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Abstract
Coronavirus disease-2019 (COVID-19) is a new types of coronavirus which have turned into a pandemic within a short 
time. Reverse transcription–polymerase chain reaction (RT-PCR) test is used for the diagnosis of COVID-19 in national 
healthcare centers. Because the number of PCR test kits is often limited, it is sometimes difficult to diagnose the disease at 
an early stage. However, X-ray technology is accessible nearly all over the world, and it succeeds in detecting symptoms 
of COVID-19 more successfully. Another disease which affects people’s lives to a great extent is colorectal cancer. Tissue 
microarray (TMA) is a technological method which is widely used for its high performance in the analysis of colorectal 
cancer. Computer-assisted approaches which can classify colorectal cancer in TMA images are also needed. In this respect, 
the present study proposes a convolutional neural network (CNN) classification approach with optimized parameters using 
gradient-based optimizer (GBO) algorithm. Thanks to the proposed approach, COVID-19, normal, and viral pneumonia in 
various chest X-ray images can be classified accurately. Additionally, other types such as epithelial and stromal regions in 
epidermal growth factor receptor (EFGR) colon in TMAs can also be classified. The proposed approach was called COVID-
CCD-Net. AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet architectures were used in COVID-
CCD-Net, and the hyperparameters of this architecture was optimized for the proposed approach. Two different medical 
image classification datasets, namely, COVID-19 and Epistroma, were used in the present study. The experimental findings 
demonstrated that proposed approach increased the classification performance of the non-optimized CNN architectures 
significantly and displayed a very high classification performance even in very low value of epoch.

Keywords  Colon cancer diagnosis · Convolutional neural network (CNN) · COVID-19 · Gradient-based optimizer (GBO) · 
Hyperparameter optimization

1  Introduction

COVID-19 broke out in the world in early December 2019 
and rapidly turned into a pandemic. According to the World 
Health Organization (WHO) data, 227,940,972 people have 
been infected, while 4,682,899 people have been killed by 
the disease around the world until today [1]. Severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) is the 
virus which has caused COVID-19 pandemic [2]. Common 
symptoms of COVID-19 pandemic can be listed as fever, 

muscle pain, dry cough, head ache, a sore throat ve chest 
pain [3, 4]. Due to these sypmtoms, COVID-19 has been 
accepted as a respiratory tract disease. It may take these 
symptoms 2 to 14 days to appear in a person who has been 
infected with the virus [5]. Despite recent attempts at finding 
a treatment method, such as a drug or vaccine, against the 
disease, no viable solutions to COVID-19 have been found 
yet. Various medical imaging techniques such as X-ray and 
computed tomography (CT) can be considered as important 
tools in the diagnosis of COVID-19 cases [6, 7]. Coronavirus 
usually causes lung infections. Therefore, chest X-ray and 
CT images are widely used by physicians and radiologists 
for an accurate and quick diagnosis in the patients infected 
with the virus.

Polymerase chain reaction (PCR) test method is widely 
used for the diagnosis of COVID-19. However, the test 
is not always accessible at all healthcare points. It must 
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be also noted that compared to PCR tests, X-ray and CT-
based imaging techniques are usually more reliable and 
accessible. When CT and X-ray methods are compared, 
X-ray machines are preferred more by radiologists and 
physicians because of their accessibility nearly in every 
location including remote rural areas, cost-effectiveness, 
and their capacity to perform imaging in a fairly short 
period of time [5]. However, it is also time-consuming for 
physicians and radiologists to evaluate the patients’ X-ray 
images. Furthermore, it also runs the risk of inaccurate 
diagnosis because the detection of infected areas in an 
image requires technical know-how and medical experi-
ence. Therefore, an accurate and quick computer-assisted 
diagnosis system is needed for COVID-19 cases. The fol-
lowing literature review indicated that deep learning (DL) 
algorithms were used in order to diagnose COVID-19 in 
X-ray images succesfully [5, 8–12].

Introduced by Kononen [13] in 1998, tissue microarray 
(TMA) is an innovative and high-performance technique 
used for the analysis of multiple tissue samples. It is a high-
end technology with a remarkable performance and has been 
used in the analysis of molecular identifiers recently. There 
is sufficient evidence to claim that epidermal growth factor 
receptor (EGFR) plays an important role in tumor develop-
ment [14]. In parallel with this, it was also observed that 
EGFR played an important role in the initation and progress 
of colorectal cancer [15].

The present study proposes a convolutional neural net-
work (CNN) classification approach with optimized hyper-
parameters using gradient-based optimizer (GBO) algorithm 
[16]. CNN is the most widely used DL model. The proposed 
approach was used to classify COVID-19, normal, and viral 
pneumonia. In addition, it can be also used to classify other 
types such as epithelial and stromal regions in EFGR-colon 
in digitized tumor TMAs.

Real-world applications in many different fields such as 
medicine, agriculture, and engineering can be approached 
as an optimization problem. To this day, numerous optimi-
zation approaches have been developed in order to solve 
real-world problems in an effective way. However, high-
performance optimization approaches are needed due to 
the fact that the difficulty of these optimization problems is 
increasing day by day. In this respect, metaheuristic algo-
rithms (MAs), which are known as global optimization tech-
niques, have been widely used to solve challenging optimiza-
tion problems [17–22].

Artificial neural network (ANN) is an important machine 
learning approach inspired by the neural system in human 
mind. It involves an input layer, hidden layer, and output 
layer, and aims to adjust optimal values in relation with the 
weight of each neuron in ANN following a training pro-
cess [23]. The performance of an ANN structure is heavily 
affected by the number and variety of training data. If an 

insufficient number of data is used in the training process, 
the performance of ANN is very likely to decrease.

Various changes have been so far applied to ANN struc-
ture to design feedback and multi-layer model structures, 
which paved the way for the solution of non-linear problems. 
With the advent of multi-layer neural network models, the 
number of layers in an ANN structure has also increased 
and led to the development of CNN, which is a high-per-
formance version of ANN models. Introduced during the 
1990s, CNN was not preferred due to computer hardware 
incapacity in this period [23]. However, thanks to the tech-
nological developments in computer hardware and graphical 
processing unit (GPU) in the following years, CNN perfor-
mances have also increased remarkably in recent years, and 
it became one of the most widely used machine learning 
approaches in various fields such as health, transportation, 
security, stock exchange, and law.

Various CNN architectures have been so far proposed in 
the existing literature, as manifested by several examples 
such as MobileNet-V2, ShuffleNet, GoogleNet, VGG-16, 
VGG-19, and AlexNet. In these CNN architectures, hyperpa-
rameters such as learning rate, solver, L2 regularization, gra-
dient threshold method, and gradient threshold are known to 
affect CNN performance directly. Therefore, it is not surpris-
ing that various studies in the existing literature attempted to 
offer solutions to the optimization of these hyperparameters.

The present study benefited from AlexNet, DarkNet-19, 
Inception-v3, MobileNet, ResNet-18, and ShuffleNet archi-
tectures for the proposed approach, i.e., a COVID-19 and 
colon cancer diagnosis system with optimized hyperparam-
eters using GBO. In order to optimize hyperparameters such 
as learning rate, solver, L2 regularization, gradient threshold 
method, and gradient threshold in these architectures, GBO 
algorithm proposed by Ahmadianfar et al. [16] was used in 
the present study. Inspired by Newton’s method, GBO is one 
of the most recent metaheuristic optimization approaches. 
The present study aims to optimize hyperparameters in 
AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, 
and ShuffleNet and increase its classification performance.

The main contributions of the present study can be sum-
marized as follows:

1)	 The present study proposes a high-performance 
approach which can classify both COVID-19 and colon 
cancer in TMAs. No approach which can classify both 
diseases has been so far proposed in the current litera-
ture.

2)	 The proposed COVID-CCD-Net approach benefits 
from GBO [16] algorithm proposed in 2020 in order 
to optimize hyperparameters in AlexNet, DarkNet-19, 
Inception-v3, MobileNet, ResNet-18, and ShuffleNet.

