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Abstract
COVID-19 looks to be the worst pandemic disease in the last decades due to its number of infected people, deaths, and the 
staggering demand for healthcare services, especially hospitals. The first and most important step is to identify the patient 
flow through a certain process. For the second step, there is a crucial need for predicting the future patient arrivals for plan-
ning especially at the administrative level of a hospital. This study aims to first simulate the patient flow process and then 
predict the future entry of patients in a hospital as the case study. Also, according to the system status, this study suggests 
some policies based on different probable scenarios and assesses the outcome of each decision to improve the policies. The 
simulation model is conducted by Arena.15 software. The seasonal auto-regressive integrated moving average (SARIMA) 
model is used for patient’s arrival prediction within 30 days. Different scenarios are evaluated through a data envelopment 
analysis (DEA) method. The simulation model runs for predicted patient’s arrival for the least efficient scenario and the 
outputs compare the base run scenario. Results show that the system collapses after 14 days according to the predictions 
and simulation and the bottleneck of the ICU and CCU departments becomes problematic. Hospitals can use simulation and 
also prediction tools to avoid the crisis to plan for the future in the pandemic.

Keywords Simulation · COVID-19 pandemic · Patient flow · Scenario evaluation · Time-series prediction

1 Introduction

COVID-19 looks to be the worst pandemic disease in the 
last decades due to its number of infected people, deaths, and 
also the staggering demand for healthcare services, especially 
hospitals. Based on Worldometer’s COVID-19 data reports, 
the number of confirmed infected people is growing every day. 
As reported on 7 May 2021, the total number of worldwide 
cases of coronavirus is 157,049,695. Of these, 3,274,689 (2%) 
people were dead and 134,416,166 (85%) were recovered, 
and the number of active patients is 19,358,840 (13%).1 As 
COVID-19 is a global public health emergency, hospitals are 
the most important organizations that can help to avoid the 
destructive effects of this pandemic.

The first and most important step in facing this pandemic 
is to identify the suspected patients who enter the hospital 
whether they are infected. To do this, all patients go through 
a certain process. In this case, if they are not infected, they 
will not enter the treatment system, but if they are infected, 
they need to go through certain steps in the hospital, based 
on their symptom level. So, the COVID-19 patient journey 
in hospitals should be specified to find the bottlenecks in 
this process. According to circumstance happened during the 
pandemic, there is a critical need to change some resources 
(e.g., nurses, physicians, and facilities) or planning in dif-
ferent process of hospitals to serve the patient in a stable 
situation [40]. Usually, understanding the entire process for 
a patient’s journey is difficult. In this case, researchers most 
use queue theory, Petri nets, and simulation for clarifying the 
structure of patient processes [8, 17]. In this study, we use 
the simulation tool for visualizing the suspected COVID-19 
patient’s journey process.

To improve the performance of hospitals as a system, 
it is necessary to have a dynamic understanding of it. To 
achieve such an understanding, simulation provides an ideal 
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tool for determining and allocating the capacity needed to 
respond to demand in a timely manner and minimize delay. 
Also, simulation is a convenient alternative with less time 
and more cost than most traditional statistical methods [7]. 
In general, discrete event simulation models that have been 
used in various studies to analyze health care delivery sys-
tems mainly focus on two areas (a) optimizing the flow of 
patients in different departments and (b) allocating resources 
to improve services. In optimizing the flow of patients, the 
goal is to improve the output of patients and reduce waiting 
times, and the second area is to improve the use of resources 
and determine the amount of resources needed (physical and 
human) to provide quality services [5].

For the second step, there is a crucial need for predicting 
the future trend to be ready for facing the challenges and 
making preparations especially for the administrative levels 
[39]. Developing some accurate models for predicting the 
infected ones in the future can help decision-makers suggest 
appropriate policies. Besides, it is important to assess the 
effectiveness and impacts of every policy before running 
[35]. Predicting the ones who will be infected in the future 
can help to obtain the pressure in the treatment process and 
plan for avoiding the overloading through the number of 
nurses, physicians, beds, etc. However, statistics show a high 
degree of uncertainty in COVID-19 infected people’s behav-
ior [47]. Thus, advanced and accurate predictive models are 
essential [32]. Machine learning (ML) has recently been 
used for prediction models of COVID-19 with a high-level 
ability and reliability that most researchers have acclaimed 
[9, 11, 19, 33]. Although some researchers used ML for 
other former pandemics, such as H1N1 influenza, Ebola, 
dengue fever, and swine fever [2, 13, 21, 37], using ML for 
COVID-19 outbreak prediction is rare in researches and it is 
not saturated. Since there is no more information about the 
probable effective parameters on patient arrival, the seasonal 
auto-regressive integrated moving average (SARIMA) time-
series model will be used to predict the number of COVID-
19 patients who will arrive in the next few days [6, 18].

