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Abstract
The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography 
(sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second 
to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 
10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of 
six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: 
Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. 
Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, 
activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set 
of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative 
hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters 
were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This 
method could be used for planning rehabilitation treatments.

Keywords Diabetes mellitus · Diabetic neuropathies · Stair climbing · Gait analysis · Electromyography · Clustering

1 Introduction

Diabetes is one of the most widespread chronic diseases with 
the number of affected subjects increasing every year [1]. 
It causes many severe complications, amongst which the 
most common is diabetes peripheral neuropathy (DN). Up to 
50% of all diabetics are affected by DN that may lead to the 
development of foot ulcers, loss of motor units in muscles 
and reduction of muscle volume [2, 3].

Changes in the neuromuscular system caused by DN were 
widely analysed by researchers in terms of kinematics, kinet-
ics and surface electromyography (sEMG). The majority of 

these studies analysed muscle activity during gait or stair 
climbing in healthy (CS) and diabetic subjects with DN 
(DNS) and without neuropathy (DS).

Muscle functioning during gait was studied by Kwon [4], 
who detected an earlier activation of calf muscles in DNS, 
with the prolonged activity of Tibialis Anterior. Co-contrac-
tion of agonist and antagonist muscles at the ankle and knee 
joints was identified more often in DNS. Akashi [5] reported 
no differences in peak activation of muscles between CS and 
DNS; however, delayed activation of Vastus Lateralis and 
Lateral Gastrocnemius was observed in DNS with history 
of ulcers. Sawacha [6] detected early peak of activation of 
Rectus Femoris in both DS and DNS at the beginning of the 
stance phase, delay in activation of Gastrocnemius Lateralis 
during midstance and Rectus Femoris and Gluteus Medius 
during terminal swing in DS.

Muscle activity during stair negotiation was studied by 
Onodera [7], who indicated that during stair ascent (SA) 
the dorsiflexion of the ankle joint was reduced. During stair 
descent (SD) reduced plantar flexion of the ankle joint and 
reduced activity of Tibialis Anterior, during the phase of 
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weight acceptance, were observed. Handsaker [8] reported 
delayed activation of knee and ankle extensor muscles in 
DNS, and knee extensors active longer during SA. Obtained 
results may be related to insufficient sensory feedback as 
mentioned by Spolaor [9], whose findings supported the 
hypothesis that changes caused by diabetes reduce the abil-
ity of subjects to perform some daily tasks. During a second 
phase of SA a delay in activity of Tibialis Anterior, Rectus 
Femoris and Extensor Digitorum Communis was detected 
in [9].

It should be mentioned that state of the art of sEMG anal-
ysis generally focus the attention on parameters such as the 
peak of the envelope occurrence and its value [5–7, 9, 10], 
and that the only work which reported results on the dura-
tion and onset and offset timing of the sEMG signal is the 
one of Handsaker et al. [8]. However the latter only analysed 
the activity of Vastus Lateralis and Gastrocnemius Medialis 
during gait and stair negotiation. Furthermore the results 
presented in the literature are not consistent, in some cases 
reduced or increased activity, and delayed and anticipated 
one was recorded on the same muscles (i.e. duration of Tibi-
alis Anterior contraction in DNS; shortened in Sawacha et al. 
[6], Akashi et al. [5] and prolonged in Sacco et al. [10]). 
Understanding which parameters of sEMG are the most use-
ful for discriminating between CS, DS and DNS could be 
useful to support clinicians in their clinical decision mak-
ing process. For this purpose in the current study different 
sEMG parameters were extracted from the sEMG signals 
and a classification of subjects based on these parameters 
was proposed as alternative to the clinical driven classifica-
tion [11].

Cluster analysis is a statistical technique that enables 
quantitative, objective identification of homogeneous groups 
in a population of interest [11–15]. For instance, the descrip-
tive parameters which are placed within the same group are 
more similar to the ones placed in the other groups [12, 16]. 
Cluster analysis application on sEMG signals has not been 
widely used so far, yet it was successfully adopted as a tool 
for classifying subjects’ populations [17–20] and to guide 
medical treatment choices [21].

The aim of this work was twofold: on one side to find out 
which parameters of sEMG are the most useful to discrimi-
nate between CS, DS and DNS and second to verify if these 
parameters were influenced by the task acquired. To this 
extent, the present contribution presents a classification of 
CS, DS and DNS subjects driven by sEMG and spatiotem-
poral parameters derived from a dataset acquired during both 
gait and stair climbing. Hierarchical cluster analysis algo-
rithms with different distances and linkage methods were 
adopted.