3)	 The present study aims to obtain a high level of accu-
racy with a low value of epoch in AlexNet, DarkNet-19, 
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Inception-v3, MobileNet, ResNet-18, and ShuffleNet 
architectures in the proposed COVID-CCD-Net 
approach. On the other hand, the non-optimized CNN 
methods obtained a much lower level of accuracy with 
the same value of epoch.

The organization of the present study is as follows: “Sec-
tion 2” describes the related works. “Section 3” presents 
gradient-based optimizer and convolutional neural net-
works. “Section 4” describes the proposed COVID-CCD-
Net approach. “Section 5” presents experiments and results, 
and Section 6 concludes the study.

2 � Related works

2.1 � Hyperparameter optimization

In order to optimize hyperparameters in CNN, various 
approaches such as adaptive gradient optimizer [24], Adam 
optimizer [25], Bayesian optimization [26], equilibrium 
optimization [27], evolutionary algorithm [28], genetic 
algorithm [29], grid search [30], particle swarm optimiza-
tion [31, 32], random search [30, 33], simulating annealing 
[33], and tree-of-parzen estimators [33], whale optimization 
algorithm [34], and weighted random search [35] have been 
so far proposed. random search, simulating annealing, and 
tree-of-parzen estimators.

In addition to its comprehensivess as a searching algo-
rithm, grid search aims to identify the most optimal values 
for hyperparameters through a manually specified subset of 
hyperparameter space [36]. However, since the grid of con-
figurations grows exponentially depending on the number 
of hyperparameters during the hyperparameter optimization 
process, the algorithm is not often useful for the optimiza-
tion of deep neural networks [36]. During the hyperparam-
eter optimization in CNN, it may take a few hours or a whole 
day to evaluate a hyperparameter selection, which causes 
serious computational problems. Similar to grid search 
algorithm, random search algorithm too encounters various 
disadvantages in sampling a sufficient number of points to 
be evaluated [37].

Bayesian optimization has been a popular technique for 
hyperparameter optimization recently [38]. One of the main 
advantages in Bayesian optimization–based neural network 
optimization is that it does not require running neural net-
work completely. On the other hand, its complexity and 
high-dimensional hyperparameter space makes Bayesian 
optimization an impractical and expensive approach for 
hyperparameter optimization [36].

One of the biggest disadvantages of genetic algorithm 
is that it usually becomes stuck in a local optimal value 
and, as a result, results in yielding early convergence and 

non-optimal solutions [39]. Therefore, hyperparameter 
optimization techniques which benefit from genetic algo-
rithm–based approaches are also likely to be problematic.

Lima [33] compared various hyperparameter optimiza-
tion algorithms such as random search, simulating anneal-
ing, and tree-of-parzen estimators in order to find the most 
effective CNN architecture in the classification of benign 
and malignant small pulmonary nodules. Kumar and Hati 
[24] proposed the adaptive gradient optimizer–based deep 
convolutional neural network (ADG-dCNN) approach for 
bearing and rotor faults detection in squirrel cage induction 
motor. Ilievski et al. [40] used radial basis function (RBF) 
as a surrogate of hyperparameter optimization in order to 
reduce the complexity of original network. Talathi [41] pro-
posed a simple sequential model based optimization algo-
rithm in order to optimize hyperparameters in deep CNN 
architectures.

Rattanavorragant and Jewajinda proposed an approach 
using an island-based genetic algorithm in order to optimize 
hyperparameters in DNN automatically [42]. This approach 
involves two steps: hyperparameter search and a detailed 
DNN training. Navaneeth and Suchetha proposed the opti-
mized one-dimensional CNN with support vector machine 
(1-D CNN-SVM) approach in order to diagnose chronic kid-
ney diseases using PSO algorithm [43].

Compared to the literature review above, the main con-
tribution of the present study is that the proposed COVID-
CCD-Net approach can detect two important diseases: 
COVID-19 and colon cancer in TMAs. In addition, the pro-
posed approach benefits from GBO, which is a metaheuristic 
approach, for the optimization of CNN models to overcome 
various problems mentioned in the existing literature.

2.2 � Deep learning approaches for COVID‑19

In recent times, many studies focusing on the diagnosis of 
COVID-19 using CNN have been published [44–50]. The 
literature review indicates that some of these studies [45–47] 
focused on the diagnosis of COVID-19 in non-COVID cases. 
On the other hand, there are also studies which classified 
cases into three groups as COVID, normal, and pneumo-
nia [48–50]. Within the framework of the present study, the 
proposed COVID-CCD-Net approach classifies chest X-ray 
images into three different groups as COVID, normal, and 
pneumonia.

Shi et al. [51] performed a detailed literature review 
regarding the state-of-the-art computer-assisted methods 
for the diagnosis of COVID-19 in X-ray and CT scans. Cas-
tiglioni et al. [52] benefited from two chest X-ray datasets 
containing 250 COVID-19 and 250 non-COVID cases in 
order to perform training, validation, and testing processes 
for Resnet-50.
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Hemdan et al. [53] proposed a deep learning–based 
approach called COVIDX-Net in order to diagnose 
COVID-19 in chest X-ray images automatically. This 
study involved seven different deep architectures, namely 
MobileNetV2, VGG19, InceptionV3, DenseNet201, 
InceptionResNetV2, ResNetV2, and Xception. Khan et al. 
[54] proposed a CNN-based approach called CoroNet in 
order to diagnose COVID-19 using X-ray and CT scans 
based on Xception architecture. The experimental studies 

demonstrated that the proposed model yielded an overall 
accuracy rate of 89.6% in four different classes (COVID 
vs. pneumonia bacterial vs. pneumonia viral vs. normal) 
and an overall accuracy rate of 95% in three different 
classes (normal vs. COVID vs. pneumonia).

The proposed COVID-CCD-Net approach differs from 
other studies on the detection of COVID-19 using CNN 
models in that it improves classification performance by 
optimizing hyperparameters of CNN models thanks to 
GBO approach.

2.3 � Computer‑aided colon cancer detection 
approaches

As can be seen in various studies in the existing literature, 
the number of studies dealing with automatic diagnosis of 
colon cancer in TMAs is limited. Nguyen et al. [55] ana-
lyzed different ensemble approaches for colorectal tissue 
classification using highly efficient TMAs and proposed 
an ensemble deep learning–based approach with two dif-
ferent neural network architectures called VGG16 and 
CapsNet. Thanks to this approach, they classified colo-
rectal tissues in highly efficient TMAs into three different 
categories, namely tumor, normal, and stroma/others.

Xu et al. [56] proposed a deep CNN approach in order 
to perform the segmentation and classification of epithe-
lial ve stromal regions in TMAs. This study benefited 
from two different datasets containing breast and colo-
rectal cancer images. Finally, Linder et al. [57] proposed 
an approach for an automatic detection of epithelial ve 
stromal regions in colorectal cancer TMAs thanks to tex-
ture features and a SVM classifier.

The proposed COVID-CCD-Net approach is superior 
to other studies on the detection of colon cancer in TMAs 
using CNN models in that it optimizes the hyperparam-
eters of CNN models, which significantly increases the 
detection accuracy rates of colon cancer. The effective 
performance of CNN in image classification contributes 
to the present study to a higher extent compared to other 
studies using other approachs for the classification of 
colon cancer in TMAs in the existing literature.

3 � Theoretical background

3.1 � Gradient‑based optimizer

Inspired by gradient-based Newton’s method, GBO was pro-
posed by Ahmadianfar et al. [16] as one of the most recent 
metaheuristic algorithms. This algorithm is based on two 
main operators: gradient search rule (GSR) and local escap-
ing operator (LEO). Main steps of GBO are described below.

Fig. 1   Flowchart of the GBO
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3.1.1 � Initialization process

In GBO, each member of the population is called a “vector” 
and, as seen in Eq. 1, the population consists of N number 
of vectors in a D-dimension search space.

(1)
Xn,d =

[
Xn,1,Xn,2,… ,Xn,D

]
, n = 1, 2,… ,N, d = 1, 2,… ,D

As shown in Eq. 2, each vector in the initial population is 
created by assigning random values within the boundaries 
of search space.

Here, Xmin and Xmax are lower and upper boundaries in 
the search space, respectively, while rand(0,1) is a random 
number in a range of [0,1].

