PGVF method to delineate the median 
nerve contour on a dataset composed by US images extracted 
from 10 videos, each with 500 frames, from 10 patients. The 
results revealed an average DSC of 0.85.

In [16] the U-Net architecture [24] was used to 
identify the median nerve in the brachial plexus in US 

Fig. 1   US transverse scan sample acquired at the proximal carpal tun-
nel inlet. A red box includes the median nerve section; asterisks of 
different colors mark other relevant structures: pisiform bone profile 
in blue, semilunar bone profile in purple, ulnar artery in green, digital 
flexor tendons in orange
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images, which were all pre-processed using linear Gabor 
binary patterns before being supplied to the U-Net for 
segmentation. They obtained an average DSC of 0.67, 
thus considering that the use of U-Net to directly seg-
ment the median nerve is not effective.

In [27], a multi-input similarity CNN was proposed to 
track the median nerve in US videos from 50 patients, which 
where asked to perform specific wrist motions. A total of 
100 US videos of 6 s, each with 180 frames, were involved 
in this study, in which one target ROI containing the median 
nerve, manually defined in the first frame, is compared with 
candidate search images to find the more similar on the next 
frame of image stack. It’s worth to notice that this method 
relies on the manual identification of ROIs from expert clini-
cians as input to the model, which is a relevant limitation.

Hong et al. [15] proposed a fully DL framework based on 
U-Net for the localization and segmentation of the median 
nerve in US image sequences. The model, called Deep-
Nerve, integrates also a MaskTrack [21], a video object 
segmentation technique, and a convolutional long short-
term memory, LSTM [14], to process temporal information. 
Six patients were involved and a total of 24 videos, each 
with 420 frames and lasting 17.5 s. The images of the US 
sequences were cropped around the median nerve before 
being used to train and test the model. DeepNerve overcame 
segmentation performances of the conventional active con-
tour model, generating an average DSC value of 0.897. Even 
though it currently reached the best outcomes, this method 
used images cropped around the median nerve as input, and 
the small number of patients involved limited the anatomical 
variability considered in the study.

Even in the very recent work by Festen et al. [6], two 
implementations of the U-Net model were considered on a 
dataset of 505 videos with 5560 annotated frames acquired 
involving 99 patients (with an average of 5.1 videos): one 
model was based on single-frame segmentation, the other 
was made using focus windows and spatial information 
from the previous segmented frame to redirect the focus 
of the search area for the next frame. Best results were 
achieved by the latter model with an average DSC of 0.88, 

but requiring the first frame manual definition by a user 
and ROIs as input to the model.

Despite the promising results, the main limitation of these 
DL methods is that they require the manual identification 
of a ROI around the median nerve, and this poses issues 
relevant to time consumption and inter-clinician variability.

At last, a very recent work conducted by Wu et al. [28] 
evaluated the performance in median nerve segmentation 
of different DL models, including DeepLabV3+, U-Net, 
FPN and Mask R-CNN [13], on US image sequences 
acquired from 36 subjects. The best performances were 
achieved by the Mask R-CNN with Intersection over Union 
(IoU) score close to 0.83. This work, however, focused on 
a small variety of anatomy and excludes unusual morphol-
ogies. In accordance with results achieved by Wu et al. 
[28], and in contrast with the other DL approaches found 
in the literature on this field, in which U-Net based models 
were chosen to face this task, we approached to the median 
nerve segmentation implementing a Mask R-CNN, which 
simultaneously detects target objects in the image and 
from that generates a high-quality segmentation mask for 
each instance. We aimed to provide a unified framework, 
which does not involve preliminary ROI identification or 
parameter-sensitive procedures.

In addition, our dataset is significantly different from 
the ones described in the DL state-of-art [6, 15, 16, 27, 
28]: we focused on the morphology rather then the motion 
of the median nerve, thus considering US single frames 
instead of full frame sequences and involving in the study 
a greater number of patients, covering a higher anatomical 
variability. Table 1 summarizes the characteristics of these 
data sets and highlights the differences with our dataset.

Following sections present and discuss the proposed 
approach in details. The paper is organized as follows: 
in Section 2 our model is explained, the dataset used is 
defined and the experiments conducted are described; 
then, results are presented in Section 3 and discussed in 
Section 4; finally, in Section 5 the overall outcome and 
future perspective of this work are reported in conclusion 
of the paper.