The main hypothesis is that the most appropriate clas-
sification will be obtained when analysing all the available 
parameters in both examined tasks. To successfully test this 

hypothesis, two secondary hypotheses were tested: (i) one 
of the examined tasks can discriminate subjects better than 
the other one and (ii) one category of parameters obtained by 
sEMG signal (i.e. onset-offset activation and activity dura-
tion vs peak of signal envelope) could better discriminate 
subjects than the other one.

2  Methods

2.1  Subjects

The sEMG measurements were performed at the Bioen-
gineering of Movement Laboratory of the University of 
Padua and at the Padua University Clinics. DNS and DS 
were recruited amongst patients attending the Department 
of Metabolic Disease of the University of Padua. The con-
trol subjects (CS) were selected from hospital personnel. 
The inclusion criteria for DNS and DS incorporated type 1 
or type 2 diabetes, ability to walk, no ulcers, no neurologi-
cal disorders (other than DN), no orthopaedic problems or 
cardiovascular disease. All CS ought to be in good state of 
health, without diabetes, pathologies at the lower limbs and 
cardiovascular disease. All subjects gave written informed 
consent. The protocol for each study was approved by the 
Ethics Committee of the Padua University Clinics [6, 9]

Subjects’ numerosity was defined based on the power 
analysis [22] carried on previously published data [6] con-
sidering the value of the envelope peak as a variable; a num-
ber of 8 subjects was found to be sufficient for our analysis 
and 10 CS, 10 DS and 10 DNS were analysed compressively 
(see Table 1 for demographic parameters).

2.2  Clinical examination

Subjects’ feet were checked for skin lesions, bone deformi-
ties, ulcerations, signs of infection and previous amputa-
tions. Height (m) and weight (kg) were recorded and BMI 
(kg/m2) was calculated (see Table 1). Neurological evalua-
tion included the assessment of symptoms and signs compat-
ible with peripheral nerve dysfunction [23]. The Michigan 
Neuropathy Screening Instrument (MNSI) questionnaire 
[24] which evaluates motor and sensory symptoms was com-
pleted (based on MNSI score > 3). The physical examination 
consisted of (1) patellar and ankle reflexes; (2) assessment of 
muscle strength by ability to walk on heels, bilateral dorsal/
plantar flexion of the feet, legs flexion/extension and abduc-
tion/adduction of forearms and fingers, all against resistance; 
(3) sensory testing carried out on the index finger and on the 
hallux (pin-prick with a disposable 25/7-mm needle), touch 
(10-g Semmens Weinstein monofilament, pathologic if no 
response on three out of 10 sites) and vibration perception 
threshold (VPT; 128-MHz tuning fork and Biothesiometer, 
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pathologic if > 25 V); (4) pain sensitivity; (5) electroneu-
rophysiological study; and (6) Index of Winsor (ankle-to-
brachial index). The ulceration risk in 9 DNS was low and 
medium in 1 DNS [25]. Cardiovascular autonomic tests 
were also performed: they were considered positive if two 
or more tests were abnormal. HbA1c was also assessed. 
Each patient had at least an ophthalmologic examination, 
a urinary albumin-to-creatinine ratio, a carotid artery Dop-
pler ultrasound, an ankle-brachial index determination and 
an electrocardiogram in the preceding 3 months. The pres-
ence of DN only was classified as low risk of ulceration, 
the presence of both DN and peripheral arterial diseases 
was classified as medium risk and the presence of DN and 
previous history of foot ulcers or amputation was classified 
as high risk. Clinical characteristics of the studied subjects 
are reported in Table 1.

2.3  Instrumental evaluation

During SA and SD tasks and gait acquisitions, a BTS 
motion capture system (6 cameras, 60–120 Hz), 2 Bertec 
force plates (FP4060-10) and a 16-channel sEMG system 
(POCKETEMG, 16 channels, BTS Padova) were used. All 
instruments were synchronised. Setup is depicted in Fig. 1.

Muscles performing most essential roles in walking and 
stair negotiation were chosen [26] and amongst them the 
ones who revealed characteristic alterations in subjects 

with diabetes and DN [6, 9]. In particular the activity of 
Rectus Femoris (RF), Gluteus Medius (GM), Tibialis Ante-
rior (TA), Gastrocnemius Lateralis (GAL), Peroneus Lon-
gus (PL) and Extensor Digitorum Communis (EXD) was 
recorded bilaterally at 1000 Hz during stair negotiation and 
gait. Sensors were positioned according to Blumenstein 

Table 1  Demographic data and the duration of performed tasks

The statistically significant differences between different subject populations (CS, DS and DNS) are reported for each group.
BMI body mass index, HbA1c glycated haemoglobin.