For this aim, in this study, we try to first predict the future 
entry of patients in the case study hospital. Then, accord-
ing to the system status, we suggest some policies based on 
different probable scenarios and assess the outcome of each 
scenario to help the policy’s decision-making. So, the cur-
rent study has six steps as follows:

• Simulating the current process for COVID-19 suspected 
patient arrival in the case study hospital

• Investigating the outputs for the current process, such as 
total time, average waiting time, discharged patient ratio, 
and the cost

• Predicting the patient entry within two months later using 
machine learning algorithms

• Evaluating and comparing different scenarios

• Running the worst scenario by considering the predicted 
patient arrival to simulate the pessimistic situation in the 
future

• Analyzing the system in the pessimistic situation and 
suggesting some solutions

The rest of this paper is organized as follows. The related 
literature and studies are reviewed in Sect. 2. Methods and 
materials are explained in Sect. 3. The hospital case study is 
described completely in Sect. 4. Section 5 describes simula-
tion models of the current process and scenarios as results. 
Evaluating the scenarios and simulation of predicted process 
are discussed in Sect. 6. Finally, the conclusion and future 
suggestions are discussed in Sect. 7.

2  Literature review

This study includes two research streams. First, the reviewed 
studies focus on simulation models for different processes 
especially in hospitals. Then, the prediction models in 
healthcare services in the literature are investigated. In 
the first stream, simulation techniques have been used in 
most papers in hospital processes due to their ease of incep-
tion and also less costly in the first stream since they can 
optimize the process while risks are decreasing (Diaz & 
Dawson, 2020a). Also, sometimes, simulation models can 
help the decision-makers to find the best scenario or policy 
for aiming the optimum outputs in different goals, such as 
resource allocation, process sequence, and order of activities 
[45, 46]. For example, Azadeh et al. [4] used a simulation 
approach for finding the best and optimum policy for mainte-
nance. They first simulated the maintenance system based on 
historical data and then used a Taguchi method for evaluat-
ing different scenarios for the system and calculated output 
values for each scenario. They evaluated the efficiency of 
each scenario through a data envelopment analysis (DEA) 
method and selected an optimal scenario. Pan et al. [26] 
simulated an ophthalmic specialist outpatient clinic in Singa-
pore. They focused on patient and information flow. Finally, 
they proposed several improving strategies to decrease turn-
around time and analyzed the scenarios via the design of 
experiment (DOE) method. (Diaz & Dawson, 2020a) used 
simulation for a COVID-19 resuscitation process in a 47-bed 
pediatric emergency department over 2 weeks. They con-
sidered the arrival of patients, resuscitation, and disposition 
of patients besides the facilities and staff in their simulation 
model. They could understand which changes can lead to a 
more efficient process by comparing the outputs before and 
after each change. Finally, they concluded the optimal room 
layout, number of equipment, and staff.

Alban et al. [1] used stochastic process simulation for 
ICU capacity management during the COVID-19 pandemic. 
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They simulate an ICU for the patients who are COVI-19 and 
non-COVID-19. They assessed the increase in COVID-19 
patient entry during the pandemic to help a hospital manager 
for a better management decision. They defined a stochastic 
queuing model for patient flow. They finally investigated the 
impact of each decision such as needing to transfer a patient 
to other hospitals and decreasing bed occupancy rate based 
on the service level output. Zeinalnezhad et al. [43] used 
simulation techniques of a heart clinic during the COVID-
19 pandemic. According to bottlenecks available in the base 
process, three scenarios were proposed for improving the 
waiting time of the process as the target variable. They used 
timed colored Petri nets for workflow simulation. Finally, 
they compared the three scenarios waiting time output and 
chose the best strategy. Melman et al. [24] tried to balance 
the hospital resources during the COVID-19 pandemic while 
using the discrete-event simulation model. They used data 
of COVID-19 patient flow for a hospital in the UK. They 
proposed three different resource allocation scenarios and 
evaluated them with simulation run outputs.

