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Abstract
The prevalence of the COVID-19 virus and its variants has influenced all aspects of our life, and therefore, the precise diag-
nosis of this disease is vital. If a polymerase chain reaction test for a subject is negative, but he/she cannot easily breathe, 
taking a computed tomography (CT) image from his/her lung is urgently recommended. This study aims to optimize a 
deep convolution neural network (DCNN) structure to increase the COVID-19 diagnosis accuracy in lung CT images. This 
paper employs the sine-cosine algorithm (SCA) to optimize the structure of DCNN to take raw CT images and determine 
their status. Three improvements based on regular SCA are proposed to enhance both the accuracy and speed of the results. 
First, a new encoding approach is proposed based on the internet protocol (IP) address. Then, an enfeebled layer is proposed 
to generate a variable-length DCNN. The suggested model is examined over the COVID-CT and SARS-CoV-2 datasets. 
The proposed method is compared to a standard DCNN and seven variable-length models in terms of five known metrics, 
including sensitivity, accuracy, specificity, F1-score, precision, and receiver operative curve (ROC) and precision-recall 
curves. The results demonstrate that the proposed DCNN-IPSCA surpasses other benchmarks, achieving final accuracy of 
(98.32% and 98.01%), the sensitivity of (97.22% and 96.23%), and specificity of (96.77% and 96.44%) on the SARS-CoV-2 
and COVID-CT datasets, respectively. Also, the proposed DCNN-IPSCA performs much better than the standard DCNN, 
with GPU and CPU training times, which are 387.69 and 63.10 times faster, respectively.
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1  Introduction

Due to the worldwide spread of COVID-19 and its variants 
in all countries, fast and precise diagnosis of COVID-19 is 
necessary. The first step in the COVID-19 diagnosis is to take 
the reverse transcription-polymerase chain reaction (RT-PCR) 
[1]; however, in a few cases, the RT-PCR test of a subject is 

negative but he/she has a problem in breathing [2]. As the 
second line diagnosis, in this state, taking a chest computed 
tomography (CT) image is recommended by specialists [3, 4]. 
If COVID-19 highly infects the lungs, its diagnosis can be eas-
ily made by visual inspection. Nonetheless, when the disease 
is in the early stage, visual diagnosis of this disease carries a 
degree of uncertainty. COVID-19 lung affection has recently 
been diagnosed using X-rays and CT scans [5, 6]. However, 
the accuracy of the diagnosis depends on the expert’s judgment 
[7]. Since differences in pixels’ value can be better recognized 
by image processing techniques, as a qualitative method, this 
paper is aimed to automatically and more precisely diagnose 
the infected CT images [8]. Deep learning (DL) methods can 
automatically identify this condition to solve this weakness [9].

Bones, blood arteries, and other interior organs can be 
seen on CT scans. Thus, they allow clinicians to see interior 
organ size and shape. Unlike X-rays, CT scans can cut a par-
ticular body slice without affecting adjacent slices, and they 
can also reveal detailed images of the patient’s body in a high 
spatial resolution [10]. This information can be analyzed to 
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give spatial information in millimeter resolution. Therefore, 
deep learning approaches have efficiently increased the usa-
bility of chest CT scans for COVID-19 diagnosis [10–12]. 
For example, Grewal et al.  [9] employed DenseNet and 
RNNs to analyze the brain CT images. This hybrid com-
bination, as well as the deficiencies of the RNN, including 
exploding or gradient vanishing and a very long processing 
time, make the proposed model unreliable and slow. Song 
et al. [10] deployed three deep neural models (SAE, DNN, 
and CNN) for lung cancer detection [13]. They found that 
the deep convolution neural network (DCNN) architecture 
outperforms the other models in terms of accuracy. In this 
study, SAE did not provide acceptable results because the 
auto-encoders did not perform well in error reconstruction 
for CT scan images. Gonzales et al. [11] used deep learning 
to study the neural system for lung disease identification and 
acute prediction of the respiratory problem. Although the 
proposed model’s complexity is acceptable, the accuracy is 
not good enough for COVID-19 diagnosis.

It was found that CT scan–based processing approaches 
effectively diagnose COVID-19 disease, as the second line 
diagnosis tool, during the pandemic. For example, Zhao 
et al. [12] evaluated the relationship between chest CT 
scan results and pneumonia in COVID-19 participants. 
Since collecting plenty of COVID-19 CT scan images of 
COVID-19 cases is not accessible to most researchers, 
Zhao et al. [13] created a publicly available dataset with 
363 healthy individuals and 349 COVID-19 instances from 
216 patients. Gozes et al. [14] studied COVID-19 posi-
tive cases identification and tracking by processing their 
CT images, which provided a 95% detection rate [14]. In 
another attempt, Zheng et al. [15] suggested a deep learn-
ing algorithm to detect COVID-19 on 3D CT images. Ai 
et al. [16] used a pre-trained UNet to predict infection in 
630 patients’ CT scans and could achieve 97% sensitivity 
[15]. Most of these methods either suffer from low accu-
racy or high complexity.