Table 1   Overview of the US dataset characteristics in DL literature for median nerve segmentation, in terms of US acquisition site, dataset size 
(frames selection or frame sequences, total number of images) and patients involved in the study

Acquisition site Frame sequences N. of US images N. of patients

Kakade and Dumbali [16] Brachial plexus forearm No 11508 -
Wang et al. [27] Carpal tunnel Yes (100) 18000 50
Horng et al. [15] Carpal tunnel Yes (24) 10080 6
Festen et al. [6] Proximal carpal tunnel inlet Yes (505) 5560 99
Wu et al. [28] Proximal carpal tunnel inlet Yes (36) 18625 36
Proposed model Proximal carpal tunnel inlet No 246 103
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2 � Materials and methods

In this study, we approached to the median nerve segmen-
tation from transverse US images acquired at proximal 
carpal tunnel inlet deploying an end-to-end deep learning 
algorithm based on a Mask R-CNN implementation [13].

Mask R-CNN [13] is a CNN made of backbone, Region 
Proposal Network (RPN), ROIAlign and three heads, for 
classification, bounding box regression and segmenta-
tion. A schematic representation of the model proposed 
is shown in Fig. 2. As backbone we used the ResNet-101 
[12] in combination with the Feature Pyramid Network 
(FPN) [18], allowing median nerve detection at multiple 
scales, which improves the performance of semantic seg-
mentation over relying on a single scale analysis. As in 
the original implementation by He et al. [13], the RPN 
is used to generate proposals, i.e., rectangular regions in 
the US image with a high probability of containing the 
median nerve, which are predicted starting from anchors, 
which are here built with 5 different sizes and 3 different 
scales. The selected proposals are processed by the ROIA-
lign layer, which resizes the proposals to a constant d × d 
output matrix before feeding them to the heads.

The classification and regression heads are both made 
of two fully connected layers with 1024 neurons and an 
additional third fully connected layer, which has 2 neu-
rons followed by a softmax function to predict the proposal 
class (i.e., median nerve or background) for the classifica-
tion head and 4 neurons, linearly activated, to predicted 
the anchor box correction factors in the regression head. 
The segmentation head, instead, consists of four 3x3 con-
volutional layers with 256 filters, each activated with the 
rectified linear unit (ReLU), and three transposed convo-
lutions with 256 2x2 filters, ReLU activated, which allow 
to recover spatial resolution up to 112x112. In this work, 
architectural changes from the original Mask R-CNN 
are introduced at the segmentation head to improve out-
put mask resolution. In fact, the use of three transposed 

convolution layers instead of only one, as in the original 
Mask R-CNN, allows to increase the output resolution and 
deal with the fragmented and low-contrasted edges of the 
median nerve. To obtain stable convergence, the last layer 
performs a 1x1 convolution and it is activated by a sigmoid 
function.

The proposed method was developed based on the code 
in [1]; training and testing were performed using Tensor-
Flow on a GPU GeForce RTX 2080. Dataset is not avail-
able due to ongoing research, but it could be provided upon 
request.

2.1 � Dataset

For this study, 103 patients with rheumatic and muscu-
loskeletal disorders were recruited at the Rheumatology 
Unit of “Carlo Urbani” Hospital in Jesi (Ancona, Italy). 
All patients signed informed consent and the data acqui-
sition was conducted in compliance with the Helsinki 
Declaration and with the approval of the local ethics 
committee (Comitato Etico Regione Marche, number 
262). The US assessment was carried out using a MyLab 
Class C (Esaote SpA, Genoa, Italy) US system equipped 
with a 6–18 MHz linear probe taking transverse scans in 
accordance with the 2017 EULAR standardized proce-
dures for US imaging in rheumatology [19]. US images at 
the proximal carpal tunnel inlet were acquired bilaterally 
from the patient wrists with the forearm resting supine 
on the examination bed and fingers in neutral position. 
The number of images per patient is variable, but of the 
same order of magnitude, and the few cases in which 
more than one image is acquired from the same patient 
were carefully considered as part of the same set (train-
ing or testing). Twenty-two out of 103 patients (21%) had 
a clinical diagnosis of CTS and some anatomical variants 
were observed and included in the study. The presence of 
the following anatomical variants was registered: bifid 
median nerve, persistent median artery, accessory mus-
cles within the carpal tunnel. The images composing the 

Fig. 2   Schematic representation 
of model architecture, com-
posed by a backbone, Region 
Proposal Network (RPN), and 
the three heads for classifica-
tion, bounding box regression 
and segmentation, all fed from 
the ROIAlign with 100 ROI 
candidates. The segmentation 
head is represented more in 
details as it was provided with 
two additional transposed layers 
compared with original Mask-
RCNN [13]
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dataset were acquired by three sonographers with differ-
ent degrees of experience in musculoskeletal US (G.Sa.: 
1 month with a dedicated intensive training; G.Sm.: 4 
years; E.Fi.: more than 20 years of experience). Images 
considered of insufficient quality were excluded from the 
dataset after a revision made by the expert sonographers. 
Manual annotation was performed by one sonographer 
(G.Sa.) under the supervision of the other two.