3.1.2 � Gradient search rule

GSR operator is used in GBO in order to increase explo-
ration ability, eliminate local minimum, and accelerate the 
convergence rate. Thus, optimal solutions can be obtained 
within the search space [16].

(2)Xn = Xmin + rand (0, 1) ×
(
Xmax − Xmin

)

Fig. 2   Flowchart of COVID-
CCD-Net

Table 1   Hyperparameters to be optimized and their ranges

Parameter LB UB

Learning rate 0.00001 0.01
Solver 1 3
L2 regularization 0.00001 0.01
Gradient threshold method 1 3
Gradient threshold 0.1 10
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The position of a vector in the next iteration (xn
m+1) is 

calculated using Eqs. 3 and 4 with: X1n
m, X2n

m, and xn
m, 

which denotes the current position of the vector.

ra and rb are random numbers in a range of [0, 1]. X1n
m 

and X2n
m in this equation are shown in the following 

equations:

Here, xn
m and xbest are the current position and the best 

vector in the population, respectively. GSR denotes the 
gradient search rule, while DM represents the direction of 
movement. GSR enables GBO to assign randomly, improve 
its exploration ability and eliminate local minimals. GSR 
can be calculated as shown in the following equations [16]:

(3)x
m+1
n

= r
a
×
(
r
b
× X1

m

n
+
(
1 − r

b

)
× X2

m

n

)
+
(
1 − r

a

)
× X3

m

n

(4)X3m
n
= xm

n
− p1 ×

(
X2m

n
− X1m

n

)

(5)X1m
n
= xm

n
− GSR + DM

(6)X2m
n
= xbest − GSR + DM

(7)GSR = randn × p1 ×
2Δx × x

n(
xworst − xbest + �

)

(8)Δx = rand (1 ∶ N)× ∣ step ∣

(9)step =

(
xbest − xm

r1

)
+ �

2

Here, rand(1:N) is an N-dimensional random number, r1, 
r2, r3, and r4 denote random integer numbers selected from 
a range of [1, N], and, finaly, step represents the step size.

DM shown in Eq. 11 helps the current position of the 
vector (xn) move along the direction of xbest - xn and thus 
provides local searching in order to improve convergence 
speed of GBO [16].

Global exploration and local exploitation must be 
balanced in an algorithm in order to find solutions closer to 
a global optimal value. p1 and p2 parameters in Eqs. 4, 7, and 
11 are used to balance exploration and exploitation in GBO 
[16]. These parameters are calculated using the following 
equations:

Here, βmin and βmax are 0.2 and 1.2, respectively, and m 
denotes the current number of iteration. M represents the 
maximum number of iteration.

(10)� = 2 × rand×

(
|
||||

xm
r1
+ xm

r2
+ xm

r3
+ xm

r4

4
− xm

n

|
||||

)

(11)DM = rand×p2 ×
(
xbest − xn

)

(12)p1 = p2 = 2 × rand×� × �

(13)� =
|||
|
� × sin

(
3�

2
+ sin

(
� ×

3�

2

))|||
|

(14)� = �min +
(
�max − �min

)
×

(

1 −
(
m

M

)3
)2

Fig. 3   Sample images from datasets
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3.1.3 � Local escaping operator

LEO is used to improve efficiency of GBO. It can change the 
position of xn

m+1 vector significantly. Thanks to LEO, XLEO
m, 

which is a new vector, is created as shown in Eqs. 15 and 16, 
and assigned to xn

m+1 vector, as shown in Eq. 17.

(15)
XLEO

m = xm+1
n

+ f
1
×
(
u
1
× xbest − u

2
× xm

k

)
+ f

2
× p

1

×
u
3
×
(
X2m

n
− X1m

n

)
+ u

2
×
(
xm
r1
− xm

r2

)

2
, if rand < 0.5

(16)
Xm
LEO

= xbest + f
1
×
(
u
1
× xbest − u

2
× xm

k

)
+ f

2
× p

1
×

u
3
×
(
X2m

n
− X1m

n

)
+ u

2
×
(
xm
r1
− xm

r2

)

2
, if rand ≥ 0.5

Table 2   Accuracy, F1-score and Std. dev. results of validation and test for the COVID-19 dataset

Validation Test

Acc. (mean) Acc.
(max)

F1-score Std. dev. Acc. (mean) Acc.
(max)

F1-score Std. dev.

AlexNet 90.065 93.638 90.254 2.627 87.089 90.601 87.305 2.590
DarkNet-19 93.189 95.269 93.292 1.833 91.149 94.125 91.309 1.526
Inception-v3 89.233 93.964 89.291 3.610 86.436 90.601 86.631 3.171
MobileNet 82.007 86.134 81.716 3.052 81.312 85.248 81.333 2.470
ResNet-18 91.313 93.638 91.418 1.460 88.962 91.253 89.115 1.793
ShuffleNet 88.679 94.454 88.665 4.035 86.449 90.339 86.535 3.075
COVID-CCD-Net (AlexNet) 96.354 97.879 96.460 1.166 96.044 98.172 96.138 0.927
COVID-CCD-Net (DarkNet-19) 97.553 98.532 97.654 0.631 97.369 98.303 97.458 0.496
COVID-CCD-Net (Inception-v3) 95.718 97.553 95.830 1.139 94.791 96.736 94.900 1.736
COVID-CCD-Net (MobileNet) 95.057 97.227 95.179 1.502 94.608 98.042 94.718 1.816
COVID-CCD-Net (ResNet-18) 97.977 98.532 98.063 0.301 98.107 98.695 98.158 0.353
COVID-CCD-Net (ShuffleNet) 96.223 96.900 96.312 0.424 96.730 98.172 96.805 0.623
Quasi-Newton-based AlexNet 94.043 96.574 94.205 4.123 91.879 93.994 92.099 3.038
Quasi-Newton-based DarkNet-19 96.807 97.226 96.914 0.373 94.072 95.430 94.225 1.399
Quasi-Newton-based Inception-v3 94.266 95.432 94.331 0.868 91.051 93.733 91.179 2.554
Quasi-Newton-based MobileNet 93.541 95.595 93.653 1.723 89.713 92.298 89.925 1.990
Quasi-Newton-based ResNet-18 95.834 96.248 95.916 0.511 93.019 94.125 93.124 0.869
Quasi-Newton-based ShuffleNet 95.050 95.759 95.142 1.055 90.551 93.081 90.731 2.336

Fig. 4   Bar charts for the COVID-19 dataset
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Here, f1 and f2 are random numbers generated in a range 
of [−1, 1], and u1, u2, and u3 are three randomly generated 
and different numbers, while xk

m is a newly generated vec-
tor. u1, u2, u3, and xk

m are defined as shown in the following 
equations:

(17)xm+1
n

= Xm
LEO

(18)u1 =

{
2 × rand, if 𝜇1 < 0.5

1 , else

(19)u2 =

{
rand, if 𝜇1 < 0.5

1 , else

Here, rand, μ1, and μ2 are random numbers in a range of 
[0, 1], xrand denotes a randomly generated new vector, and 
xp

m is a vector randomly selected from the population [16]. 
Flowchart of the GBO is shown in Fig. 1.

3.2 � Convolutional neural networks

Convolutional neural networks (CNN) is a special type of 
neural network inspired by the biological model of animal 
visual cortex [58, 59]. They are particularly used in the field 

(20)u3 =

{
rand, if 𝜇1 < 0.5

1 , else

(21)xm
k
=

{
xrand, if 𝜇1 < 0.5

xm
p

, else

Fig. 5   Bar charts for the Epistroma dataset

Table 3   Validation and test accuracy before and after optimization with COVID-CCD-Net on the COVID-19 dataset

Validation Test

Before optimi-
zation

After optimization Performance 
improvement

Before optimi-
zation

After optimization Performance 
improvement

AlexNet 90.065 96.354 6.289 87.089 96.044 8.955
DarkNet-19 93.189 97.553 4.364 91.149 97.369 6.22
Inception-v3 89.233 95.718 6.485 86.436 94.791 8.355
MobileNet 82.007 95.057 13.05 81.312 94.608 13.296
ResNet-18 91.313 97.977 6.664 88.962 98.107 9.145
ShuffleNet 88.679 96.223 7.544 86.449 96.73 10.281
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of image and sound processing due to their main advantage: 
the extraction of automatic and adaptive features during a 
training process [60]. In CNNs, the variable of the network 
structure (kernel size, stride, padding, etc.) and the network 
trained (learning rate, momentum, optimization strate-
gies, batch size etc.) are known as hyperparameters [29], 
which must be adjusted accurately for a more effective CNN 
performance.