Due to the limitation of lung CT images belonging to 
COVID-19 cases, the COVID-CT dataset was publicly 
accessible as the first public dataset in this field. After 
releasing this dataset, several studies have focused on 
using this dataset for COVID-19 detection from the CT 
images [16–18]. The best accuracy, Fl-score, and area 
under the curve (AUC) were previously attained at 85%, 
86.5%, and 94% in reference [17], which is not accept-
able for COVID-19 diagnosis. Soares et al. [19] recently 
published the SARS-CoV-2 CT-scan dataset containing 
2482 CT scan lung images. Due to the volume of this 
dataset, training deep learning on this number of images 
imposes a high computational burden [20]. Therefore, a 

precise and time-efficient COVID-19 detector is required. 
After a thorough examination of different methodologies 
published in recent years for identifying and diagnosing 
COVID-19, it is evident that the DCNN is one of the most 
widely employed techniques [21]. Therefore, this research 
suggests using DCNN’s exceptional capacity as a detec-
tor of COVID-19 positive cases in an efficient computing 
manner.

Recently, metaheuristics have aimed to reduce DCNN 
design complexity by constructing an architecture with-
out human involvement. Several metaheuristic algorithms 
have been successfully used for this purpose including 
genetic programming (GP) [22], sine-cosine algorithm 
(SCA) [23], particle swarm optimization (PSO) [24], 
Chimp optimization algorithm (ChOA) [25], and genetic 
algorithms (GAs) [26]. However, learning from massive 
data sets is impractical due to high computational costs 
and a time-consuming learning process. The EvoCNN 
model [11] uses GA to evolve DCNN structures efficiently 
[11]. EvoCNN saves time by teaching the model in just ten 
epochs rather than the LEIC’s 25,600 epochs.

Regardless of various metaheuristics merits, the 
No-Free-Lunch (NFL) theorem [27] asserts that no 
metaheuristic technique can satisfactorily address all 
optimization issues. In order to solve various optimization 
challenges, scientists have tried to create new metaheuris-
tics or improve current ones. In order to solve the chal-
lenge of DCNN structure developing without human 
involvement, we use powerful nature-inspired algorithms 
called sine-cosine algorithms (SCA) [28]. In addition to 
the NFL theorem, another motivation for choosing SCA 
is that the SCA is a fast nature-inspired algorithm in 
which the random solutions converge to a proper solu-
tion in a predefined number of iterations compared to the 
other nature-inspired algorithms. In order to overcome 
the restrictions of fixed-length encodings, a novel flexible 
encoding approach is presented in this study.

As a result, the proposed model’s primary purpose is to 
create and implement a functional SCA that automatically 
discovers suitable DCNN structures. To sum up, the paper 
has the following contributions:

(1)	 Creating a new SCA method that efficiently uses an 
innovative candid solution encoding technique to 
encode a DCNN architecture.

(2)	 Developing a technique to learn variable-length DCNN 
structures without the fixed-length encoding limitation 
of existing SCA. In this regard, a new enfeebled layer 
will be proposed to create a variable-length searching 
agent.
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(3)	 Developing a fitness evaluation technique that uses a 
subset of the dataset rather than the entire dataset to 
speed up the developing process.

The rest of this paper is organized as follows. Section 2 
summarizes DCNN, SCA, and CT scan datasets. Section 3 
presents the proposed variable-length encoding strategy. 
Section 4 presents the empirical results and discussion. Sec-
tion 5 represents the conclusion.

2 � Background and materials

This section describes the structure of the LeNet-5 DCNN, 
SCA, and CT scan datasets.

2.1 � DCNN

Among the new DCNN models, LeNet-5 [29] is a simple 
and efficient one. We utilize this network because it has a 
simple structure and requires fewer parameters. As shown in 
Fig. 1, convolution, subsampling, and fully connected layers 
are three primary components of DCNNs. Furthermore, fea-
ture maps, i.e., FMk

ij
 and sub-sampling operation, are respec-

tively performed by Eqs. (1) and (2).

where b and � are respectively the bias values and learning con-
stants, and also �n×n

i
 are inputs. The last fully connected layer 

then performs classification. This layer has only one neuron 
because our problem is a binary task (COVID and non-COVID).

2.2 � Sine‑cosine algorithm

SCA is a meta-heuristic mathematical inspired algorithm 
that uses the trigonometric properties of sine and cosine 

(1)FMk
ij
= tanh((Wk × x)ij + bk)

(2)�j = tanh(�
∑

N×N

�n×n
i

+ b)

functions. Compared to the other nature-inspired algorithms, 
SCA is a fast manner in which the random solutions con-
verge to a proper solution in a predefined number of itera-
tions. The algorithm is started from an initial population, 
and the candidate solutions are updated according to Eqs. 
(3-4) [28].

where Xt
i
 denotes the position of the current solution in the 

tth iteration and ith dimension. The parameter r1 is linearly 
decreased by increasing the number of iterations (t), where 
parameter a is a fixed number and T is the final number of 
iterations. In addition, parameters r2 , r3 , and r4 denote ran-
dom numbers, which are varied in the ranges of [0, 2�] , 
[0,2], and [0,1], respectively. pi stands for the best solution 
found so far in the ith dimension, and |.| is the absolute value. 
The value of a in Eq. (4) can control the trade-off between 
exploration and exploitation. As a ≫ 1, r1 starts from a more 
significant value which provides a suitable exploration, and 
by increasing the iteration number of t, the exploration is 
decreased while exploitation is increased. Parameter r4 ran-
domly chooses the sine or cosine function based on Eq. (3), 
leading to insert the randomness to the parameter r1 to guide 
the solution Xt

i
 . This is because r1 is a linearly decreasing 

parameter and suffers from the lack of randomness in both 
magnitude and sign [28]. Sine and cosine functions are 
orthogonal to each other, and the probability of being posi-
tive or negative for a random angle is independent of each 
other. The sine and cosine functions have a periodic structure, 
enabling a response to accumulating around another reac-
tion. As a result, it is guaranteed that the specified location 
between the two responses will be identified. Thus, the solu-
tions should thoroughly search in a search space to locate the 
target within the search region. This capability is obtained by  