Recently, the papers tried to combine some other tech-
niques besides the simulation tools to improve the outputs 
and close them to reality. For example, Kovalchuk et al. 
[20] used simulation for patient flow in acute coronary 
syndrome (ACS) unit. They also combined some machine 
learning approaches to identify each patient path class. So, 
classifying the patient, they could improve the length of 
stay of patients. Ordu et al. [25] proposed the integrated 
forecasting-simulation–optimization approach in a hospital 
to help the managers for their resource allocation problem. 
So, they first predicted the professions demand in hospital, 
then in the second step, simulated the patient journey in a 
case study hospital, and finally, developed an optimization 
model for bed and staff allocation based on the outputs of 
the two previous steps. They expressed that their proposed 
model could be as a decision support system. Sasanfar et al. 
[36] simulated the emergency department (ED) of a hospital 
to find the best resource allocation policy. They simulated an 
ED in a case study hospital in Iran and could decrease wait-
ing times 23.1% (3.31 min) and 81.7% (10.58 min) for inter-
nal and emergent patients, respectively. Pereira et al. [29] 
evaluated a public hospital efficiency while using a DEA 
with simulation. They used a Monte Carlo method to model 
the hospital supply chain and defined several providers and 
then evaluated them using the DEA to find the target area. 
Finally, they could justify the target scenario for their case 
study hospital. Teberga Campos et al. [10] tried to simulate 
the COVID-19 infected ones’ pattern to inform hospitals and 
carried out their simulation results in a case study. So, they 
could improve patient waiting time, movement intensity, 
length of stay (LOS), and either adoption rate.

In the second stream, some studies used the prediction 
models such as the time-series model and regression models. 

In this stream, Tomar & Gupta [39] tried to predict the 
COVID-19 spread in India and used long short-term memory 
(LSTM) and curve fitting to predict the COVID-19 cases in 
India within 30 days based on the available data. The effec-
tiveness and related results for solutions (e.g., isolation and 
lockdown) were investigated. Heo et al. [15] tried to predict 
and monitor military hospitals in South Korea. They aimed 
to select the important patients due to medical resource 
shortage. An application gathers some information about 
age,body temperature; pre-disease physical status; history of 
cardiovascular disease; hypertension; visit to a region with 
an outbreak; and symptoms of chills, feverishness, dyspnea, 
and lethargy. So, important patients were selected through 
prediction models. Ardabili et al. [3] used machine learning 
techniques to predict COVID-19 outbreak and used several 
machine learning and mathematical model (e.g., logistic, 
linear, logarithmic, quadratic, cubic, compound, power, 
and exponential) for predicting COVID-19 outbreak and 
compared them. Multi-layered perceptron (MLP), adaptive 
network-based fuzzy inference system (ANFIS), and finally, 
time series were employed for prediction as ML techniques. 
Their results showed that ML models have fewer errors for 
prediction and are more powerful.

Besides, some studies focused on new COVID-19 
cases in the future by predicting using the risk factors or 
the arrivals history. They used different machine learn-
ing techniques to predict how many infected cases may 
occur in future days [16],G. [45, 46]. Several recent papers 
tried to predict new cases through time series. For this 
aim, Zeroual et al. [44] forecasted the COVID-19 patients 
based on time series. They tried to predict the new cases 
infected in short term to be used by resource managers. 
They used five methods for time-series forecasting consid-
ering recent historical data of infected and recovered cases 
in the USA, China, France, Spain, and Italy. Finally, they 
compared the error metrics of each model such as RMSE 
and MAE. Maleki et al. [22] also predicted the COVID-19 
new confirmed and recovered cases through time-series 
modeling. To this aim, they used autoregressive models in 
time series as TP-SMN (two pieces-scale mixture normal 
distributions). Since the infected cases trend and then their 
entrance to a special hospital includes uncertainty, some 
researchers tried to forecast new cases using time-series 
models while uncertainty was considered. In this regard, 
Ye & Yang [42] predicted the future cases of COVID-19 
in China through time series in an uncertain environment. 
Based on their result, the prediction accuracy was greater 
compared to the classical time series. In addition to the 
time-series models, other prediction models were used 
for the new case prediction, such as the linear regression 
model. For instance, Rath et al. [31] used a multiple linear 
regression model for the new active cases of COVID-19 
prediction based on a WHO data set. They compared the 
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results of their method with a simple linear regression. 
Roy et al. [34] used the additive regression model for 
infected cases all over the world based on global data for 
each country and compared them to help the economic 
evaluation for countries based on their future infected peo-
ple. However, support vector machine (SVM) models were 
also used for forecasting. Parbat & Chakraborty [27] used 
an SVM model for COVID-19 case prediction based on the 
data of the recent 2 months. They could develop a predic-
tion model with 97% accuracy for all cases of infection, 
deaths, and recoveries.