In the present study, learning rate, solver, L2 regulari-
zation, gradient threshold method, and gradient threshold 
value, which are among network trained hyperparameters of 
AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, 
and ShuffleNet, were optimized using GBO algorithm. 
Learning rate, which is also known as step size, is decisive 
in terms of updating weights [61, 62]. Solver, on the other 
hand, represents the optimization method to be used such 

as Adam, Sgdm, or Rmsprop [63]. The L2 regularization, 
which is also called weight decay, is a simple regulariza-
tion method that scales weights down in proportion to their 
current size [64, 65]. Gradient threshold method and gradi-
ent threshold value are parameters related to gradient clip-
ping. If the gradient increases exponentially in magnitude, 
it means that the training is unstable and can diverge within 
a few iterations. Gradient clipping helps avoid the explod-
ing gradient problem. If the gradient exceeds the value of 
gradient threshold, then the gradient is clipped according to 
gradient threshold method [66, 67].

Input image size in AlexNet architecture, developed by 
Krizhevsky et al. [68], is 227×227. It consists of 5 convolu-
tion and 3 fully connected layers, thus reaching a depth of 
8 layers. DarkNet-19 has a depth of 19 layers and its input 
image size is 256×256 [69]. Introduced by Szegedy et al. 

Table 4   Validation and test accuracy before and after optimization with COVID-CCD-Net on the Epistroma dataset

VALIDATION TEST

Before Optimization After Optimization Performance 
Improvement

Before Optimization After Optimization Performance 
Improvement

AlexNet 91.75 98.341 6.591 90.8 97.618 6.818
DarkNet-19 93.773 98.727 4.954 92.909 98.273 5.364
Inception-v3 92.477 99.705 7.228 93.073 98.964 5.891
MobileNet 92.886 95.318 2.432 92.145 94.255 2.11
ResNet-18 94.091 99.545 5.454 94.218 98.836 4.618
ShuffleNet 89.454 97.818 8.364 90.491 96.164 5.673

Table 5   Accuracy, F1-score, and Std. dev. result of validation and test for the Epistroma dataset

Validation Test

Acc. (mean) Acc.
(max)

F1-score Std. dev. Acc. (mean) Acc.
(max)

F1-score Std. dev.

AlexNet 91.750 93.182 91.615 0.924 90.800 92.727 90.691 1.144
DarkNet-19 93.773 97.273 93.608 2.017 92.909 95.636 92.714 2.518
Inception-v3 92.477 95 92.264 1.255 93.073 96 92.870 1.481
MobileNet 92.886 94.545 92.727 1.066 92.145 94.909 92.009 1.641
ResNet-18 94.091 95 93.950 0.692 94.218 95.636 94.097 1.048
ShuffleNet 89.454 92.273 89.149 2.133 90.491 93.818 90.270 2.105
COVID-CCD-Net (AlexNet) 98.341 99.545 98.278 0.711 97.618 98.909 97.542 0.683
COVID-CCD-Net (DarkNet-19) 98.727 100 98.676 0.996 98.273 99.636 98.211 1.538
COVID-CCD-Net (Inception-v3) 99.705 100 99.692 0.424 98.964 99.636 98.924 0.476
COVID-CCD-Net (MobileNet) 95.318 98.636 95.161 3.561 94.255 97.455 94.096 3.752
COVID-CCD-Net (ResNet-18) 99.545 100 99.526 0.330 98.836 99.636 98.793 0.481
COVID-CCD-Net (ShuffleNet) 97.818 99.091 97.736 0.880 96.164 97.455 96.046 0.955
Quasi-Newton based AlexNet 95.636 97.727 95.505 2.286 95.491 97.455 95.362 2.337
Quasi-Newton based DarkNet-19 97.545 99.091 97.461 2.073 95.491 97.091 95.333 1.326
Quasi-Newton based Inception-v3 97.818 98.636 97.739 0.985 96.436 97.091 96.310 0.598
Quasi-Newton based MobileNet 95.545 96.364 95.407 1.132 93.964 95.273 93.802 0.913
Quasi-Newton based ResNet-18 98.001 99.091 97.929 1.944 96.655 98.182 96.541 1.530
Quasi-Newton based ShuffleNet 97.091 98.636 96.991 1.997 95.927 97.455 95.805 2.063
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[70], Inception-v3 model has a depth of 48 layers with an 
input image size of 299×299. ResNet-18, which has a depth 
of 18 layers and an input image size of 224×224, was devel-
oped by He et al. [71]. Zhang et al. [72] proposed ShuffleNet 
model with a depth of 50 layers and an input image size 
of 224×224. Finally, MobileNet, which was proposed by 
Sandler et al. [73], has a depth of 53 layers and an input 
image size of 224×224.

4 � Hyperparameter optimization of CNN 
models using gradient‑based optimizer

In the present study, hyperparameters of AlexNet, Dark-
Net-19, Inception-v3, MobileNet, ResNet-18, and Shuf-
fleNet CNN models such as learning rate, solver, L2 
regularization, gradient threshold method, and gradient 
threshold value were optimized using GBO algorithm in 

Fig. 6   Mean training accuracy curves for the COVID-19 dataset

Fig. 7   Mean training accuracy curves for the Epistroma dataset
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order to classify COVID-19, normal, and viral pneumo-
nia in chest X-ray images. In addition, other types such as 
epithelial and stromal regions in epidermal growth factor 
receptor (EFGR) colon in TMAs can also be classified. The 
proposed approach is called COVID-CCD-Net, as shown in 
the flowchart in Fig. 2.

In the proposed COVID-CCD-Net approach, initial 
parameters of GBO such as ε, the number of population 
and maximum number of iteration are adjusted. Then, an 
initial population is created by using vectors with randomly 
assigned values. Each vector consists of 5 dimensions which 

represent learning rate, solver, L2 regularization, gradient 
threshold method, and gradient threshold parameters of 
CNN models. Lower boundary (LB) and upper boundary 
(UB) values of these parameters are given in Table 1. Learn-
ing rate, L2 regularization, and gradient threshold are real 
values which are randomly generated between LB and UB 
values. If the solver value is 1, 2, or 3, “sgdm,” “adam,” and 
“rmsprop” optimization method is selected, respectively. If 
the gradient threshold method value is 1, 2, or 3, “l2norm,” 
“global-l2norm,” and “absolute-value” method is selected, 
respectively. In parallel with these boundaries, each vector 

Fig. 8   Confusion matrices of COVID-19 dataset
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in the initial population is generated using the formula in 
Eq. 22:

The following steps are taken in order to calculate the fit-
ness value of each vector: Firstly, Xn vector whose fitness 

(22)Xn,i = LBi + rand (0, 1) ×
(
UBi − LBi

)
, n = 1, 2,… ,N and i = 1, 2,… , 5

value will be calculated is sent to CNN model and the val-
ues of Xn vector are assigned to learning rate, solver, L2 

Fig. 9   Confusion matrices of Epistroma dataset

regularization, gradient threshold method, and gradient 
threshold parameters of CNN model. Later, CNN model is 
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trained using the training dataset. Following the training pro-
cesses, validation accuracy value obtained from the training 
is sent back to GBO and assigned as the fitness value of Xn 
vector.

As shown in Fig. 2, each step of the algorithm is iterated 
until it reaches a maximum number of iterations. At the end, 
the vector with the most optimal fitness value is accepted as 
the solution of the problem.