CS ANOVA p < 0.05
Z test p < 0.05

DS ANOVA p < 0.05
Z test p < 0.05

DNS ANOVA p < 0.05
Z test p < 0.05

Total subjects 10 # 9 # 9 #
Gender (%) 30 male

70 female
# 80 male

20 female
# 67 male

33 female
#

Age (years) 61.2 (± 5) # 62.0 (± 9) # 62.0 (± 8) #
Height (cm) 1.68 (± 0.13) # 1.7 (± 0.03) # 1.72 (± 0.07) #
Weight (cm) 69.6 (± 17) # 77 (± 7) # 81 (± 15) #
BMI (kg/m2) 24.4 (± 3) # 26.5 (± 2) # 27.9 (± 4) #
HbA1c (mmol/ml) / # 7.1 (± 0.6) # 7.9 (± 0.9) #
Years of disease / # 12.6 (± 6) # 23.2 (± 12) #
Duration gait (ms) 1.07 (± 0.08) CS vs DNS 1.08 (± 0.14) # 1.11 (± 0.14) CS vs DNS
Duration stance phase (ms) 0.64 (± 0.06) # 0.65 (± 0.12) # 0.67 (± 0.09) #
Duration swing phase (ms) 0.43 (± 0.04) # 0.43 (± 0.03) # 0.43 (± 0.05) #
Stance phase (%) 59.5 (± 2.3) # 59.9 (± 3.7) # 60.9 (± 2.2) #
Swing phase (%) 40.5 (± 2.3) # 40.1 (± 3.7) # 39.1 (± 2.1) #
Duration low step UP (ms) 0.62 (± 0.09) CS vs DS and DNS 0.55 (± 0.10) DS vs CS 0.61 (± 0.06) DNS vs CD
Duration low step down (ms) 0.61 (± 0.10) # 0.61 (± 0.09) # 0.57 (± 0.08) #
Duration high step up (ms) 0.69 (± 0.14) CS vs DS 0.59 (± 0.09) DS vs CS 0.69 (± 0.10) #
Duration high step down (ms) 0.67 (± 0.16) CS vs DS and DNS 0.56 (± 0.11) DS vs CS 0.59 (± 0.07) DNS vs CS

Fig. 1  Experimental setup depicting subject performing analysed 
tasks
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and Basmajian [27] and to Blanc and Dimanico [28] after 
appropriately cleaning and preparing the skin. Sensors were 
24 mm of diameter and positioned 1 cm apart as described 
in Spolaor et al. [9]. sEMG was used for recording of muscle 
activity; motion analysis system and force plates were used 
for detecting spatiotemporal parameters during level walk-
ing and SA and SD. The IOR_gait [29] was adopted for the 
kinematic assessment.

Each subject performed 3 tasks — stair ascent, stair 
descent and gait. The following procedures were followed:

Stair: Patients were asked to ascend and descend a stair 
made of two steps 3 times at self-selected speed (2 steps, 
total height of 32 cm, each step 16 cm height × 81 cm 
wide × 28 cm depth, at the Bioengineering of Movement 
Lab (Department of Information Engineering of the Uni-
versity of Padova)); each step was positioned on top of 
a force plate and mechanical coupling assured with a 
double-sided tape according to [26].

Subjects were instructed to ascend the stairs, stop, turn 
around, wait for 1 s on the highest step and then to proceed 
with stair descent. A minimum of three SA and SD tasks 
were collected per subject.

Gait: Subjects were asked to walk barefoot at their pre-
ferred walking speed on the 8-m gait laboratory with two 
embedded force plates (Bertec, Canada) as in [9, 30]. A 
minimum of three walking trials per subject were col-
lected.

2.4  Data processing

Three trials per subject were considered in both gait and 
SA and SD analysis. The sEMG activity of 6 muscles 
was recorded bilaterally at 1000 Hz during both analysed 
activities.