The annotations were used as ground truth for the train-
ing of the CNN proposed for the segmentation task. The 
dataset included a total of 246 US images with size equal to 
606x468 pixels. The images with the corresponding masks 
were resized to 512x512 pixels using bilinear interpolation. 
In addition, the images were zero-padded at right-most and 
bottom-most edges to get squared images with a size multi-
ple of 32, as required by the FPN, while keeping the aspect 
ratio unchanged.

2.2 � Experimental setup

The dataset was randomly split by patients, whose demo-
graphic and clinical characteristics matched inclusion cri-
teria designed by rheumatologists prior performing the 
acquisition. To cope with the small amount of data available 
5-fold cross validation was performed. All ablation studies 
and comparison with state of the art models were conducted 
training in 5-fold cross validation and testing on model with 
best validation loss.

Considering the relatively small size of our dataset and 
to reduce the chances of overfitting, during training data 
augmentation was performed on-the-fly by randomly scaling 
of 80% to 120% of original size and translating of − 20% to 
20% on both x- and y-axis independently, and performing 
random rotation between (-10∘, 10∘) and shearing between 
(− 2∘, 2∘). We ensure to consider ranges for the affine trans-
formations for which the nerve remains always visible in 
the images.

To improve training speed and accuracy, we performed 
transfer learning initializing all layers of the model except 
for the input layers of the network heads with weights com-
puted on the COCO dataset [17]. Freezing the backbone 
while focusing on network heads training aimed to increase 
features extraction process through the support of a large 
natural images dataset.

The training was performed following guidelines for 
training CNNs, including dropout and weight decay as 
regularizer. Stochastic Gradient Descent was deployed 
as optimizer for 150 epochs with a learning rate of 0.001 
and momentum of 0.9. A total of 256 anchors per image 
was used, with varying size (32, 64, 128, 256 and 512) and 
aspect ratios (1:1, 2:1, 1:2). These values were chosen con-
sidering the median nerve section dimension. The ROIAlign 
resized proposals to a fixed output size of 14x14 considering 

a total of 100 training ROIs per image, as a trade off between 
accuracy and memory consumption.

The network was trained defining a multi-task cross-
entropy loss on each ROI combining the loss of classifica-
tion, localization, and segmentation mask equally weighted: 
L = αLcls + βLbbox + γLmask, where Lcls and Lbbox are class 
and bounding box losses of Faster R-CNN, respectively, and 
Lmask is the mask loss defined in [23], and α, β and γ are con-
stants, which we set to 1 after experimental investigations.

In addition, from the median nerve segmentation obtained 
the CSA was calculated knowing that a single pixel in the 
US images of our dataset has each dimension equal to 
0.062mm × 0.062mm. The CSA was calculated only on TP 
predictions.

2.3 � Comparison with literature and ablation studies

As mentioned in Section 1.1, a relatively small number of 
studies is focused on DL application on US for CTS assess-
ment and in most of these contributes, as in [16], [15] and 
[6], U-Net models were chosen to get the median nerve seg-
mentation. Hence, even though our dataset is composed by 
still US images instead of US videos as in current literature, 
and thus these works are not superimposable, we conducted 
a performance comparison among our model and some 
U-Net based approaches. In this way, we want to prove the 
effectiveness of the deployment of a Mask R-CNN architec-
ture rather than U-Net models to obtain an end-to-end frame-
work, which accurately segments the median nerve without 
the requirement of any a priori localization or parameter-
sensitive post-processing.

We considered the architectures deployed in [15] of 
the U-Net, which kept the original implementation on this 
state-of-art network from [24], and a Lightweight U-Net, in 
which the network’s depth was reduced from 5 to 4 layers 
and batch normalization was used as a follow-up step to the 
first convolution in each layer to avoid premature conver-
gence. To evaluate the best performances of these models 
in comparison with the proposed one, we trained them using 
the Binary Cross-Entropy (BCE) loss, which is the default 
loss for segmentation models, and also combining the BCE 
loss with the DSC loss (BCE − DSC loss), expected to pro-
vide more stability to the models [8]. The DSC is also the 
metric mainly used to judge model performance in terms of 
segmentation, that was calculated in this work as in Eq. (1):

where Agt and Amask are the ground truth and predicted seg-
mentation areas, respectively.