5 � Experiments and results

The present study proposes the COVID-CCD-Net approach 
in which learning rate, solver, L2 regularization, gradient 
threshold method, and gradient threshold parameters of 
AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, 
and ShuffleNet were optimized using GBO. The classifi-
cation performance of the proposed approach was tested 
using two different medical image classification datasets. 
Additionally, the results of this test were compared with 
those obtained from non-optimized AlexNet, DarkNet-19, 
Inception-v3, MobileNet, ResNet-18, and ShuffleNet CNN 
models. In addition, Quasi-Newton (Q-N) algorithm [74], 
one of the most fundamental optimization methods, was also 

used to optimize the hyperparameters of CNN models and 
compared with the proposed COVID-CCD-Net approach. 
The following sub-sections describe medical image classi-
fication datasets, experiment setup, and present comparative 
experimental findings.

5.1 � Medical image classification datasets

COVID-19 [75, 76] and Epistroma [77] datasets were 
selected for the experimental studies. COVID-19 dataset 
consists of three classes, namely “Covid-19,” “Normal,” and 
“Viral Pneumonia,” with a total of 3829 images. Epistroma 
dataset, on the other hand, consists of two classes, namely 
“epithelium” and “stroma,” with a total of 1376 images. In 
both datasets, 80% and 20% images were used for training 
and testing processes, respectively and we have performed 
5-fold cross-validation. Ten percent of the training data in 
each data set was also used for validation. Samples images 
from both datasets are shown in Fig. 3.

5.2 � Experimental setup

All experimental studies were carried out on MATLAB 
R2020a platform. The number of vectors in GBO population 

Fig. 10   ROC curves for COVID-19 dataset
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and the maximum number of iterations were selected as 10 
in the proposed COVID-CCD-Net approach. In other words, 
the fitness function is called 100 times. Q-N algorithm per-
forms search starting at a single point instead of a popu-
lation-based search. For a healthier comparison with the 
proposed approach, the number of maximum iterations was 
selected as 100 in Q-N algorithm to call the fitness function 
100 times. In addition, default MATLAB values for solver, 
L2 regularization, gradient threshold method, and gradient 
threshold parameters were selected as “sgdm,” “0.0001,” 
“l2norm,” and “Inf,” respectively for non-optimized CNN 
models. Values of epoch for all CNN models were selected 
as 2 for COVID-19 dataset as 5 for Epistroma dataset. Mini 
batch size was set to 25. Twenty independent experimental 
studies were conducted on these datasets for all CNN mod-
els, and the obtained mean accuracy, maximum accuracy, 
F1-score, and standard deviation values were compared to 
measure the performances of all models.

5.3 � Experimental results

Mean accuracy, maximum accuracy, F1-score, and stand-
ard deviation values obtained from 20 different independent 

studies on COVID-19 and Epistroma datasets are given in 
Tables 2 and 5, respectively. The findings were also shown 
in bar charts in Figs. 4 and 5 to give a clearer picture of the 
overall findings.

The findings related to COVID-19 dataset demonstrated 
that in the training process, COVID-CCD-Net (ResNet-18) 
reached the highest mean validation accuracy, maximum 
validation accuracy, and F1-score values with 97.977, 
98.532, and 98.063, respectively. The second highest val-
ues were yielded by COVID-CCD-Net (DarkNet-19) 
with 97.553, 98.532, and 97.654, while non-optimized 
MobileNet displayed a lower performance with 82.007, 
86.134, and 81.716. In the testing process, COVID-CCD-
Net (ResNet-18) classified test images with a mean accu-
racy rate of 98.107%, followed by Darknet-19 with a mean 
accuracy rate of 97.369%. MobileNet displayed the lowest 
performance in terms of training and testing. validation and 
test accuracy for COVID-19 dataset before and after optimi-
zation with COVID-CCD-Net are given in Table 3 and the 
results demonstrated that COVID-CCD-Net increased the 
classification performance of the non-optimized CNN mod-
els by 6.22–13.29%. The performance was improved when 
Q-N algorithm was used to optimize the hyperparameters 

Fig. 11   ROC curves for Epistroma dataset
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of non-optimized CNN models. However the performance 
increased between 2.92 and 8.40%, demonstrating that GBO 
displays a higher performance in the hyperparameter opti-
mization in COVID-19 dataset.

It can understand from the findings related to Epistroma 
dataset that in the training process, the highest mean accu-
racy, maximum accuracy, and F1-score values were obtained 
by COVID-CCD-Net (Inception-v3) with 99.705, 100, and 
99.692, respectively. Similarly, COVID-CCD-Net (Incep-
tion-v3) also yielded the highest values in the testing pro-
cess with 98.964, 99.636, and 98.924. It was followed by 
ResNet-18 with 99.545, 100, and 99.526 for the training and 
98.836, 99.636, and 98.793 for the testing process. On the 
other hand, the lowest performance in the training and test-
ing process was displayed non-optimmized ShuffleNet with 
89.454, 92.273, and 89.149 and 90.491, 93.818, and 90.270, 
respectively. validation and test accuracy for epistroma 
dataset before and after optimization with COVID-CCD-
Net are given in Table 4 and the results demonstrated that 
COVID-CCD-Net increased the classification performance 
of the non-optimized CNN models by 2.11–6.81%. The per-
formance was improved when Q-N algorithm was used to 

optimize the hyperparameters of non-optimized CNN mod-
els. It can be seen in Table 5 that the performance increased 
between 1.81 and 5.43%, demonstrating that GBO displays 
a higher performance in the hyperparameter optimization in 
Epistroma dataset.

As shown in Tables 2 and 5, GBO algorithm remarkably 
improves the performance of non-optimized CNN models 
in COVID-19 and Epistroma datasets. Additionally, experi-
mental studies indicated that GBO algorithm displayed a 
higher performance in hyperparameter optimization in both 
datasets compared to Q-N algorithm.

Mean training accuracy curves of all models obtained 
from COVID-19 dataset are shown in Fig. 6. While COVID-
CCD-Net (ResNet-18) displayed a faster convergence, non-
optimized MobileNet displayed a slower convergence. 
Mean training accuracy curves of all models obtained from 
Epistroma dataset are shown in Fig. 7, COVID-CCD-Net 
(Inception-v3), COVID-CCD-Net (ResNet-18), and COVID-
CCD-Net (DarkNet-19) displayed a fast convergence in the 
first 20 iterations and a lower convergence in the remaining 
iterations.

Maximum and mean confusion matrix values of all mod-
els obtained from the testing processes for COVID-19 and 
Epistroma datasets are shown in Fig. 8 and Fig. 9. A confu-
sion matrix is a table which is used to describe the perfor-
mance of a model by referring to its accuracy rates in each 
class. Rows and columns in a confusion matrix correspond 
to the predicted class (output class) and true class (target 
class), respectively.

The receiver operating characteristic (ROC) curves of 
COVID-19 and Epistroma datasets are provided in Fig. 10 
and Fig. 11 respectively, which showing the relationship 
between the false positive rate (FPR) and the true positive 
rate (TPR). It can be clearly seen, in COVID-19 dataset 
COVID-CCD-Net (ResNet-18) and in Epistroma dataset 
COVID-CCD-Net (Inception-v3) have higher true positive 
rates.

Table  6 and Table  7 compare the performance of the 
COVID-CCD-Net with several state-of-the art methods on 
COVID-19 and Epistroma datasets. It can be seen obviously; 
the the COVID-CCD-Net has the highest classification 
accuracy among the compared methods for both datasets.