(3)Xt+1
i

=

{
Xt
i
+ r1 × sin

(
r2
)
×
|||r3p

t
i
− Xt

i

||| , r4 < 0.5

Xt
i
+ r1 × cos

(
r2
)
×
|||r3p

t
i
− Xt

i

||| , r4 ≥ 0.5

(4)r1 = a − t
a

T

Fig. 1   The LeNet-5 architecture
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modifying the amplitude of the sine and cosine values. Fig-
ure 2 illustrates the cosine and sine amplitude reduction in 
the course of iterations.

As shown in Fig. 2, SCA traverses the searching space 
whenever the sine and cosine values are in ranges [−2,−1) 
and (1,2). On the other hand, the algorithm recognizes the 
searching space when they are between [−1,1].

2.3 � Datasets

SARS-CoV-2 [20] and the COVID-CT [30] are two CT-
scan image datasets used in this study, which their detail is 
explained in the following subsections.

2.3.1 � SARS‑CoV‑2 CT‑scan dataset

The SARS-CoV-2 originates from Sao Paulo hospitals. This 
dataset contains 2482 CT scan images from 120 individu-
als, where 1252 CT scan images are from SARS-CoV-2 
patients, and 1230 are from non-infected individuals with 
various respiratory illnesses. Figure 3 illustrates positive and 
negative COVID-19 case samples. The first raw contains 
some COVID-19-infected instances, while the second one 
contains normal (uninfected) cases. The eXplainable Deep 
Neural Network technique (xDNN) has been presented as 
a baseline for this dataset, which may reach an F1-score of 
97.31%. Everyone can access the data set in the link below:

Fig. 2   Range reduction of the 
sine and cosine values during 
iterations

Fig. 3   Typical CT images from the SARS-CoV-2 CT-scan dataset
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www.​kaggle.​com/​plame​nedua​rdo/​sarsc​ov2-​ctscan-​datas​et
As demonstrated in Fig.  4, the SARS-CoV-2 has no 

extraordinary uniformity in terms of contrast and image sizes.

2.3.2 � COVID‑CT dataset

The COVID-CT dataset1 [30] contains COVID-19-infected 
CT scans of patients. This dataset comprises 349 images 
from 216 patients. The methodology used to create the 
COVID-CT dataset is described as follows: First, 760 pre-
prints on COVID-19 were acquired from medRxiv2 and 
bioRxiv3, between January 19th and March 25th. Several 
preprints describe patient instances with COVID-19, while 
some of them provide CT images, which are accompanied 
by subtitles that describe the clinical findings revealed by 
the CTs. PyMuPDF4 is used to extract the PDF files of pre-
prints’ low-level structural information and find all embed-
ded images. The quality factors of the images (including 
resolution, size, etc.) are preserved. The captions for the 
images are identified using structural information. All CT 
images are hand-picked using the derived images and cap-
tions. Then, for each CT image, the caption is reviewed to 
determine whether it is positive for COVID-19 or not. If 
the caption cannot be determined, the text evaluating this 
image in the draft is retrieved to make a determination. 
Metadata taken from the paper is also gathered for each CT 
image, including the patient’s age, location, gender, scan 
time, medical history, scan time, COVID-19 severity, and 
radiologist report.

Finally, 349 CT images with a positive label for COVID-19 
are collected. These CT scans come in a variety of sizes. The 
lowest, average, and highest heights are 153, 491, and 1853, 
respectively. The widths at the lowest, average, and maximum 
are 124, 383, and 1485, respectively. These images belong to 
216 patients. Similar to the first dataset, the second dataset 
contains no predefined image contrast and size modification. 
As a result, we begin by improving the quality and size of the 
low-contrast images, which is outlined in [31], as follows:

•	 The scan center obtains the CT image.
•	 A grayscale image is created by converting the color 

image to a grayscale image.
•	 The images are adjusted to a variety of sizes.
•	 Various filtering techniques are used to eliminate noise 

from the gray photo.
•	 The image’s contrast is increased through the use of the 

adaptive histogram equalization filtering technique.
•	 The acquired image is the output image that has been 

improved.

Fig. 5 shows an unedited version and its upgraded ver-
sions. Table 1 lists the datasets used in this study.

3 � Methodology

This section describes the IP-based SCA (IPSCA) approach 
to improving DCNNs in detail.

3.1 � Algorithm description

The IPSCA method is structured in Algorithm  1. The 
population will be updated in three steps: encoding candid 
solutions, updating positions, and checking for termination 
Fig. b.

Fig. 4   The representation of 
two images with different sizes 
and contrast

1  https://​github.​com/​UCSD-​AI4H/​COVID-​CT
2  https://​www.​medrx​iv.​org/
3  https://​www.​biorx​iv.​org/
4  https://​github.​com/​pymup​df/​PyMuP​DF
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3.1.1 � Candid solution encoding strategy

The Network IP address structure influences the IPSCA 
encoding approach. The DCNN structure contains three lay-
ers, each with different parameters. Table 2 lists the succes-
sive layers. We can create a fixed-length Network IP address 
and subdivides it to allow different DCNN layers.