As ablation study we investigated if a larger backbone 
network yields higher accuracy: thus, we compared the 

(1)DSC =
2× ∣ Agt ∩ Amask ∣

∣ Agt ∣ + ∣ Amask ∣
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Resnet-101 combined with FPN (ResNet-101-FPN) with 
the ResNet-50-FPN. To evaluate if augmentation leads to a 
greater generalization of the model, we included in the abla-
tion studies an experiment training the model without any 
type of augmentation. In addition, we evaluated the effect of 
having a different number of transposed convolutions in the 
segmentation head. This was done to assess the effects of an 
increased resolution of the output of the segmentation head 
on the overall segmentation performance. The segmenta-
tion head was tested with one (Mask28) and two (Mask56) 
transposed convolutional layers, leading to the output size of 
the head of 28x28 and 56x56, respectively. For a fair com-
parison, the ablation studies were performed using fivefold 
cross validation, same training settings and computational 
hardware.

2.4 � Performance metrics

Precision (Prec), Recall (Rec) and Mean Average Precision 
(mAP) are used to evaluate the performance in median nerve 
localization. Precision (Prec) and Recall (Rec) were com-
puted as indicated by Eq. (2) and Eq. (3), respectively:

where TP, FP and FN denote the number of true positives, 
false positives and false negatives, respectively. We consid-
ered a TP prediction if the detected bounding box overlapped 
the bounding box surrounding the ground truth segmentation 
for at least 70% and had confidence higher than 0.98. We 
considered a wrong positive detection as FP, in which the 
predicted bounding box didn’t reach the 70% of overlapping 
threshold with the ground truth bounding box. We consid-
ered a FN when the actual instance was not detected, thus 
no bounding box was predicted at all. The value of 70% as 
threshold for defining TP, FP and FN has been chosen to 
provide more strict and reliable segmentation from nerve 
detection: we considered the standard Pascal VOC evalua-
tion practice [5] with minimum overlapping at 50% between 
predicted and ground truth bounding boxes as not accurate 
enough for properly measure CSA, fundamental parameter 
for CTS diagnosis. Mean Average Precision (mAP), which 
represents the average of the area under the Recall-Precision 
curve, was also computed. The median nerve segmentation 
performance was measured using the DSC as defined in 
Eq. (1).

In addition, the CSA was automatically calculated from 
the median nerve section predicted by the algorithm, know-
ing the dimensions of a single pixel (0.062mm × 0.062mm) 

(2)Prec =
TP

TP + FP

(3)Rec =
TP

TP + FN

in the US images. The CSA was calculated only on TP 
predictions and compared with manual measurements per-
formed by the sonographers measuring the mean absolute 
error (MAE).

2.5 � Statistical analysis

We assessed if the data were normally distributed by using 
Kolmogorov-Smirnov test, using an α value of 0.05. As the 
data are non-normally distributed (the p-value of Kolmog-
orov-Smirnov test is equal to 0.048e-143), we performed 
a Mann Whitney test with α = 0.05 to compare the CSA 
measurements.

The agreement in the CSA measurements between the 
sonographer annotation (i.e., the gold standard) and the 
algorithm was calculated using a two-way mixed-effects 
intra-class correlation coefficient (ICC) with 95% confidence 
interval (CI). The ICC is regarded as excellent if above 0.9, 
as good if between 0.75 and 0.9.

The statistical tests were performed using Python and 
Scipy library.

3 � Results

The proposed model achieved good performances both in 
detection and segmentation of median nerve section: we 
obtained on average mAP, Rec, Prec and DSC equal to 0.936 
± 0.235, 0.938 ± 0.233, 0.916 ± 0.245 and 0.868 ± 0.201, 
respectively. The average inference time for each image on a 
GPU GeForce RTX 2080 was 1.7 s, which could be further 
improved with more powerful computational resources.

Table 2 summarizes the results obtained modifying the 
model architecture by using a different backbone (Mask-
R50) and considering two different output resolution of 
the segmentation head, leading to masks with size 28x28 
(Mask28) and 56x56 (Mask56).