Table 6   Comparison of the results with state-of-the art CNN methods 
for COVID-19 dataset

Source Models/methods Num-
ber of 
classes

Overall acc (%)

Song  et al. [78] DRE-Net 2
3

86
93

Ozturk et al.[79] DarkCovidNet 3
2

87.02
98.08

Wang et al. [80] CNNs, transfer learn-
ing

2 89.5

Keidar et al.[81] Data augmentation, 
segmentation and 
CNN

2 90.3

Wang et al. [50] Customized CNN 
architectur

3 93.33

Zhang et al.[82] COVID19XrayNet 2 91.92
Goel et al.[83] OptCoNet 3 97.78
Proposed COVID-CCD-Net 3 98.107

Table 7   Comparison of the 
results with state-of-the art 
CNN methods for Epistroma 
dataset

Source Models/methods Number of classes Overall acc (%)

Alinsaif and Lang[84] Fine tuning CNN 2 98.84
Cascianelli et al.[85] Dimensionality reduction strate-

gies for CNN
2 94.7

Huang et al.[86] CNNs, transfer learning 2 93.5
Bianconi et al.[87] CNNs, Resnet50 2 97.3
Proposed COVID-CCD-Net 2 98.96
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6 � Conclusion

In order to classify Covid-19, normal, and viral pneumonia in 
chest X-ray images as well as epithelial and stromal regions 
in TMA images accurately, the present study proposed the 
COVID-CCD-Net approach with the optimized hyperpa-
rameters of AlexNet, DarkNet-19, Inception-v3, MobileNet, 
ResNet-18, and ShuffleNet CNN models using GBO, which is 
one of the most recent metaheuristic optimization algorithms. 
Network-trained parameters of these CNN models such as 
learning rate, solver, L2 regularization, gradient threshold 
method, and gradient threshold were optimized and tuned using 
GBO algorithm. In the GBO, each vector of the population 
represents a set of CNN’s hyperparameters, and the algorithm 
searches for the hyperparameter values that help the model 
display the highest classification performance. Two different 
medical image classification datasets, i.e., COVID-19 and 
Epistroma, were used in the experimental study. While GBO 
hyperparameter optimization improved the performance of 
non-optimized CNN models in COVID-19 dataset by 6.22% 
to 13.29%, the contribution of Q-N algorithm did not exceed 
2.92% to 8.40%. Similarly, GBO hyperparameter optimization 
improved the performance of non-optimized CNN models in 
Epistroma dataset by 2.11% to 6.81%, Q-N algorithm improved 
it only 1.81% to 4.53%. These results demonstrated that the 
proposed approach significantly improved the classification per-
formance of AlexNet, DarkNet-19, Inception-v3, MobileNet, 
ResNet-18, and ShuffleNet CNN models and displayed a better 
performance compared to non-optimized CNN models. One 
of the main problems in CNN-based classification approaches 
is their need for a high number of high-quality images for a 
succesful classification performance and optimal values for the 
hyperparameters of CNN architecture. In the present study, a 
sufficient number of images was used to complete training pro-
cess for CNN architecture, and the proposed COVID-CCD-Net 
approach was used to optimize the hyperparameters of CNN 
architectures to overcome the above-mentioned problems. 
Future studies will focus on the optimization of different hyper-
parameters such as filter size, filter number, stride, and padding 
using various metaheuristic optimization algorithms.

References

	 1.	 WCOVID-19 Weekly epidemiological update data as received by 
WHO from national authorities, as of 21 September 2021

	 2.	 Of the International, C. S. G (2020) The species severe acute 
respiratory syndrome-related coronavirus: classifying 2019-nCoV 
and naming it SARS-CoV-2. Nat Microbiol 5(4):536

	 3.	 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan 
G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, 
Yin W, Li H, Liu M et al (2020) Clinical features of patients 
infected with 2019 novel coronavirus in Wuhan, China. Lancet 
395(10223):497–506

	 4.	 El Asnaoui K, Chawki Y (2021) Using X-ray images and deep 
learning for automated detection of coronavirus disease. J Bio-
mol Struct Dyn 39(10):3615–3626

	 5.	 Nayak SR, Nayak DR, Sinha U, Arora V, Pachori RB (2021) 
Application of deep learning techniques for detection of 
COVID-19 cases using chest X-ray images: a comprehensive 
study. Biomed Signal Process Control 64:102365

	 6.	 Dong D, Tang Z, Wang S, Hui H, Gong L, Lu Y, Xue Z, Liao H, 
Chen F, Yang F, Jin R, Wang K, Liu Z, Wei J, Mu W, Zhang H, 
Jiang J, Tian J, Li H (2020) The role of imaging in the detection 
and management of COVID-19: a review. IEEE Rev Biomed 
Eng 14:16–29

	 7.	 Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) 
Essentials for radiologists on COVID-19: an update—radiology 
scientific expert panel. Radiology 296(2):E113–E114

	 8.	 Karakanis S, Leontidis G (2021) Lightweight deep learning 
models for detecting COVID-19 from chest X-ray images. Com-
put Biol Med 130:104181

	 9.	 Ouchicha C, Ammor O, Meknassi M (2020) CVDNet: a 
novel deep learning architecture for detection of coronavirus 
(Covid-19) from chest x-ray images. Chaos, Solitons Fractals 
140:110245

	10.	 Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ (2020) 
Deep-covid: predicting covid-19 from chest x-ray images using 
deep transfer learning. Med Image Anal 65:101794

	11.	 Hussain E, Hasan M, Rahman MA, Lee I, Tamanna T, Parvez 
MZ (2021) CoroDet: A deep learning based classification for 
COVID-19 detection using chest X-ray images. Chaos Solitons 
Fractals 142:110495

	12.	 Gupta A, Gupta S, Katarya R (2021) InstaCovNet-19: a deep 
learning classification model for the detection of COVID-19 
patients using chest X-ray. Appl Soft Comput 99:106859

	13.	 Kononen J, Bubendorf L, Kallionimeni A, Bärlund M, Schraml 
P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallionimeni 
OP (1998) Tissue microarrays for high-throughput molecular 
profiling of tumor specimens. Nat Med 4(7):844–847

	14.	 Spano JP, Lagorce C, Atlan D, Milano G, Domont J, Benamouzig 
R, Attar A, Benichou J, Martin A, Morere JF, Raphael M, Llorca 
FP, Breau JL, Fagard R, Khayat D, Wind P (2005) Impact of 
EGFR expression on colorectal cancer patient prognosis and sur-
vival. Ann Oncol 16(1):102–108

	15.	 Markman B, Javier Ramos F, Capdevila J, Tabernero J (2010) 
EGFR and KRAS in colorectal cancer. Adv Clin Chem 51:72

	16.	 Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based 
optimizer: a new metaheuristic optimization algorithm. Inf Sci 
540:131–159

	17.	 Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd 
edn. Luniver Press, UK

	18.	 Beheshti Z, Shamsuddin SMH (2013) A review of population-
based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl 
5(1):1–35

	19.	 Albani RA, Albani VV, Neto AJS (2020) Source characterization 
of airborne pollutant emissions by hybrid metaheuristic/gradient-
based optimization techniques. Environ Pollut 267:115618

	20.	 Ramos-Figueroa O, Quiroz-Castellanos M, Mezura-Montes E, 
Schütze O (2020) Metaheuristics to solve grouping problems: a 
review and a case study. Swarm Evol Comput 53:100643

	21.	 Taramasco C, Crawford B, Soto R, Cortés-Toro EM, Olivares R 
(2020) A new metaheuristic based on vapor-liquid equilibrium for 
solving a new patient bed assignment problem. Expert Syst Appl 
158:113506

	22.	 Latha M, Kavitha G (2021) Combined Metaheuristic Algorithm 
and Radiomics Strategy for the Analysis of Neuroanatomical 
Structures in Schizophrenia and Schizoaffective Disorders. IRBM 
42(5):353–368

1610 Medical & Biological Engineering & Computing (2022) 60:1595–1612



1 3

	23.	 Lee WY, Park SM, Sim KB (2018) Optimal hyperparameter 
tuning of convolutional neural networks based on the parameter-
setting-free harmony search algorithm. Optik 172:359–367

	24.	 Kumar P, Hati AS (2021) Deep convolutional neural network 
based on adaptive gradient optimizer for fault detection in SCIM. 
ISA transactions 111:350–359

	25.	 Waheed A, Goyal M, Gupta D, Khanna A, Hassanien AE, Pan-
dey HM (2020) An optimized dense convolutional neural network 
model for disease recognition and classification in corn leaf. Com-
put Electron Agric 175:105456

	26.	 Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms 
for hyperparameter optimization. Advances in neural information 
processing systems. pp 2546–2554 (https://​doi.​org/​10.​5555/​29864​
59.​29867​43)

	27.	 Nguyen T, Nguyen G, Nguyen BM (2020) EO-CNN: an enhanced 
CNN model trained by equilibrium optimization for traffic trans-
portation prediction. Procedia Comput Sci 176:800–809. https://​
doi.​org/​10.​1016/j.​procs.​2020.​09.​075