Based on the reviewed literature, no study has used the 
integrated simulation, DEA, and time-series models, espe-
cially in the COVID-19 patient process. For instance, Diaz 
& Dawson (14, Alban et al. [1], Melman et al. [24], and 
Teberga Campos et al. [10] only used simulation tools for 
optimal layout when they did not have any approach for 
deciding optimality. Besides, Zeinalnezhad et al. [43] and 
Pan et al. [26] first simulated their case study processes and 
then used Petri nets and DOE for analyzing the identified 
scenarios. In the literature reviewed, only Azadeh et al. [4] 
and Pereira et al. [29] tried to evaluate the scenarios by the 
DEA based on the simulation outputs that we carry out in 
our study. There was no study that used a time-series pre-
diction model for the simulation model which predicted the 
input. So, this study has the novelty in its methodology and 
the case study process, which is the most complete patient 
flow for COVID-19-suspected patients. The main contribu-
tions of this research can be summarized and highlighted 
below:

• Developing a simulation model of the COVID-19 patient 
flow in a hospital as a real-case study

• Predicting the different categories of patient (i.e., outpa-
tient, emergency, and inpatient) arrival using the time-
series model

• Proposing various scenarios based on different levels of 
input variables using the Taguchi method

• Evaluating the proposed scenarios based on their input 
and simulation output using the DEA method

• Predicting the bottlenecks of the patient flow process 
by simulating the worst scenario with predicted patient 
arrivals

• Suggesting some public health policies according to dif-
ferent scenarios and assessing the outcome of each sce-
nario for the policy’s decision-makers

3  Materials and methods

A brief overview of the research methodology framework 
is shown in Fig.  1. In the first stage, the data about 
the COVID-19 patient f low are collected. Then, the 

simulation model is designed based on the distribution 
functions for each parameter. In the base run of the 
simulation model, the current bottlenecks of the process 
are identified.

In the second stage, since the COVID-19 patient journey 
in a hospital during a pandemic is a complex process 
and consists of different input parameters affecting the 
process output, different values can be considered for each 
of these parameters for each unit. Furthermore, various 
combinations of these parameters lead to several scenarios. 
For defining all possible combinations of the input 
variables, the Taguchi method is used. For each scenario 
proposed by this method, the simulation model will run and 
the output variables will measure.

In the third stage, the best scenario should be identi-
fied based on the output comparison. It is less probable that 
a scenario has the best value for all three outputs. If there 
is a scenario that has the best outputs comparing with the 
other scenarios, it will be considered as the best scenario. 
Otherwise, for evaluating the scenarios, the DEA method 
is considered. Finally, in the last stage, the patient entry in 
the future will predict and the predicted values will be the 
input of the best scenario simulation model. The future bot-
tlenecks will be recognized to inform the hospital managers. 
The tools and techniques used in this study will be explained 
in detail.

3.1  Arena simulation

An Arena is an application software with high modeling 
capabilities and a powerful simulation tool that allow users 
to create and test a simulation model, while also having an 
easy-to-use interface. The Arena can simulate a discrete 
event system (DES) that accelerates the analysis of the 
behavior of a process or system over time. So, before 
we get into the practical implementation of a business 
process, it is best to first model and evaluate it so that we 
can better decide on some changes in that process and 
improve it [12]. Furthermore, before it becomes costly and 
productive, we realize the best of that business process 
and make the best decisions. The capabilities of Arena 
are as follows:

• Showing a graphical representation of process flows for 
even the most complex business processes

• Monitoring, analyzing, and better understanding the 
behavior of workflows

• Guessing more accurately the efficiency, response time, 
and bottlenecks of a new system or design

• Evaluating the impact of error rates
• Changing or improving how the system is configured and 

tasks are performed
• Testing different ways to find the best solution for a topic
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• Showing the results graphically and numerically to 
increase the acceptance and understanding of decisions 
[23]