To evaluate the segmentation capability, we compared 
the proposed model with the U-Net and Lightweight U-Net 
models deployed in literature, referring in particular to [15]. 
Table 3 outlines the segmentation performances of these 
models in term of DSC, expressed as mean ± standard devia-
tion value. Visual samples are shown in Fig. 3: sample of 
a healthy median nerve section (Fig. 3a), sample acquired 
from a patient with CTS (Fig. 3b), sample containing a 
prominent persistent median artery (Fig. 3c) and a sample 
of a bifid median nerve (Fig. 3d). Moreover, the CSA was 
measured on the predicted median nerve sections. Without 
considering FP and FN predictions, the values were compa-
rable with the ones manually measured by the sonographer 
with a MAE of 0.918 mm2. On average, CSA measured by 
the sonographer was 10.360 ± 4.520 mm2, while CSA auto-
matically calculated from the predicted segmentation masks 
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was 10.380 ± 4.240 mm2, with no significant difference (p 
= 0.88). The agreement between the automatic algorithm 
measurement and the sonographer manual measurement of 
the CSA is remarkable [ICC 0.97 (95% CI 0.94–0.98)].

4 � Discussion

Despite the increasing interest in US support for CTS assess-
ment and the well-established usefulness as confirmatory 
diagnostic test of the median nerve size measurement, US 
imaging is still struggling to be regularly employed in diag-
nostic work-up. This is partially due to the high competence 
required to perform and interpret US at carpal tunnel level, 
the lack of protocols standardization and the high variability 
among sonographers’ evaluations. Therefore, in this work 
we proposed an end-to-end DL approach to support sonogra-
phers for median nerve compression evaluation. Specifically, 
we approached the median nerve segmentation directly from 
US developing a Mask R-CNN model, obtaining remark-
able results for both localization (mAP = 0.936 ± 0.235, Rec 
= 0.938 ± 0.233, Prec = 0.916 ± 0.245) and segmentation 
(DSC = 0.868 ± 0.201). Moreover, the automatic measure-
ment of the CSA from the predicted median nerve section 
resulted to be in agreement with the manual measurement 
of the CSA (with an average MAE of 0.918 mm2), implying 
the possibility to reduce reliance on sonographer expertise 

in carpal tunnel US evaluation while increasing intra- and 
inter-observer reliability.

Differently to other semantic segmentation models, Mask 
R-CNN solves the segmentation problem on top of localiza-
tion, producing a mask for each recognized object, instead 
of just one final mask, thus leading to more accurate results. 
Previous works, in fact, approached the problem deploying 
U-Net based models [6, 15, 16], but they all involved some 
manual intervention in ROI identification or nerve contour 
definition to obtain good median nerve segmentation. The 
most similar work from a methodological point of view is 
the one from [28], in which the best results are achieved 
implementing a Mask R-CNN model; however, even with 
less data, we achieved higher performance on our dataset, 
which includes a greater number of patients and thus a 
higher variability, confirming the instance segmentation as 
more suitable and better performing than semantic segmen-
tation approaches.

Therefore, we compared our model with different imple-
mentation of U-Net models proving the better outcomes 
reached by our model as evidenced by the DSC values 
reported in Table 3. In addition, Fig. 3 shows some repre-
sentative samples of the region of the median nerve from 
predictions of the proposed model and of the U-Net based 
models. The U-net models often confounded the median 
nerve section with other rounded structures regardless their 
shape or characteristic pattern. The Lightweight U-Net mod-
els, in particular, obtained the worst performances generat-
ing a lot of FP predictions, thus resulting not very effective 
in median nerve localization. Our model, instead, incorrectly 
identifies only the infrequent morphologies, thus all images 
belonging to the same patients which present a rare anatomi-
cal variants at carpal tunnel level.

In few cases, though, our Mask R-CNN didn’t lead to 
a perfect segmentation, but even in such cases it achieved 
better performances than the other models. As displayed 
in Fig. 3, the model struggles to interpret US images with 
relatively infrequent anatomical variants, like in contiguity 
with vessels as in Fig. 3c, and in presence of bifid median 
nerve as in Fig. 3d.