Spatiotemporal parameters were defined by means of kin-
ematic and kinetic data: during gait analysis the duration of 
gait cycle, swing phase and stance phase was estimated, as 
well as the percentage of the stance and the swing phases 
within the gait cycle by combining the trajectory of the 
marker applied on the calcaneus with the force plate data; in 
step negotiation analysis durations of low step up (the phase 
when the leading leg reaches the first step of the stair), high 
step up (the phase when the trailing leg rises up and takes 
place on the second step), low step down (the phase when 
the leading leg begins to descend from the stair and reaches 
the first step of the stair) and high step down (the phase 
when the trailing leg reaches the floor) were calculated as in 
Spolaor et al. [9] by combining the trajectory of the mark-
ers applied on the calcaneus, the 1st and the 5th metatarsal 
heads, with the force plate data.

From the recorded sEMG signals the following param-
eters were extracted:

Envelope analysis: Signals were band pass filtered 
between 10 and 450 Hz with a 5th-order Butterworth fil-
ter and full wave rectified. The envelope was computed by 
low-pass filtering the signals with a 4th-order Butterworth 
filter and a cutoff frequency of 5 Hz as in McFadyen and 
Winter [28]. The activations of the left and right muscles 
were analysed; for each gait cycle, the envelope of the 
signal was computed. The peak of each muscle sEMG 
activity as a percentage of the medium value in the cycle 
(PoE%), the timing of the peak with respect to the gait, 
SA and SD cycle (PPoE%) were defined, respectively, as 
in [31] and as in [9].
Bonato-Knaflitz double threshold: The signals were fil-
tered using a filter removing heartbeat, notch filter for 
50 Hz, band pass filtered with a double 5th-order Butter-
worth filter and full wave rectified. The cutoff frequencies 
varied from 5 to 15 Hz for high-pass filter, and between 
450 and 495 Hz for low-pass filter. A double-threshold 
statistical detector proposed by Bonato [32] was applied 
for signal processing. The method [32] is based on the 
selection of the first threshold ζ, then by observing the 
chosen number of successive samples (m). Only if at 
least the chosen number of samples (r0), which is the 
second threshold in the observed interval, is above the 
first threshold, the signal is detected. The value of ζ is 
based on the level or the estimation of the background 
noise. All three parameters ζ, r0, and m are selected to 
minimise the false-alarm probability value and maximise 
the detection probability based on SNR value of each sig-
nal. Background noise is estimated for each signal based 
on the interval of subject’s static standing. Only activation 
intervals longer than 30 ms are accepted [32]. The values 
of duration of muscle activity and the onset and offset of 
muscle activity intervals, for each gait and stair negotia-
tion cycle, were detected.

2.5  Statistical analysis

Clustering is a multivariate technique aiming at classifying 
subjects based on the provided characteristics [12]. After a 
successful classification, formed clusters should be highly 
homogenous [12, 33]. Subjects’ similarities are compared 
to form groups including the most similar subjects from the 
input population. In the agglomerative hierarchical cluster-
ing each observation forms its own cluster, which is com-
bined with the most similar one, using the chosen similarity 
measure. The process continues until all observations are 
contained in a single cluster [12].
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In this contribution, hierarchical clustering with differ-
ent linkage methods and distances was applied as follows: 
Euclidean, Manhattan and Hamming distances, together 
with Ward’s, complete and average linkage methods. The 
input data consisted of at least 90 vectors of data (3 cycles 
of each task for 30 subjects).

The parameters used for clustering were peak and posi-
tion of the envelope within the task (i.e. gait cycle, SA and 
SD cycles), duration of each muscle activity, onset and off-
set of muscle activity and spatiotemporal parameters esti-
mated on CS, DS and DNS during gait and stair negotiation. 
Clustering methods were implemented in Orange Canvas 
(orange.biolab.si).

In the present work 5 different sets of vectors were used 
as input to the cluster analysis:

Solution 1 — Envelope peak and position, duration, onset 
and offset activation intervals and spatiotemporal param-
eters during gait and stair negotiation activities.
Solution 2 — Envelope peak and position, spatiotemporal 
parameters during gait and stair negotiation activities.
Solution 3 — Duration, onset, offset activation intervals 
and spatiotemporal parameters during gait and stair nego-
tiation activities.
Solution 4 — Envelope peak and position, duration, 
onset, offset activation intervals and spatiotemporal 
parameters during gait.
Solution 5 — Envelope peak and position, duration, 
onset, offset activation intervals and spatiotemporal 
parameters during stair negotiation.

By considering that for each subject at least 3 repetitions 
of the same parameter were extracted for each task, one sub-
ject was assigned to a specific cluster only when at least 75% 
of the features were falling within the same cluster [11, 34]. 
This approach was used to avoid including possible outliers 
within the found groups.