3.2  Data envelopment analysis (DEA)

Data envelopment analysis (DEA) is a mathematical plan-
ning model for evaluating the performance of decision-
making units (DMUs) that have multiple inputs and mul-
tiple outputs. Charnes et al. (1978) proposed this method 
as a CCR model by the first letter of their names for calcu-
lating the efficiency of each DMU by solving a nonlinear 
mathematical model as Eqs. (1)-(3):

s.t.

where xio means the value of input i, yro, the value of 
output r, vi , the weight of input i, ur , the weight of output 
r, number j of DMUs, and � is a positive parameter.

However, this nonlinear programming can be trans-
ferred into linear as Eqs. (4)-(8) (Cook and Seiford,2009):

(1)e0 = max
∑

r
uryro∕

∑

i
vixio

(2)
∑

r
uryrj −

∑

i
vixij ≤ 0

(3)ur, vi ≥ �

In this method, an efficient boundary curve is created 
from a series of points that are determined by linear pro-
gramming. The linear programming method determines 
whether the DMU is on the edge of efficiency or outside 
it. Thus, efficient and inefficient units are separated from 
each other based on Fig. 2.

The parameters considered inputs are as follows:

• Number of physicians in the emergency COVID-19 
special line

• Number of nurses in the emergency COVID-19 special 
line

• Number of physicians in ICU
• Number of nurses in ICU

(4)e0 = max
∑

r
�ryro

(5)s.t.
∑

i
vixio = 1

(6)
∑

r
�ryrj −

∑

i
vixij ≤ 0

(7)�r, vi ≥ �

(8)where�r = tur, vi = tvi, andt = (
∑

i
vixio)

−1
.

Fig. 1  Research methodology framework
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• Number of physicians in CCU 
• Number of nurses in CCU 
• Number of radiologists in a CT-scan unit
• Number of service providers in the laboratory
• Number of beds in ICU
• Number of beds in CCU 
• Number of beds in the emergency COVID-19 special 

line

Also, the outputs include as follows:

• Total time: the time through the entire patient flow
• Average patient waiting time: the average of the wait-

ing times through all the processes in all activities of all 
departments

• Discharged patient ratio: the fraction number of dis-
charged patients to the patients who entered the hospital

• Cost: the cost of inputs for the hospital as the service 
provider

3.3  Taguchi design

To examine the different values of input factors affecting the 
entire system, for every eleven input parameters, three levels 
were chosen and given in Table 1. In this table, each column 
indicated three levels and inputs are in rows. These levels are 
defined based on the minimum, medium, and maximum val-
ues that can be in the system based on the hospital capacity 
and budget. If we want to examine a full factorial experiment 
for eleven inputs having three levels, the number of required 
requirements will be 311 (i.e., 177,147) experiments. How-
ever, the Taguchi method reduces the number of experiments 
to fewer experiments that can be investigated easier (Davim, 
2003). The steps of this method include the following: (1) 
choose control factors, (2) choose suitable levels for fac-
tors, (3) choose an orthogonal array, which is appropriate 
for the control factors, (4) carry out the experiments, and 
(5) analyze the experiments and find the best combination 
for levels of factors. Based on orthogonal arrays of Taguchi, 
for eleven of three-level factors, 27 scenarios are suggested 
as given in Table 2. While the value for each factor is 1 it 
means the minimum value, 2 the medium value, and three 
the maximum value.

3.4  Seasonal auto‑regressive integrated moving 
average (SARIMA)

For the prediction of patient arrival based on their his-
torical arrival, the SARIMA(p, d, q),(P, D, Q)m model is 
used. This model is used because of its simplification and 
appropriation for predicting the patient arrival. Also, it is 
used when there are only two columns in the dataset (i.e., 

data and event frequency) in non-linear cases, which have 
seasonal behavior [28]. However, other time-series model 
which is more complicated (i.e., LSTM) is used one there 
are other exogenous features impact on the event frequency 
[41]. Since the data available in the case study includes the 
information of date and patient arrival and other informa-
tion (e.g., the region population, the infection rate, the con-
nection frequency, and some detailed features), we will use 
the SARIMA model for time-series prediction. This model 
includes several parameters that can be tuned to achieve 
optimal performance. These parameters are trend elements 
and seasonal elements as follows:

Trend elements:
pTrend auto-regression order.
dTrend difference order.
qTrend moving average order.
Seasonal elements:
PSeasonal autoregressive order.
DSeasonal difference order.
QSeasonal moving average order.
mNumber of time steps for a single seasonal period.