Table 2   Performance evaluation metrics in terms of mean value and 
standard deviation. Mean average precision (mAP), Recall (Rec), Pre-
cision (Prec) and Dice Similarity Coefficient (DSC) are reported for 
the proposed model and the ablation studies conducted over it: Mask-
R50 is the model trained using as backbone Resnet50 combined with 

FPN; NoAug is the model trained using no augmentations on the 
training data; Mask28 and Mask56 are variants of the model with a 
different output resolution from the segmentation head, including one 
and two transposed convolutional layers, respectively

mAP Rec Prec DSC

Mask-R50 0.889 ± 0.277 0.888 ± 0.271 0.862 ± 0.261 0.843 ± 0.208
NoAug 0.891 ± 0.241 0.902 ± 0.294 0.870 ± 0.308 0.838 ± 0.247
Mask28 0.908 ± 0.364 0.923 ± 0.254 0.877 ± 0.285 0.821 ± 0.261
Mask56 0.926 ± 0.235 0.895 ± 0.284 0.899 ± 0.270 0.843 ± 0.219
Proposed Model 0.936 ± 0.235 0.938 ± 0.233 0.916 ± 0.245 0.868 ± 0.201

Table 3   Comparison of segmentation performance in terms of DSC 
of the proposed model and of the U-Net and Lightweight U-Net 
trained using two different losses, i.e., the BCE loss and the BCE − 
DSC loss

DSC

U-NET (BCE loss) 0.783 ± 0.229 
U-NET (BCE − DSC loss) 0.822 ± 0.205 
Lightweight U-NET (BCE loss) 0.780 ± 0.195 
Lightweight U-NET (BCE − DSC loss) 0.764 ± 0.216 
Proposed Model 0.868 ± 0.201
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In addition, poor definition of nerve borders, presence 
of multiple rounded hypoechoic areas, complex fascicu-
lar pattern typical of peripheral nerves and inhomoge-
neities of the nerve section could contribute to make the 
detection harder. Results of the ablation studies reported 
in Table 2 highlighted how a deeper backbone granted 
good outcomes, and it could be appreciated that concat-
enation of several augmentations provides better results 
and more generalization than considering no augmen-
tations on training data. In the future, we could also 

consider introducing augmentations on color, like bright-
ness variation. As in Table 2, the increase in the output 
mask resolution from the segmentation head provided 
generally more accurate results. In fact, there are con-
siderable improvements passing from 28x28 to 112x112 
pixels output mask resolution, and lower performances 
are also visible in Mask56 compared to proposed model. 
In addition, in Table 2 we could appreciate that concat-
enation of several augmentation generalized results bet-
ter than considering single operations, like only rotation 

Fig. 3   Four visual samples of the median nerve section. From top to 
bottom row: original US image, ground truth mask, U-Net trained 
with BCE loss prediction, U-Net trained with BCE − DSC loss pre-
diction, Lightweight U-Net trained with BCE loss prediction, Light-

weight U-Net trained with BCE − DSC loss prediction, proposed 
model prediction. For displaying purpose, only the upper part of the 
US images, which contains the median nerve section, is shown
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and only translation, on training data. In the future, we 
could also consider introducing augmentation on color, 
like brightness variation.

To increase the algorithm generalization, indeed, it is fun-
damental to expand the dataset with US images encompassing 
a wider spectrum of normal anatomy at carpal tunnel level.

In future work, it could be interesting to consider 
pretraining on larger US existing datasets to improve 
model accuracy and reliability. The dataset should also 
be enlarged considering different US image acquisition 
equipment, lower-frequency probes and maybe involving 
more research centers in the study to strengthen generaliz-
ability further. It could be interesting even to approach the 
problem including different diagnostic tests and imaging 
the median nerve at the carpal tunnel from a different 
perspective and considering different wrist motion.

5 � Conclusion

In this work, we proposed a DL approach that proved to 
be a reliable tool for the automatic segmentation of the 
median nerve in US images reaching a mean DSC equal 
to 0.868 ± 0.201, from which directly measure the CSA of 
the median nerve. Even though improvements need to be 
done to be deployed in the clinical practice, the promising 
results obtained have shown the potentiality of such DL 
approach, which could allow to support beginner sonog-
raphers, to introduce standardized protocols and thus to 
possibly support CTS diagnosis through US inspection.

In future, spatio-temporal information [3] should be 
included: other than improving median nerve segmenta-
tion, US videos allow also to evaluate an additional relevant 
parameter for CTS, the median nerve mobility. Distance-field 
regression for accurate nerve delineation could be investi-
gated, too, considering the promising results achieved in 
close fields [7]; and alternatively, improving the detector of 
a Cascade Mask R-CNN as in [30] could be explored to mini-
mize inaccurate localization and low recognition accuracy.
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