No a priori hypotheses were formulated on the number of 
possible clusters, and visual inspection of dendrograms was 
adopted as selection criterion.

Furthermore a one-way ANOVA (SPSS, IMB Corp, Ver-
sion 19.0) was performed across subjects classified into dif-
ferent clusters for each solution, on clinical and both sEMG 
and spatiotemporal parameters. A significance level of 
p < 0.05 was adopted for statistical analysis, using a Bon-
ferroni correction when appropriate.

3  Results

The data of 1 DNS and 1 DS were excluded from the study 
due to presence of artefacts in the signals; therefore, the data 
of 10 CS, 9 DS and 9 DNS were analysed during both tasks.

Age, years of disease and HbA1c showed no significant 
differences amongst groups. The hierarchical cluster analysis 
using Ward’s agglomerative linkage and Hamming distance 
considering either all of the parameters or their subset led 
to the definition of five to ten separate clusters (C1–C10): 
five clusters when considering all the parameters (Solution 
1), ten clusters when considering all the parameters during 
gait task (Solution 4) and six clusters in other cases (Solu-
tions 2, 3 and 5).

Within the Solution 5 six clusters were obtained: all DS 
were classified into a single cluster C3, and CS were divided 
into two clusters C2 (including only CS and they represented 
the 22% of CS population) and C6 (including CS and DS, 
with the 78% of CS mixed with the 6% of DNS); DNS were 
classified into 3 different clusters, C1 (37% of the sample), 
C4 (12% of the sample) and C5 (45% of the sample) (Fig. 1).

Within the Solution 4 ten clusters were obtained: all 
groups of subjects were divided into multiple clusters; the 
majority of which were heterogeneous. CS were classified 
into 6 different cluster; amongst them, cluster C3 and C10 
were homogenous. DS were classified into 8 different clus-
ters; in half of them subjects were mixed with CS and in the 
other half with DNS. DNS were classified into 4 different 
clusters that included also DS (Fig. 2).

Within the Solution 3 six homogenous clusters were 
formed: all groups of subjects were classified into two dis-
tinct clusters. CS formed C3 and C6 (80% and 20% of CS, 
respectively); 89% of DS were included in C4 and 11% in 
C5, 51% of DNS were classified into C1 and 49% into C2 
(Fig. 2).

Within the Solution 2 six clusters were obtained: CS were 
classified into 3 different clusters. C1 and C3 were homog-
enous and included 20% and 70% of subjects, respectively; 
C5 included 10% of CS mixed with 33% of DS; and the 
remaining 67% of DS formed C6. DNS were divided into 
two clusters; C2 included 33% of DNS and C4 included 67% 
of DNS (Fig. 2).

All the above solutions (from 2 to 5) were discarded (see 
Supplementary Material for a more detailed description).

Only Solution 1, driven by all the parameters during 
both tasks, was considered as providing clinically meaning-
ful clusters: all DS were classified into a single cluster C3; 
CS and DNS were divided in two clusters, respectively (CS 
— 20% in C2 and 80% in C4, DNS — 33% in C1 and 67% 
in C5). Each cluster included data of a single population 
(Fig. 3).

The clinical characteristics of subjects within clusters 
found in the Solution 1 were reported in Fig. 4, where we 
observe that C1 and C5 displayed similar percentage of sub-
jects affected by Autonomic Neuropathy (67% of subjects 
in C1 and 50% of subjects in C5) and differed in terms of 
presence of Sovra-Aortic Trunks Arterial disease, Arterial 
disease (reported only in subjects from C1). Furthermore a 
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Fig. 2  Distributions of percentage of CS, DS and DNS in clusters in all analysed solutions

Fig. 3  The clinical characteristics of subjects within clusters found 
in Solution 1: Neuropathy – brown, Autonomic Neuropathy – red, 
Microalbuminuria – darg orange, Arterial Disease – bright orange, 

Sovra-Aortic Trunks Arterial Disease – yellow, Coronary Artery Dis-
ease – green. Colours refer to the online version of the figure
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higher percentage of subjects affected by Microalbuminuria 
was recorded in C1 (67% of subjects in C1, 33% of subjects 
in C5).