The IPSCA encoding scheme is based on the IP 
address. The DCNN architecture has three types of layers: 

Fig. 5   An illustration of the 
standard image (left image) 
and its enhanced version (right 
image)

Table 1   The datasets’ specification

Dataset Number SARS-CoV-2 CT-
Scan [20]

COVID-
CT [22]

COVID-19 Patients 60 216
Images 1252 349

Non-COVID-19 Patients 60 55
Images 1230 463

Initialize the individuals with a candid solution encoding strategy   t
iX empty

while termination criterion is not satisfied 
update searching agents’ position by Eq. 5;
evaluate the searching agents’ fitness;
update t

iX ; 
end while

Algorithm 1   Framework of IPSCA

Table 2   The information of the 
DCCN’s layers with an example

Layer Type Parameter Range No. of bits Example

Convolutional Filter size [1, 8] 3 3(011)
No. feature maps [1,128] 7 5(000 0101)
Stride size [1, 4] 2 3(11)
Summary 12 011 000 0101 11

Pooling Kernel size [1, 4] 2 3(11)
Stride size [1, 4] 2 3(11)
Type:1(max),2(ave) [1, 2] 1 1(1)
Place holder [1,128] 6 8(00 1000)
Summary 11 11 11 1 00 1000

Fully-connected No. Neurons [1,2048] 11 128(00010000000)
Summary 11 00010000000

Enfeebled Place holder [1,2048] 11 128(00010000000)
Summary 11 00010000000

2936 Medical & Biological Engineering & Computing (2022) 60:2931–2949
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convolutional, pooling, and fully connected. As shown in 
Table 2, each type of layer has different numbers and ranges 
for various parameters.

An IP-based encoding scheme’s length must first be 
determined. In terms of convolutional layers, three critical 
parameters, i.e., the number of feature maps, filter size, and 
stride size, are tabulated in the parameter column of Table 2. 
Second, based on datasets’ size, the parameter ranges are set 
to [1, 8], [1,128], and [1, 4], respectively. The decimal values 
of 3, 5, and 3 may be translated into digitized strings of 011, 
000 0101, and 11, where the digitized string is completed 
with zeros until the length exceeds the proper amount of bits, 
as shown in the value column in Table 2. Finally, the sum-
mary row of the convolutional layer in Table 2 displays the 
total number of bits of 12 and the sample digitized string 011 
000 0101 01 by coupling the strings of the three mentioned 
parameters. The total amount of bits and the sample binary 
string can be obtained from pooling and fully-connected lay-
ers using the same technique as convolutional layers, which 
is shown in Table 2. Since the maximum bit number for a 
layer is twelve, and an IP address contains eight bits (one 
byte), the 12-bit IP address will require two bytes.

As stated in Table 3, all DCNN layers’ subnets must be 
in CIDR format. Since DCNN layers are categorized into 
three types, three subnets must support each type. The sub-
net mask has the length of the IP address 0.0 plus the con-
volution layer’s bit numbers (12 bits). The subnet mask is 
0.0/4 (0.0–15.255). The pooling layer’s initial IP address 
is 16.0, created by adding 1 to the final convolution lay-
er’s IP address. As with the convolution layer, the subnet 
mask’s length is five, resulting in 16.0/5. As a result, subnets 
16.0–23.255 reflect the pooling layer. A similar issue occurs 
with the fully connected layer subnet 24.0/5, covering 24.0 
to 31.255. Table 3 depicts the subnets’ arrangement.

To adapt DCNN topologies at differing lengths, some lay-
ers in the IP-coded candid solution vector are disabled after 
initialization. Therefore, the enfeebled layer and subnet are 

introduced to compensate. Using all three DCNN layers, 
the enfeebled subnet has an IP address range of 32.0/5, as 
illustrated in Table 3. A binary string of a specific layer is 
filled with zeros until it reaches the length of two bytes, at 
which point the subnet mask is applied, and it is converted 
to an IP address by dividing a single byte with full stops, as 
shown in Table 4. Accordingly, in Table 2, 011 000 1000 
01, one can get the 2-byte digitized string 0000 0011 and 

100001. The first byte was translated to 6 and the second to 
33 in order to get the IP address 6.33.

Before calculating searching agents, each layer must be 
transformed into a 2-byte IP address. First, some charac-
teristics like max-length and max-totally-connected must 
be explained. Table 5 shows these parameters. The array 
holding position data will be double the size of a single 
byte, with each byte indicating one dimension of the candid 
solution.

As an example, consider this candid solution vector to 
better understand the DCNN coding and its variable-length 
topology. Pooling (P), convolution (C), fully connected (F), 
and enfeebled layers can all be represented by IP addresses 
in the DCNN architecture shown in Fig. 6. The size of the 
related candid solution vector is illustrated in Fig. 7.

After several SCA updates, the 9th and 10th dimensions 
of the candid solution vector could turn into 18 and 139, 
respectively, which transforms the 3rd IP address showing 
an enfeebled layer into a pooling layer, thereby changing the 
candid solution’s DCNN architecture to five layers. In sum-
mary, as demonstrated in this example, the IPSCA-encoded 
searching agents may represent variable-length DCNN 
architectures, i.e., 3, 4, and 5 in this case.