To get the best prediction, the values of SARIMA(p, d, 
q),(P, D, Q)m should be optimized. For this aim, we used 
“grid search” to iteratively explore different combinations 
of these parameters. The evaluation metric used for the grid 
search is the Akaike information criterion (AIC) value. The 
AIC measures how well a model fits the data while consider-
ing the overall complexity of the model [30].

The augmented Dickey-Fuller (ADF) test is used for check-
ing stationary. The ADF approach is essentially a statistical 
significance test that compares the p-value with the critical 
values and does the hypothesis testing. Using this test, we can 
determine whether the processed data are stationary or not 
with different levels of confidence. If p-value > 0.05, then the 
zero hypothesis with the stationary will reject data [38].

The metric used for evaluation is the root mean squared 
error (RMSE) as Eq. (9), where yt which is the actual patient 
entry on the date (t), ypredictedt  is the predicted value of the 
patient entry on the date (t), and n is the number of test dates.

4  Case study

4.1  Data collection

This study was performed at a hospital in Iran. This hospi-
tal provides services to COVID-19 patients in four normal 

(9)RMSE =

�

∑n

t=1
(yt − y

predicted

t )
2

n
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units with 104 beds and three intensive care units with 70 
beds. The laboratory and CT scan units of this hospital 
are also active 24 h a day of outpatients, emergencies, 
and inpatients who have been hospitalized before for other 
reasons. The emergency unit of this hospital also has 10 
beds for the severe symptom patients who stay in these 
beds until the inpatient unit bed becomes empty.

The data for patient entry (i.e., outpatients, emergen-
cies, and inpatients), symptoms (i.e., no symptoms, mod-
erate, and severe), laboratory test results and CT-scan 
reports, and length of stay in normal and intensive units 
for all entered cases are collected from 3 May to 5 October 
2020. Figure 3 shows the data related to patients collected 
from the case study. However, the information about the 
available beds, the human resources in each unit, the wait-
ing times of patient in every stage, and the average time 
of each activity is obtained from the hospital information 

system (HIS), and the managers for each category of 
patients (i.e., no symptoms, moderate, and severe) will be 
explained in five different flows in the next section as the 
“base process.”

4.2  Base process

In the patient flow of the COVID-19-suspected ones in the 
case study hospital, three groups of patients enter the pro-
cess. These three categories include outpatients, emergen-
cies, and inpatients. The definition of each category has been 
identified:

• Outpatients are patients who go directly to a lab or CT 
scan based on their suspicion or some of the symptoms 
of COVID-19 disease visibility.

• Emergencies are patients who have called the emergency 
services due to the visibility of some symptoms and are 
delivered by ambulance to the emergency unit of the hos-
pital.

• Inpatients include patients who have already been hospi-
talized for other reasons before and need to be tested for 
COVID-19 services due to the visibility of some symp-
toms or even before their surgery operations.

Outpatients take three steps based on the severity of their 
first symptoms. If they have no symptoms, they usually 
go to the lab. If they have moderate symptoms, they will 
have a CT scan for a chest x-ray. It is rare for outpatients to 
have severe symptoms, but if so, they go to the triage of the 
emergency unit of the COVID-19 line. Emergencies are also 
delivered by ambulance to the triage of the hospital’s emer-
gency COVID-19 line. In this case, with the diagnosis of 
emergency unit triage, if their symptoms are not severe, they 
are sent to the laboratory. If they have moderate symptoms, 
they will have a CT scan for a chest x-ray. Most patients 
referred to the emergency department have severe symp-
toms, in which case, while staying on one of the beds in the 

Fig. 2  DEA separation frontier

Table 1  Input variable levels Input number Input variable Level 1 Level 2 Level 3