	28.	 Bochinsk E, Senst T, Sikora T (2017) Hyper-parameter optimiza-
tion for convolutional neural network committees based on evo-
lutionary algorithms. In 2017 IEEE International Conference on 
Image Processing (ICIP) (pp. 3924-3928). IEEE. https://​doi.​org/​
10.​1109/​ICIP.​2017.​82970​18

	29.	 Aszemi NM, Dominic PDD (2019) Hyperparameter optimization 
in convolutional neural network using genetic algorithms. Int J 
Adv Comput Sci Appl 10(6):269–278

	30.	 Bergstra J, Bengio Y (2012) Random search for hyper-parameter 
optimization. J Mach Learn Res 13:281–305. https://​doi.​org/​10.​
5555/​21883​85.​21883​95

	31.	 Wang Y, Zhang H, Zhang G (2019) cPSO-CNN: an efficient PSO-
based algorithm for fine-tuning hyper-parameters of convolutional 
neural networks. Swarm Evol Comput 49:114–123. https://​doi.​
org/​10.​1016/j.​swevo.​2019.​06.​002

	32.	 Soon FC, Khaw HY, Chuah JH, Kanesan J (2018) Hyper-param-
eters optimisation of deep CNN architecture for vehicle logo rec-
ognition. IET Intell Transp Syst 12(8):939–946

	33.	 Lima LL, Ferreira Junior JR, Oliveira MC (2021) Toward 
classifying small lung nodules with hyperparameter opti-
mization of convolutional neural networks. Comput Intell 
37(4):1599–1618

	34.	 Dixit U, Mishra A, Shukla A, Tiwari R (2019) Texture classifica-
tion using convolutional neural network optimized with whale 
optimization algorithm. SN. Appl Sci 1(6). https://​doi.​org/​10.​
1007/​s42452-​019-​0678-y

	35.	 Andonie R, Florea AC (2020) Weighted random search for CNN 
hyperparameter optimization. arXiv preprint arXiv:2003.13300

	36.	 Mahdaddi A, Meshoul S, Belguidoum M (2021) EA-based 
hyperparameter optimization of hybrid deep learning models for 
effective drug-target interactions prediction. Expert Syst Appl 
185:115525

	37.	 Zhang M, Li H, Pan S, Lyu J, Ling S, Su S (2021) Convo-
lutional neural networks-based lung nodule classification: A 
surrogate-assisted evolutionary algorithm for hyperparameter 
optimization. IEEE Transactions on Evolutionary Computation 
25(5):869–882

	38.	 Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015) 
Taking the human out of the loop: a review of bayesian optimi-
zation. Proc IEEE 104:148–175. https://​doi.​org/​10.​1109/​JPROC.​
2015.​24942​18

	39.	 Fatyanosa TN, Aritsugi M (2021) An automatic convolutional 
neural network optimization using a diversity-guided genetic algo-
rithm. IEEE Access 9:91410–91426

	40.	 Ilievski I, Akhtar T, Feng J, Shoemaker C (2017) Efficient hyper-
parameter optimization for deep learning algorithms using deter-
ministic rbf surrogates. In Proceedings of the AAAI Conference 
on Artificial Intelligence. 31(1): 822–829

	41.	 Talathi SS (2015) Hyper-parameter optimization of deep convolu-
tional networks for object recognition. In 2015 IEEE International 
Conference on Image Processing (ICIP) (pp. 3982-3986). IEEE

	42.	 Rattanavorragant R, Jewajinda Y (2019) A hyper-parameter opti-
mization for deep neural network using an island-based genetic 
algorithm. In 2019 16th International Conference on Electrical 
Engineering/Electronics, Computer, Telecommunications and 
Information Technology (ECTI-CON) (pp. 73-76). IEEE

	43.	 Navaneeth B, Suchetha M (2019) PSO optimized 1-D CNN-SVM 
architecture for real-time detection and classification applications. 
Comput Biol Med 108:85–92

	44.	 Elkorany AS, Elsharkawy ZF (2021) COVIDetection-Net: A tai-
lored COVID-19 detection from chest radiography images using 
deep learning. Optik 231

	45.	 Brunese L, Mercaldo F, Reginelli A, Santone A (2020) Explain-
able deep learning for pulmonary disease and coronavirus 
COVID-19 detection from X-rays. Comput Methods Prog Biomed 
196:105608

	46.	 Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, 
Singh V (2020) Application of deep learning for fast detection 
of COVID-19 in X-rays using nCOVnet. Chaos Solitons Fractals 
138:109944

	47.	 Singh D, Kumar V, Kaur M (2020) Classification of COVID-19 
patients from chest CT images using multi-objective differential 
evolution–based convolutional neural networks. Eur J Clin Micro-
biol Infect Dis 39(7):1379–1389

	48.	 Apostolopoulos ID, Mpesiana TA (2020) Covid-19: automatic 
detection from x-ray images utilizing transfer learning with con-
volutional neural networks. Phys Eng Sci Med 43(2):635–640

	49.	 Makris A, Kontopoulos I, Tserpes K (2020) COVID-19 detection 
from chest X-ray images using deep learning and convolutional 
neural networks. In 11th Hellenic Conference on Artificial Intel-
ligence (pp. 60-66)

	50.	 Wang L, Lin ZQ, Wong A (2020) Covid-net: A tailored deep con-
volutional neural network design for detection of covid-19 cases 
from chest x-ray images. Sci Rep 10(1):1–12

	51.	 Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D 
(2020) Review of artificial intelligence techniques in imaging data 
acquisition, segmentation, and diagnosis for COVID-19. IEEE 
Rev Biomed Eng 14:4–15

	52.	 Castiglioni I, Ippolito D, Interlenghi M, Monti CB, Salvatore C, 
Schiaffino S, Polidori A, Gandola D, Messa C, Sardanelli F (2021) 
Machine learning applied on chest x-ray can aid in the diagnosis 
of COVID-19: a first experience from Lombardy, Italy. Eur Radiol 
Exp 5(1):1–10

	53.	 Hemdan EED, Shouman MA, Karar ME (2020) Covidx-net: a 
framework of deep learning classifiers to diagnose covid-19 in 
x-ray images. arXiv preprint arXiv:2003.11055

	54.	 Khan AI, Shah JL, Bhat MM (2020) CoroNet: a deep neural net-
work for detection and diagnosis of COVID-19 from chest x-ray 
images. Comput Methods Prog Biomed 196:105581

	55.	 Nguyen HG, Blank A, Dawson HE, Lugli A, Zlobec I (2021) 
Classification of colorectal tissue images from high throughput 
tissue microarrays by ensemble deep learning methods. Sci Rep 
11(1):1–11

	56.	 Xu J, Luo X, Wang G, Gilmore H, Madabhushi A (2016) A deep 
convolutional neural network for segmenting and classifying epi-
thelial and stromal regions in histopathological images. Neuro-
computing 191:214–223

	57.	 Linder N, Konsti J, Turkki R, Rahtu E, Lundin M, Nordling S, 
Haglund C, Ahonen T, Pietikäinen M, Lundin J (2012) Identifica-
tion of tumor epithelium and stroma in tissue microarrays using 
texture analysis. Diagn Pathol 7(1):1–11

	58.	 Guo T, Dong J, Li H, Gao Y (2017). Simple convolutional neural 
network on image classification. In 2017 IEEE 2nd International 
Conference on Big Data Analysis (ICBDA)(pp. 721-724). IEEE

1611Medical & Biological Engineering & Computing (2022) 60:1595–1612

https://doi.org/10.5555/2986459.2986743
https://doi.org/10.5555/2986459.2986743
https://doi.org/10.1016/j.procs.2020.09.075
https://doi.org/10.1016/j.procs.2020.09.075
https://doi.org/10.1109/ICIP.2017.8297018
https://doi.org/10.1109/ICIP.2017.8297018
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.1016/j.swevo.2019.06.002
https://doi.org/10.1016/j.swevo.2019.06.002
https://doi.org/10.1007/s42452-019-0678-y
https://doi.org/10.1007/s42452-019-0678-y
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218


1 3

	59.	 Nhat-Duc H, Nguyen QL, Tran VD (2018) Automatic recogni-
tion of asphalt pavement cracks using metaheuristic optimized 
edge detection algorithms and convolution neural network. Autom 
Constr 94:203–213