Table 3   Four utilized subnets for four types of DCNN's layers

Layer type Convolution Fully con-
nected

Pooling Enfeebled

Subnet 
(CIDR)

0.0/4 16.0/5 24.0/5 32.0/5

IP range 0.0–15.255 16.0–23.255 24.0–
31.255

32.0–39.255

Table 4   IP addresses’ examples Layer type Convolution Fully connected Pooling Enfeebled

Binary (0000)011 000 1000 01 (00000)011 11111001 (00000)01 01 
0 00 1011

(00000)01111111001

IP address 6.33 27.249 18.139 35.249

Table 5   The list of parameters

Parameters Parameter definition Value

Max-length Max. length of DCNN layers 13
N Population size 40
Max-totally connected Max. fully connected layers (at 

least one fully-connected layer is 
required)

3

K The training epoch number before 
evaluating the trained DCNN

10

No. batch The batch size for evaluating the 
DCNN

200

2937Medical & Biological Engineering & Computing (2022) 60:2931–2949
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3.1.2 � Initializing population

To construct our population, first, the population size is 
decided, and then, individuals are generated until the pop-
ulation size is attained. Each empty vector of individuals 
includes a network interface comprising the IP address and 
subnet information for that individual. Each following layer 
may be loaded with a convolution, pooling, or enfeebled 
layer. Before the final fully connected layer, any four-layer 
types may be used. The final layer is composed of a fully 
connected layer. A random IP address will be assigned to 
the subnets for each layer.

3.1.3 � Fitness assessment

Before fitness evaluation, it is required to choose a weight 
initialization method. The Xavier weight initialization 
method [32] is chosen because it has been shown to be 

effective and is used in several deep learning networks. 
Individuals will be trained with the settings for their 
DCNN architecture, which have been previously decoded, 
for the first half of the training dataset (as described in 
Algorithm 2). Once the partially trained DCNN is batch-
evaluated on the second segment of the training dataset, a 
sequence of accuracies will be generated. Following that, 
we take an average over the accuracies of each individual to 
determine the candid solution’s fitness Fig. c.

The next step is to modify the candid solution’s position 
by applying the coefficient values for each byte in the candid 
solution. In order to ensure that each interface in the candid 
solution vector has access to the same subnet, each interface 
should have a unique IP address assigned to it. Each inter-
face limitation, such as the second interface capacity to serve 
as a convolution layer, pooling layer, or enfeebled layer, may 
vary based on its position in the candid solution vector.

6.33 (C) 18.139 (P) 3.58 (C) 27.249 (F) 35.249 (E)

Fig. 6   An IP address from a candid solution with five DCNN layers

6 33 18 139 3 58 27 249 35 249

Fig. 7   The illustration of an encoded candid solution vector

Initialize
The training epoch number (k)
The Population (P)
The batch size (batch_size);
The training set (Dtrain)
The fitness evaluation dataset (Dfitness)

for candid solution c in P 
i = 1
i = i +1
while i ≤ k
Train the DCNN’s connection weights described by candid solution c;
end while

accuracy = Batch-evaluate the trained DCNN on the Dfitness dataset with the batch_size
store each batch’s accuracy;
Calculate the mean (accuracy);
Fitness value mean (accuracy);
P calculate the fitness value of the candid solution c
end for
return P

Algorithm 2   The evaluation of fitness function

2938 Medical & Biological Engineering & Computing (2022) 60:2931–2949



1 3

4 � Simulation results and discussion

In general, we attempt to incorporate IPSCA in order to 
improve the diagnostic accuracy of the DCNN. The number 
of searching agents (population size) is set to 50 for all tests, 
and the maximum number of iterations is set to 200. DCNN 
is configured with a batch size of 0.0002 and a learning rate 
of 11. Moreover, epoch number is chosen between 1 and 
10 for each assessment, and it is emphasized that prior to 
feeding images to DCNNs, they must be down-sampled to 
31 × 31 pixels by the bicubic down-sampling method [33]. 
It should be noted that the two datasets were used to train 
and test the model. leave-one(patient)-out cross-validation 
is used for model evaluation. The leave-one-out cross-
validation procedure is appropriate for this kind of dataset 
because the size of the dataset is small, and an accurate esti-
mation of the model performance is necessary. All experi-
ments were conducted in MATLAB R2019b on a computer 
equipped with an Intel Core i7-7700HQ processor running 
at a maximum speed of 3.8 GHz, Windows 10, and 16 GB 
RAM. DCNN-performance IPSCA’s is compared to that 
of IPPSO [24], variable-length genetic algorithm (VLGA) 
[34], variable-length NSGA-II (VLNSGA-II) [35], variable-
length brain storm optimization algorithm (VLBSO) [36], 

IP-Modified PSO (IPMPSO) [37], variable-length biogeog-
raphy-based optimizer (VLBBO) [5], and variable-length 
ant colony optimization (VLACO) [38] on the two utilized 
datasets. Table 6 summarizes the parameters of the SCA 
and additional benchmark models. The population size for 
all algorithms is set to 50.

4.1 � Evaluation metrics

Sensitivity, accuracy, specificity, F1-score, and precision are 
all performance metrics used in this research. The metrics’ 
equations are represented in Eqs. 5 to 9.

The number of true negative cases is denoted by TN, the 
number of true positive cases is denoted by TP, the number 
of false-positive cases is denoted by FP, and the number of 
false-negative cases is denoted by FN.