1 Number of physicians in emergency COVID-19 special line 2 4 6
2 Number of nurses in emergency COVID-19 special line 5 6 7
3 Number of physicians in ICU 2 4 6
4 Number of nurses in ICU 16 20 24
5 Number of physicians in CCU 2 4 6
6 Number of nurses in CCU 6 7 8
7 Number of the service providers in CT-scan unit 4 8 12
8 Number of the service providers in Laboratory 14 18 22
9 Number of beds in ICU 32 52 72
10 Number of beds in CCU 10 18 38
11 Number of beds in emergency COVID-19 special line 5 10 15
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hospital’s emergency COVID-19 line, they go to the labora-
tory and CT-scan unit at the same time until their admission 
will be done. Inpatients, as needed or sometimes observ-
ing the symptoms of the disease, go to the laboratory and 
radiology to ensure that they are not infected with COVID-
19 to continue their treatment in another disease that they 
have. In this case, they are sometimes confirmed to have 
COVID-19, which must be treated at the same time as their 
underlying disease and coronary heart disease. If inpatients 
have no symptoms but need a COVID-19 test, they are sent 
to a laboratory first. If they have moderate symptoms, they 
first go to the radiologist and then to the laboratory. In this 
case, these patients are in their non-coronary wards and are 
transferred for tests and returned to their wards. However, if 
they have severe symptoms, they are immediately isolated 
in their ward to prevent transmission to other patients in the 
non-coronary wards of the hospital and sent to the laboratory 
and radiology at the same time.

In general, in COVID-19 disease, observing the symp-
toms is the priority in making a patient decision. After that, 
the CT-scan results and finally the test result determine 

whether or not a patient is infected. There are five different 
flows of patients, which are explained as follows:

1. First f low: Outpatients and emergencies with no 
symptoms wait in the laboratory and will be tested 
after a while. The test result is also prepared after an 
average of 6 h. Ten percent of the time, it is necessary 
to repeat the test. If there is no need to repeat the 
test, based on the test results, then patients follow 
three ways: (I) If their test is negative, they leave the 
hospital, (II). If the test is positive, some patients leave 
the hospital on their own to go home, some patients go 
home based on physician’s orders to be quarantined, 
and some patients prefer to go to another hospital, and 
(III) the rest of the patients go to the radiology for CT 
scan. In radiology, patients are waiting in a queue, 
and after an average of 25 min, while no waiting for 
emergency patients, a CT scan is performed. The 
CT-scan result is ready after 2 h on average. Based 
on the CT-scan result along with the test result, the 
following conditions occur:

Table 2  Taguchi OA L27

Scenario Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10 Input 11

1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2 3
5 1 2 2 2 2 2 2 3 3 3 1
6 1 2 2 2 3 3 3 1 1 1 2
7 1 3 3 3 1 1 1 3 3 3 2
8 1 3 3 3 2 2 2 1 1 1 3
9 1 3 3 3 3 3 3 2 2 2 1
10 2 1 2 3 1 2 3 1 2 3 1
11 2 1 2 3 2 3 1 2 3 1 2
12 2 1 2 3 3 1 2 3 1 2 3
13 2 2 3 1 1 2 3 2 3 1 3
14 2 2 3 1 2 3 1 3 1 2 1
15 2 2 3 1 3 1 2 1 2 3 2
16 2 3 1 2 1 2 3 3 1 2 2
17 2 3 1 2 2 3 1 1 2 3 3
18 2 3 1 2 3 1 2 2 3 1 1
19 3 1 3 2 1 3 2 1 3 2 1
20 3 1 3 2 2 1 3 2 1 3 2
21 3 1 3 2 3 2 1 3 2 1 3
22 3 2 1 3 1 3 2 2 1 3 3
23 3 2 1 3 2 1 3 3 2 1 1
24 3 2 1 3 3 2 1 1 3 2 2
25 3 3 2 1 1 3 2 3 2 1 2
26 3 3 2 1 2 1 3 1 3 2 3
27 3 3 2 1 3 2 1 2 1 3 1
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  • If the CT scan is positive, the test result is posi-
tive, and the patient has no symptoms, he/she goes home 
based on physician’s orders; however, he/she must be 
quarantined at home and rest until complete recovery.

  • If the CT-scan result is negative while the test result 
is positive and the patient has no specific symptoms, he/
she goes home for quarantine based on the physician’s 
orders.

2. Second flow: Outpatients and emergencies with moder-
ate symptoms first go to the radiology and then go to the 
laboratory. Based on the CT-scan result along with the 
test result, in all four conditions, patient should wait for 
the COVID-19-unit admission.