	60.	 Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolu-
tional neural networks: an overview and application in radiology. 
Insights Imaging 9(4):611–629

	61.	 Yoo JH, Yoon HI, Kim HG, Yoon HS, Han SS (2019) Optimiza-
tion of hyper-parameter for CNN model using genetic algorithm. 
In 2019 1st International Conference on Electrical, Control and 
Instrumentation Engineering (ICECIE) (pp. 1-6). IEEE

	62.	 Mustafa EM, Elshafey MA, Fouad MM (2019) Accuracy enhance-
ment of a blind image steganalysis approach using dynamic learn-
ing rate-based CNN on GPUs. In 2019 10th IEEE International 
Conference on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications (IDAACS) (Vol. 1, 
pp. 28-33). IEEE

	63.	 Jaworska T (2018) Image segment classification using CNN. In: 
International Workshop on Intuitionistic Fuzzy Sets and General-
ized Nets. Springer, Cham, pp 409–425

	64.	 Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu P, Zhang 
J (2014) Convolutional neural networks for human activity rec-
ognition using mobile sensors. In 6th International Conference 
on Mobile Computing, Applications and Services (pp. 197-205). 
IEEE

	65.	 Si L, Xiong X, Wang Z, Tan C (2020) A deep convolutional neural 
network model for intelligent discrimination between coal and 
rocks in coal mining face. Math Probl Eng. 2020:1–12. https://​
doi.​org/​10.​1155/​2020/​26165​10

	66.	 Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of 
training recurrent neural networks. In International conference 
on machine learning (pp. 1310-1318). PMLR.

	67.	 Lin Y, Han S, Mao H, Wang Y, Dally WJ (2017) Deep gradient 
compression: Reducing the communication bandwidth for distrib-
uted training. arXiv preprint arXiv:1712.01887

	68.	 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classifica-
tion with deep convolutional neural networks. In Proceedings of 
the 25th International Conference on Neural Information Process-
ing Systems (pp. 1097–1105)

	69.	 Redmon J (2013) Darknet: Open source neural networks in C. 
http://​pjred​die.​com/​darkn​et/. 2013–2016. Accessed 12 Aug 2020

	70.	 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) 
Rethinking the inception architecture for computer vision. In Pro-
ceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 2818-2826)

	71.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for 
image recognition. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 770-778)

	72.	 Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: an extremely 
efficient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 6848-6856)

	73.	 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) 
Mobilenetv2: inverted residuals and linear bottlenecks. In 
Proceedings of the IEEE conference on computer vision and 
pattern recognition (pp. 4510-4520)

	74.	 Nocedal J, Wright SJ (eds) (1999) Numerical optimization. 
Springer New York, New York

	75.	 Rahman T, Chowdhury ME, Khandakar A (2020) COVID-19 
chest X-ray database. Kaggle Data, v3. https://​www.​kaggle.​com/​
tawsi​furra​hman/​covid​19-​radio​graphy-​datab​ase. Accessed 20 Dec 
2020

	76.	 Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir 
MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Emadi NA, 
Reaz MBI, Islam MT (2020) Can AI help in screening viral and 
COVID-19 pneumonia? IEEE Access 8:132665–132676

	77.	 Webmicroscope. EGFR colon TMA stroma LBP classification 
(2012) http://​fimm.​webmi​crosc​ope.​net/​Resea​rch/​Suppl​ements/​
epist​roma. Accessed 20 Dec 2020

	78.	 Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen 
J, Wang R, Zhao H, Zha Y, Shen J, Chong Y, Yang Y (2021) 
Deep learning enables accurate diagnosis of novel coronavirus 
(COVID-19) with CT images. in IEEE/ACM Transactions on 
Computational Biology and Bioinformatics. https://​doi.​org/​10.​
1109/​TCBB.​2021.​30653​61

	79.	 Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acha-
rya UR (2020) Automated detection of COVID-19 cases using 
deep neural networks with X-ray images. Comput Biol Med 
121:103792

	80.	 Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang 
J, Li Y, Meng X, Xu B (2021) A deep learning algorithm using 
CT images to screen for Corona Virus Disease (COVID-19). Eur 
Radiol 31:6096–6104

	81.	 Keidar D, Yaron D, Goldstein E, Shachar Y, Blass A, Charbinsky 
L, Aharony I, Lifshitz L, Lumelsky D, Neeman Z, Mizrachi M, 
Hajouj M, Eizenbach N, Sela E, Weiss CS, Levin P, Benjaminov 
O, Bachar GN, Tamir S et al (2021) COVID-19 classification of 
X-ray images using deep neural networks. European radiology 
31(12):9654–9663

	82.	 Zhang R, Guo Z, Sun Y, Lu Q, Xu Z, Yao Z, Duan M, Liu S, Ren 
Y, Huang L, Zhou F (2020) COVID19XrayNet: a two-step transfer 
learning model for the COVID-19 detecting problem based on a 
limited number of chest X-ray images. Interdiscip Sci Comput 
Life Sci 12(4):555–565

	83.	 Goel T, Murugan R, Mirjalili S, Chakrabartty DK (2021) Opt-
CoNet: an optimized convolutional neural network for an auto-
matic diagnosis of COVID-19. Appl Intell 51(3):1351–1366

	84.	 Alinsaif S, Lang J (2020) Histological image classification using 
deep features and transfer learning. In 2020 17th Conference on 
Computer and Robot Vision (CRV) (pp. 101-108). IEEE

	85.	 Cascianelli S, Bello-Cerezo R, Bianconi F, Fravolini ML, Belal M, 
Palumbo B, Kather JN (2018) Dimensionality reduction strategies 
for cnn-based classification of histopathological images. In: Inter-
national conference on intelligent interactive multimedia systems 
and services. Springer, Cham, pp 21–30

	86.	 Huang Y, Zheng H, Liu C, Ding X, Rohde GK (2017) Epithelium-
stroma classification via convolutional neural networks and unsu-
pervised domain adaptation in histopathological images. IEEE J 
Biomed Health Inform 21(6):1625–1632

	87.	 Bianconi F, Bello-Cerezo R, Napoletano P (2017) Improved 
opponent color local binary patterns: an effective local image 
descriptor for color texture classification. J Electron Imaging 
27(1):011002

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Soner Kiziloluk  received the M.Sc. degree (2013) in electrical and elec-
tronic engineering at Munzur University and the Ph.D. degree (2017) 
in Computer Engineering at Fırat University. Currently he is assistant 
professor at Computer Engineering of Malatya Turgut Ozal University. 
His research interests include metaheuristic algorithms, optimization 
and data mining.

Eser Sert  received the M.Sc. degree in 2010 and the Ph.D. degree in 
2013, all in Computer Engineering at Trakya University, Turkey. Cur-
rently he is associate professor at Computer Engineering of Malatya 
Turgut Ozal University. His research interests include 3D modeling 
system, image processing, computer vision, field programmable gate 
arrays (FPGA) and artificial inteligence.

1612 Medical & Biological Engineering & Computing (2022) 60:1595–1612

https://doi.org/10.1155/2020/2616510
https://doi.org/10.1155/2020/2616510
http://pjreddie.com/darknet/
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
http://fimm.webmicroscope.net/Research/Supplements/epistroma
http://fimm.webmicroscope.net/Research/Supplements/epistroma
https://doi.org/10.1109/TCBB.2021.3065361
https://doi.org/10.1109/TCBB.2021.3065361

	COVID-CCD-Net: COVID-19 and colon cancer diagnosis system with optimized CNN hyperparameters using gradient-based optimizer
	Abstract
	1 Introduction
	2 Related works
	2.1 Hyperparameter optimization
	2.2 Deep learning approaches for COVID-19
	2.3 Computer-aided colon cancer detection approaches

	3 Theoretical background
	3.1 Gradient-based optimizer
	3.1.1 Initialization process
	3.1.2 Gradient search rule
	3.1.3 Local escaping operator

	3.2 Convolutional neural networks

	4 Hyperparameter optimization of CNN models using gradient-based optimizer
	5 Experiments and results
	5.1 Medical image classification datasets
	5.2 Experimental setup
	5.3 Experimental results

	6 Conclusion
	References