4.2 � Performance evaluation

Although various robust deep convolutional neural network 
structures have been proposed recently, we employ the basic 
DCNN architecture because the computational cost is an 
essential factor in the training process. The first experiment 
predicts a probabilistic score for each image in both data-
sets, SARS-CoV-2 CT-Scan and COVID-CT, indicating the 
possibility of each image being diagnosed as a COVID-19 
positive case. This probability is then compared to a pre-
defined cut-off value to determine whether the inputs are 
infected samples or not. In the extreme case, the intended 
model should get a probability of one for infected samples 
and zero for normal samples. The EPG distributions for 
SARS-CoV-2 and COVID-CT are depicted in Figs. 8 and 
9. By definition, infected images have a higher probability 
than uninfected ones. Figures 10 and 11 illustrate the con-
fusion matrices for SARS-CoV-2 CT-Scan and COVID-CT 
datasets, respectively.

(5)Sensitivity (TPR) =
TP

P
=

TP

TP + FN

(6)Specificity (TNR) =
TN

N
=

TN

TN + FP

(7)Accuracy =
TP + TN

TP + FP + FN + TN

(8)Precision =
TP

TP + FP

(9)F
1
-score =

TP

TP +
1

2
(FP + FN)

Table 6   The setting parameters and initial values

Algorithms Parameters Value

VLBBO Pc 1
The range of migration prob-

ability
[0, 1]

Max (I) and Max(E) 1
Step size 1
Mutation probability 0.005

VLGA and 
VLNSGA-II

Type Real coded
Crossover Single-point (1)
Selection Roulette wheel
Mutation Uniform (0.01)

VLACO �
0

0.000001
Q 20
q0 1
Pg 0.9
Pt 0.5
A 1
� 5

VLBSO M 5
P5a 0.2
P6b 0.8
P6biii 0.4
P6c 0.5
K 20
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Tables 7 and 8 tabulate the specificity, sensitivity, preci-
sion, accuracy, and F1-score of the proposed DCNN-IPSCA 
and other compared methods for the second experiment, i.e., 
IPPSO, VLGA VLNSGA-II, VLBSO, IPMPSO, VLBBO, 
and VLACO. The findings show that DCNN-IPSCA has 
the best accuracy score of 99.18% for the SARS-CoV-2 and 
98.22% for the COVID-CT dataset, respectively. Addition-
ally, the second-best result is 99.01% and 98.01% for SARS-
CoV-2 CT-Scan and COVID-CT, respectively, obtained using 

DCNN-VLNSGA-II. The optimal outcome is emphasized in 
bold type.

Comparing pattern recognizers is done by using a vari-
ety of metrics, but only one metric can provide a big pic-
ture of the performance of benchmarks crossing a range 
of thresholds. We analyze the benchmarks’ performance 
across all potential cut-off threshold values using the pre-
cision-recall curve to solve this problem. This illustration 
depicts the link between recall and precision rates. Fig-
ures 12 and 13 illustrate the precision-recall curves for the 

Fig. 8   The EPG for the SARS-CoV-2 CT-Scan dataset

Fig. 9   The EPG for the COVID-CT dataset
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proposed DCNN-IPSCA and the other eight benchmarks 
on the SARS-CoV-2 and COVID-CT datasets. Another 
appropriate figure for depicting the TPR as a function of the 
FPR is the receiver operating characteristic (ROC) curve. 
Thus, Figs. 15 and 16 show the ROC plots for the proposed 
DCNN-IPSCA and its counterparts. These figures show that 
the proposed DCNN-IPSCA outperforms the other variable-
length DCNNs on both datasets.

Convergence speed is a crucial metric when comparing 
metaheuristic algorithms. To facilitate comparisons, in addi-
tion to the plots depicted above, the convergence curves of 
comparative benchmarks are shown in Fig. 14.

The two preceding plots show that the proposed DCNN-
IPSCA model outperforms the other competitive models. In 
addition, it can be concluded that the canonical DCNN has 
nearly the worst performance among the rivals.

4.3 � Time complexity analysis

There is a trade-off between accuracy and processing time. 
The accuracy of the suggested model was compared to that 
of the other benchmarks in the preceding section. The pro-
cessing time of the proposed model is compared in this sec-
tion to form a complete comparison. We constructed the 
proposed DCNN-IPSCA and comparison networks on an 
Intel Core i7-7700HQ CPU and an NVidia Tesla K20 GPU. 
Table 9 shows the time values for the 2633 training images 
and 659 test images. Furthermore, the best outcome is high-
lighted in bold type.

The results of Table 9 indicate that the proposed variable-
length DCNN (DCNN-IPSCA) performs much better than 
the other benchmarks, with CPU and GPU training times 
being 63.10 and 387.69 times faster, respectively. It is con-
cluded that DCNN-IPSCA requires less than 0.001 seconds 
for each image in testing and training by examining the total 
number of processed images, i.e., 3392.

4.4 � Sensitivity analysis

This subsection evaluates the sensitivity of the control 
parameters employed in the proposed DCNN-IPSCA. The 
parameter a specifies the SCA reduction rate, which affects 
the convergence process. The second and third parameters 
(NLayer and Nbatch) are concerned with the network structure. 
The analytical findings illustrate the parameters’ robustness 
and input sensitivity. The associated tests were conducted 
using four different parameter settings [23]. A lot of parame-
ter combinations were determined using an orthogonal array, 
as shown in Table 10. The model is trained for each possible 
combination of the parameters.

Additionally, Table 11 shows the mean square errors 
(MSEs) achieved for each test data. Figure 15 illustrates the 
trend in the values of the parameters in accordance with the 
data in Table 11. It can be observed from the results that 
NLayer = 5, a = 1, and Nbatch = 10 produce the best results.