The demographic data, spatiotemporal gait and SA/SD 
parameters within the clusters found in the Solution 1 are 
presented in Table 2. Statistically significant differences 
(p < 0.05) in the demographic parameters amongst the clus-
ters were observed in weight (clusters C4 and C1, C2) and 
BMI (clusters C1 and C4). In terms of gait spatiotempo-
ral parameters, subjects from C5 displayed the following 
statistically significant differences: longer duration of the 
gait cycle in comparison with all the other clusters; longer 
stance phase in C5 with respect to C2, C3 and C4; and 
longer duration of the swing phase with respect to C1. The 
latter was also detected in C4 with respect to C2. It is worth 
mentioning that even though C2 and C4 included only CS 
and C1 and C5 only DNS, the differences within the same 
population of subjects determined the association with dif-
ferent clusters. The analysis of the time parameters during 
stair negotiation revealed that a significantly longer low step 
up and high step down duration was revealed in subjects 
from C2; a longer low step down duration was observed in 
subjects from C1, and a longer high step up duration was 
detected in subjects from C1, C3 and C4.

The sEMG characteristics of each cluster are shown 
in Figs. 5, 6, 7 and 8. Results were organised as follows. 
First we introduce the differences amongst the clusters with 
respect to the sEMG parameters, and secondly, we describe 
how these parameters distributed the 3 cohorts of subjects 
within each cluster.

When considering the different tasks the differences 
observed in terms of sEMG were listed below referred, 
respectively, to gait and stair:

Gait. In terms of the peak of the envelope the main 
statistically significant differences were the following: 
in RF, a decreased value in C2 with respect to all the 
other clusters; in PL, an increased value in C1 and a 
decreased value in C2 with respect to all the other clus-
ters; and in GM, an increased value in C5 with respect 
to all the other clusters.

In terms of occurrence of the peak of the envelope the 
main statistically significant differences were detected in C2 
and C4 with respect to all the other clusters: in RF, a delayed 
peak of activity (in both C2 and C4); in PL, an earlier peak 
of activity (in C2); and in GL, a delayed peak of activity 
(in C2).

In terms of duration of muscle activity the main statis-
tically significant differences were the following: in RF, a 
longer duration in C5 with respect to C3 and C4; in TA, a 
shorter duration in C1 with respect to C2 and C4; in GM, a 
longer duration in C2 with respect to all the other clusters; 
and in GL, a shorter duration in C5 with respect to C1, C3 
and C4.

In terms of muscle activation timing the main statistically 
significant differences were the following: in RF and GM, 
an earlier offset in C1, C3 and C5 during stance phase and 
a lack of muscle activation in C1 and C5 during terminal 
swing; in TA, an earlier offset of activity in C1, C3 and C5; 
in PL, an earlier activation onset in C3 and C5; and in GL, 
an earlier onset of activation in C1 and C3.

Stair ascent. In terms of the peak of the envelope the main 
statistically significant differences were the following: in 
TA, a decreased value in C3 and C4 with respect to all 
the other clusters; in GL, an increased value in C3 and a 
decreased value in C4 with respect to all the other clus-
ters; and in GM, an increased value in C5 and a decreased 
value in C3 with respect to all the other clusters.

In terms of the occurrence of the peak of the envelope the 
main statistically significant differences were the following: 
in GM, an earlier position in C5 with respect to all the other 
clusters and an earlier position in all the other muscles in C5 
with respect to C3 and C4.

In terms of duration of muscle activity a significantly 
longer duration of GM was detected in C3 with respect to 
C4 and C5.

In terms of muscle activation timing a significantly 
delayed activation onset was detected in C1 in all the ana-
lysed muscles.

Stair descent. In terms of the peak of the envelope the 
main statistically significant differences were the follow-
ing: in RF, a decreased value in C2 with respect to all 
the other clusters; in PL, an increased value in C5 and a 
decreased value in C4 with respect to all the other clus-
ters; and in GM, an increased value in C5 and a decreased 
value in C3 with respect to all the other clusters.

In terms of the occurrence of the peak of the envelope 
the main statistically significant differences were the fol-
lowing: in TA and GM, a later position in C4 with respect 

Fig. 4  Distribution of percentage of CS, DS and DNS in clusters in 
Solution 1
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to C3 and C5 and in PL and GL, a later position in C4 with 
respect to C3.

When considering the three cohorts of subjects, CS 
were classified into two different groups; even though this 

distinction was not supported by statistical differences in 
the demographic data, it can be found in the spatiotemporal 
parameters and sEMG characteristics: C2 revealed shorter 
gait cycle, stair ascent and descent phases than C4. In terms 

Fig. 5  Peak of envelope in the percentage of medium value during 
each task for clusters found in Solution 1: C1 – black, C2 – red, C3 
– green, C4 – yellow, C5 – violet. Statistically significant difference 

(p < 0.05) between clusters is signed with asterisk in the colour of 
cluster with respect to which a significant difference was found. Col-
ours refer to the online version of the figure



 Medical & Biological Engineering & Computing

1 3

of sEMG C4 presented a longer duration of GM activity, an 
earlier activation of PL and a delayed onset of RF and EDC 
during gait in comparison with C2. Moreover, in C2 lower 
values of the peak of the envelope were observed during gait 

in all analysed muscles, whilst higher values of the peak of 
the envelope were observed during stair negotiation.

All DS were classified into a single cluster (C3), whilst 
DNS were divided into two groups (C1 and C5), which 

Fig. 6  Position of the peak of envelope during each task for Solution 
1: C1 – black, C2 – red, C3 – green, C4 – yellow, C5 – violet. Statis-
tically significant difference (p < 0.05) between clusters is signed with 

asterisk in the colour of cluster with respect to which a significant dif-
ference was found. Colours refer to the online version of the figure
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differed in terms of muscle activity of PL, EDC, GM and 
GL. For instance, during gait subjects from C5 displayed an 
earlier activation of PL and EDC, delayed activation of GM 
and delayed and shortened activation of GL. Furthermore, 
the value of the peak of the envelope was higher in all the 
muscles except from PL. Oppositely, during the stair ascent 
all muscles displayed a delayed onset of muscle activity.

4  Discussion

The aim of our study was to answer the question: which task 
and set of sEMG parameters is more suitable to provide clear 
guidance to people in charge of preventing diabetic foot? 
First of all we hypothesised that we could classify subjects 
with diabetes and diabetic neuropathy based only on sEMG 
parameters and secondly, that the most clinically appropri-
ate classification would have been obtained when analysing 
a large set of sEMG parameters (i.e. intensity and timing 
related parameters) during different tasks characterizing 
daily living activities. Our results confirmed these hypoth-
eses. Hierarchical clustering was employed using different 
distances and linkages (i.e. Euclidean, Manhattan and Ham-
ming distances with Ward’s, complete and average linkage 
methods) and the best results were obtained when applying 
Ward’s agglomerative linkage with Hamming distance to the 
whole set of features extracted from two tasks, namely gait 
and stair ascending (see Fig. 2).

The results obtained with the approaches that adopted 
only a partial set of features did not lead to well-separated 
clusters and aggregated subjects belonging to different clini-
cal groups or formed very small clusters (see Supplementary 
Material). This suggests that muscular alterations derived 
from diabetes and its complications are too complex to be 
fully described with a few parameters retrieved within a sin-
gle task. In our work sEMG activity was used to drive the 
diabetic subject classification on parameters extracted from 
two tasks.

.Results showed that the data of CS subjects were clas-
sified into 2 different clusters (C2 and C4) including only 
healthy subjects, and this result is in accordance with litera-
ture investigating variability in normal gait patterns [17, 18, 
34]. Activation and deactivation patterns of RF, GM and TA 
observed in both C2 and C4 were in line with the normal 
activation pattern of these muscles reported by Benedetti 
et al. [34]. It is worth mentioning that these two groups were 
different in terms of spatiotemporal parameters, and that 
subjects from C2 seemed to be more stable during monopo-
dalic support [9]. All DS were classified into a single cluster 
(C3) and this suggests that all examined subjects presented a 
similar muscle activation pattern during both tasks.

Differently from DS, DNS were divided into two groups 
(C1 and C5): subjects classified into C1 performed stair 
negotiation tasks faster than subjects grouped in C5, 
which suggests the presence of a decreased stability dur-
ing monopodalic support [9]. The earlier onset of muscle 

Fig. 7  Duration of contraction in percentage of task cycle for Solu-
tion 1: C1 – black, C2 – red, C3 – green, C4 – yellow, C5 – violet. 
Statistically significant difference (p < 0.05) between clusters is 

signed with asterisk in the colour of cluster with respect to which a 
significant difference was found. Colours refer to the online version 
of the figure
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activity during stair ascent detected in the same cluster sup-
ports previous findings reporting that DNS are unable to 
efficiently control their weight bearing whilst stair ascending 
[8, 9, 35]. The lower values of GM during stair ascent and of 
TA, PL and GM during stair descent in subjects from C1 find 
agreement with the sensorimotor disturbances connected 
with DN [8, 9]. Furthermore, it is worth noticing that this 
cluster included subjects diagnosed with microalbuminuria 
and peripheral arterial disease. Both clusters including DNS 
were characterised by an earlier peak of the envelope regis-
tered in GM and a shorter duration of its contraction differ-
ently from the clusters including only CS, thus suggesting 