4.5 � Class activation mapping

Along with classification accuracy, we search for areas 
inside an image that contribute to categorization. Class 
activation mapping (CAM) [39] is utilized for this purpose. 

SARS-CoV-2 CT-Scan dataset
N
o
n
C
o
v
id

1225 5

C
o
v
id
1
9 4 1248

NonCovid Covid19

Fig. 10   The confusion matrix for the SARS-CoV-2 CT-Scan dataset

COVID-CT dataset

N
o
n
C
o
v
id
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9 2 347

NonCovid Covid19

Fig. 11   The confusion matrix for the COVID-CT dataset
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As a result, the discriminative areas, which are specific to 
each class, are highlighted by returning the DCNN model’s 
probability to the final convolutional layer of the associated 
model in this manner.

Following the final convolutional layer, the activation 
map of the ReLU layer yields the CAM for a given image 
class. Class grades are derived from the weighted average 
of each activation mapping. The innovation of CAM is the 

Table 7   The results of 
benchmark models for SARS-
CoV-2 dataset

The best results are presented in the bold type

Model Precision (%) F1-score (%) Accuracy (%) Sensitivity (%) Specificity (%)

DCNN 94.86 93.75 93.47 94.44 93.32
DCNN-IPPSO 95.44 94.21 94.33 94.75 93.12
DCNN-VLBSO 95.63 93.22 94.44 93.54 92.12
DCNN-IPMPSO 96.32 95.87 95.63 95.37 95.75
DCNN-VLGA 94.44 95.01 95.88 94.32 94.55
DCNN-VLBBO 96.33 96.77 96.01 95.92 96.02
DCNN-VLACO 97.32 96.25 96.96 96.33 96.79
DCNN-VLNSGA-II 97.99 97.27 97.85 96.91 96.83
DCNN-IPSCA 98.23 97.99 98.32 97.22 96.77

Table 8   The results of 
benchmark models for 
COVID-CT dataset

The best results are presented in the bold type

Model Precision (%) F1-score (%) Accuracy (%) Sensitivity (%) Specificity (%)

DCNN 95.25 94.39 94.56 94.88 94.22
DCNN-IPPSO 95.32 94.22 94.45 93.89 94.97
DCNN-VLBSO 96.48 95.36 95.53 94.65 95.75
DCNN-IPMPSO 97.47 96.25 96.32 95.87 96.02
DCNN-VLGA 95.63 94.87 96.85 95.43 94.63
DCNN-VLBBO 97.01 95.33 96.99 95.89 94.65
DCNN-VLACO 97.15 96.65 96.25 95.42 95.32
DCNN-VLNSGA-II 98.22 96.56 97.99 95.33 96.98
DCNN-IPSCA 98.95 97.45 98.01 96.23 96.44

Fig. 12   The precision-recall and ROC curves for the SARS-CoV-2 dataset
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combined total pooling layer used after the last convolu-
tional layer depending on the geographic location to pro-
vide the connection weights. Thereby, it allows recogniz-
ing the appropriate regions inside a CT scan that contrast  

the class specificity before the softmax layer, which can 
boost trust in the findings.

Figure  16 displays a typical example of the feature 
map for input images, i.e., COVID19 and non-COVID19. 

Fig. 13   The precision-recall and ROC curves for the COVID-CT dataset

Fig. 14   The convergence curves for utilized benchmark algorithms
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Figure 17 displays a typical example of masked images for 
COVID19 and non-COVID19 input. Consequently, Figs. 18 
and 19 depict the discriminative zones for various com-
mon CT-scan images. Figures 18 and 19 demonstrate the 
CAM demonstration results for the “COVID19” and “Non-
COVID19” examples, respectively, which the proposed 
model properly predicts and also reveals the discriminative 
region for its choice.

Clearly, various areas are highlighted (reddish color) in 
the COVID19 instances. This demonstrates that the system 
does a successful categorization. Medical professionals and 
radiologists can benefit from this visual representation of 
deep learning models, which provides a second viewpoint 
and a deeper understanding of these models.

4.6 � Discussion

SCA and deep learning techniques were used for COVID-
19 evaluation using CT images, and the findings showed 
that our model, which was developed using COVID-CT 
and SARS-CoV-2 datasets, had good generalizability in 
terms of the CT images it was trained on. On the SARS-
CoV-2 and COVID-CT datasets, the proposed model 
yields final accuracy of (98.32% and 98.01%), the sensi-
tivity of (97.22% and 96.23%), and specificity of (96.77% 
and 96.44%), respectively. Our approach outperforms the 
DCNN architecture search model on all of the measures 
we have discussed. COVID-19-negative patients are 
appropriately identified as negative in the great major-
ity of instances, reducing the likelihood of incorrectly 
classifying COVID-19-negative cases as positive and 
reducing the cost to the healthcare system. Additional 
testing with limited data revealed that the model cur-
rently performs adequately despite its shortcomings. In 
the real world, where diverse and large datasets may not 
be easily available, this indicates that our methodology is 
still useful with limited data. Finally, we used the CAM 
visualization approach to better understand and describe 
the suggested deep learning model for COVID-19 test-
ing. The model validates its performance by comparing 
it to the radiologist’s interpretation of the COVID-19 
scans. New visual markers to aid clinical practitioners in 
additional manual screening can be discovered by exam-
ining normal and COVID-19 CT images. Our models’ 
performance in COVID-19 testing has been demonstrated 
in the results. The severity of COVID-19 will be closely 
monitored in the future, and we will use CT scans to 
gather more data that can help us against the pandemic, 
as well. After doing descriptive assessments on the mod-
els, we will discover critical CT image features that may 
be used to identify COVID-19 and facilitate screening by 