that DNS try to cope with the ankle rigidity [6], the reduced 
stabilisation and the decreased joint mobility of the hip [36, 
37]. The earlier position of the peak of the envelope and the 
shorter activity recorded in GL finds agreement with what 
is observed by [4] about a reduced stabilisation of the knee 
in DNS. The shorter duration and the earlier onset of TA 
activity are also in accordance with the literature [7, 10], 
suggesting an inappropriate foot rollover during the stance 
phase in DNS. Furthermore, the delayed position of the peak 
of the envelope detected in PL accompanied by shorter (but 
non-significant) activation, delayed both onset and offset of 
the EDC, suggests the presence of a reduced ankle mobility 

Fig. 8  Frequency of muscle activation and deactivation in analysed 
muscles for clusters found in Solution 1: horizontal bars are coloured 
coded as in [32], according to the number of subjects in which a 
muscle activity at each percentage of gait cycle is observed; yellow: 

muscle activity is detected in all subjects; and dark green: muscle is 
not detected in any subject. Colours refer to the online version of the 
figure
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and foot deformities in DNS. When considering DNS sub-
jects the ones included in C1 seem to be more affected by 
muscular alterations associated with insufficient sensory 
feedback [8] than subjects from C5.

Some common alterations were detected in clusters 
including both DS and DNS (C1, C3, C5), such as the early 
position of peak of the envelope in RF during gait, which 
is in accordance with results presented in [6] and might be 
related to an attempt to prepare the leg for the contact with 
the ground during the heel strike or to decelerate the flex-
ion of the hip and the extension of the knee during loading 
response. This finds agreement with the reduction of the 
hip mobility which characterises DNS as reported in the 
literature [6, 37–39].

Certain limitations exist for this study. Only the onset 
and offset and duration parameters extracted from the stair 
ascent phase of the stair negotiation were used, as muscle 
alterations highlighted with these parameters were simi-
lar in both phases. However, sEMG parameters associated 
with the envelope analysis extracted from both phases were 
used. Further studies should employ a larger sample size, 
and include other parameters (i.e. frequency parameters of 
sEMG signal). The lack of the application of automation 
techniques to optimise features used for classification is 
a limitation of the study; however, it should be taken into 
account that we aimed to investigate not only which set of 
sEMG parameters, but also which task would allow the 
best classification of diabetic and neuropathic subjects with 
respect to controls. Nevertheless, in many high-dimensional 
datasets the patterns captured by the PCA are those separat-
ing different subgroups from hierarchical clustering, thus 
leading to similar results [40]. Feature optimisation can be 
a subject of future investigation. Nonetheless, the large num-
ber of parameters extracted on a small number of subjects 
was in line with the state of the art describing application of 
data mining methods for the classification of gait parameters 
[19, 41–43]. Even though some of the present findings are 
contradictory with the current literature [9], it should be 
mentioned that previous studies compared subjects based 
on the diagnosis of DN, whilst the current study compared 
subjects based on the clustering results.

Overall, the alterations detected at the level of the mus-
cular activity in all the DS and DNS could be used to plan 
dedicated physical activity protocols in order to improve 
ankle joint function and any associated alterations [44].

5  Conclusions

Within the literature there is no agreement on which muscles 
and which task provide the most meaningful information 
about the muscular alterations caused by diabetes and its 
complications [5, 6, 10]. Our results suggest that with the 

same set of muscles, but acquired during two tasks — gait 
and stair negotiation — it is possible to discriminate between 
diabetic and neuropathic subjects and each of them from 
healthy controls. Moreover, by using parameters derived 
from both envelope and onset and offset analyses, a better 
classification of subjects is provided. In particular, the clas-
sification of DNS into two different clusters finds agreement 
with previous studies that detected different patterns in this 
population at the level of joint kinematics [11], kinetics, 
and plantar pressure [15, 43]. These results can be adopted 
on one hand as a support for clinical decision making, on 
the other one to plan studies aiming at detecting differences 
between diabetic subjects and other cohorts. It is worth 
mentioning that combining data from two types of sEMG 
analysis and investigating two tasks rather than only gait 
can substantially improve our understanding of the muscular 
alterations caused by diabetes and its complications.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11517- 022- 02559-3.
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