Table 9   The comparison of test and training time of benchmark net-
works implemented on GPU and CPU

Model CPU vs. GPU Training time Testing time P-value

DCNN GPU 126 sec 603 ms 0.0012
CPU 1 h, 7 min, 

2 s
55 sec 0.0031

DCNN-
IPPSO

GPU 1200 ms 825 ms 0.0051
CPU 2 min, 13 s 1 min, 56 s 0.047

DCNN-
VLBSO

GPU 747.3 ms 625 ms 0.0056
CPU 2 min, 21 s 2 min, 01 s 0.0084

DCNN-
IPMPSO

GPU 2200 ms 933 ms 0.031
CPU 3 min, 42 s 2 min, 03 s 0.0051

DCNN-
VLGA

GPU 633 ms 402 ms 0.021
CPU 2 min, 41 s 1 min, 52 s 0.0054

DCNN-
VLBBO

GPU 733.7 ms 601 ms 0.0063
CPU 2 min, 33 s 1 min, 05 s 0.012

DCNN-
VLACO

GPU 1258 ms 823 ms 0.0063
CPU 3 min, 42 s 2 min, 03 s 0.0001

DCNN-
VLNSGA-II

GPU 1012 ms 871 ms 0.047
CPU 3 min, 25 s 2 min, 01 s 0.005

DCNN-
IPSCA

GPU 325 ms 216 ms 0.021
CPU 58 s 1 min, 02 s N/A

Table 10   The parameters’ 
specification

Level Nlayer a Nbatch

1 3 0.5 6
2 4 1 8
3 5 1.5 10
4 6 2 12

Table 11   The MSE for various control parameter values

The best results are presented in the bold type

Experiments Parameters Result (MSE)

Nlayer τ Nbatch

#1 1 1 1 0.0625
#2 1 0.5 2 0.0439
#3 1 1.5 3 0.0239
#4 1 0.5 4 0.0129
#5 2 2 2 0.0409
#6 2 1 1 0.0339
#7 2 2 4 0.0109
#8 2 1.5 3 0.0079
#9 3 0.5 1 0.0199
#10 3 1 4 0.0089
#11 3 1.5 2 0.0039
#12 3 2 3 0.0019
#13 4 0.5 4 0.0249
#14 4 1 3 0.0110
#15 4 2 2 0.0051
#16 4 1.5 1 0.0029
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clinical practitioners. There has not been any real-world 
clinical validation of these models yet, even though they 
have done well on public datasets. Therefore, we plan to 
put our system through its paces in a clinical setting and 
talk to radiologists about how they can use it and what is 
their opinion about the models we have developed. As a 
result, our models will continue to improve in the future.

5 � Conclusion

This paper investigated the efficiency of the SCA to deter-
mine the optimal structure of DCNNs without the need for 
manual effort to have speed and accuracy at the same time. 
Afterward, three improvements based on regular SCA were 
devised to reach the goal. First, a new encoding approach 

based on IP address was proposed; then, an enfeebled 
layer was proposed to cover specific candid solution vector 
dimensions. Finally, the learning process separated large 
datasets into smaller pieces. The proposed DCNN-IPSCA 
was investigated on the SARS-CoV-2 and COVID-CT 
datasets to have a detailed comparison. In this regard, the 
performance of the DCNN-IPSCA was evaluated by the 
standard DCNN, and DCNNs evolved by IPPSO, VLGA, 
VLNSGA-II, VLBSO, IP-MPSO, VLBBO, and VLACO 
in terms of five well-known metrics: sensitivity, accuracy, 
specificity, F1-score, precision, and ROC and precision-
recall curves. The comparison study empirically proved 
that the presented system outperforms competing mod-
els, with a final accuracy of 98.32% on the SARS-CoV-2 
and 98.01% on the COVID-CT dataset. Also, the pro-
posed variable-length DCNN (DCNN-IPSCA) performed 

Fig. 15   The results of the control parameters

a) b) 

Fig. 16   Typical example of the feature map for input images: a COVID19 and b non-COVID19
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a) COVID19

b) Non-COVID19

Fig. 17   Typical example of masked images for a COVID19 and b Non-COVID19 input
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much better than the standard DCNN, with GPU and 
CPU training times being 387.69 and 63.10 times faster, 
respectively. There are numerous opportunities for further 
research, including the use of DCNN-IPSCA in various 
image processing tasks. Researchers can examine IPSCA 
in order to solve challenges involving multi-objective 
optimization. Additionally, a unique fitness function can 
also be created to model the issue more appropriately. The 

usefulness of oppositional-based learning, chaotic maps, 
orthogonal learning, and Gaussian walks can be explored to 
optimize the DCNN-performance as further study directions.

Funding  This work was supported by Professor Xiaogang Luo of 
Chongqing University.

Fig. 18   The CAM demonstration results for the two typical COVID19 examples

Fig. 19   The CAM demonstration results for the two typical non-COVID19 examples

2947Medical & Biological Engineering & Computing (2022) 60:2931–2949



1 3

Data availability  The resource images can be downloaded using the 
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