3. Third flow: Outpatients and emergencies with severe 
symptoms should first go to the triage of the COVID-
19 emergency department of the hospital. In this case, 
because the patient’s symptoms are severe, they stay 
in the COVID-19 emergency line and go to the radiol-
ogy and laboratory at the same time. After preparing 
the results, regardless of the results, they remain in the 
COVID-19 emergency line.

4. Fourth flow: Inpatients with no symptoms are transferred 
to a laboratory. The test result is also prepared after an 
average of 6 h. In 10% of the time, it is necessary to 
repeat the test. If there is no need to repeat the test, 
patients take three steps based on the test results: (I) If 
their test is negative, they return to their unit and con-

tinue their previous treatment, (II) If their test is posi-
tive, they will be taken to the radiology for CT scan. 
After an average of 5 min of waiting for their CT scan 
to be done, the CT-scan answer is ready after 2 h on 
average. Based on the CT scan result along with the test 
result, the following conditions occur:

  • If the CT scan and the test are positive and the 
patient has no symptoms, the patient should be isolated 
in his/her unit.

  • If the CT scan result is negative while the test result 
is positive and the patient has no specific symptoms, the 
patient should remain in his/her unit.

5. Fifth flow: Inpatients with moderate and severe symp-
toms are first referred to radiology and then transferred 
to the laboratory. Due to the moderate and severe symp-
toms, these patients are isolated in their unit, regard-
less of their results, and are waiting for COVID-29-unit 
admission.

In the hospital’s COVID-19 units, patients are separated 
into normal units or intensive care units based on clini-
cal diagnosis. So that if the patient has a clinical disease 
before, he/she will be admitted to intensive care units and 
otherwise to normal units. In intensive care units, after 
undergoing the relevant treatments based on the physi-
cian’s order, patients are first transferred to normal units 
and complete their treatment there. Then, patients will 

Fig. 3  Data description of the case study
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Fig. 4  COVID-19 patients monitoring process

Fig. 5  Part of the simulation model of the COVID-19 patient flow
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leave the system in three modes. Either they are discharged 
based on the physician’s order due to complete recovery 
or continuing treatment, or they unfortunately die, or are 
transferred to another hospital to continue their treatment. 
The process explained above is depicted in Fig. 4 in five 
flows described and a general flow, which is common for 
all categories of patients.

5  Results

5.1  Base patient flow simulation

In this section, the base patient flow is simulated. For sim-
ulating the model of the present study, the data collected 
from the case study hospital, and then in one of the Arena 

software add-ins called input analyzer, the input data are 
converted into distributed functions and these functions are 
used in the process. Also, the distribution functions of the 
variables are explained in Section A in the Supplementary 
Materials.

In the process of discrete event simulation performed with 
Arena software, different modules are used. In the simula-
tion of this research, the “Create” module is used to create 
the entities of the studied process (i.e., patients). Patients 
are divided into three categories, namely, outpatients, emer-
gencies, and inpatients when each of them has its flow. The 
“Process” module is used to perform various activities dur-
ing the process, for example, activities (e.g., laboratory test, 
CT scan, and treatment). The “Hold” module is used by dif-
ferent entities to wait in the queue at different workstations. 
In some parts of the simulation, the “Decide” module is used 
to divide the different paths of the entities. Another module 
used in this model is the “Assign” module, which is used to 
separate entities in different sections for accurate monitor-
ing. The “Record” module is used to record data of different 
parts of the process. All entities are also removed from the 
process by the “Dispose” module. Also, Fig. 5 is part of the 
simulation model of the patient flow in the hospital. How-
ever, the complete simulation model is shown in Section B 
in the Supplementary Materials.

According to the outputs of the base patient flow model, the 
total time of outpatients in the system is from 56 to 2998 min. 
These patients vary in the length of time and stay in the system 
according to their various conditions. However, these patients 
are in the system for 187 min on average. Also, the waiting 
time of outpatients in the system is from 42 to 258 min, with 
an average of 64 min. Emergencies are in the system from 85 
to 12,129 min and an average of 172 min. Also, their average 

Fig. 6  Comparison of the average total time and waiting time of each 
category

Table 3  Simulation outputs of scenarios

Scenario Total time
(minutes)

Average 
patient waiting 
time
(minutes)

Discharged 
patient ratio

Cost
(,million toman)

Scenario Total time
(minutes)

Average 
patient waiting 
time
(minutes)

Discharged 
patient ratio

Cost
(million toman)

1 (base) 172 86 0.919 21,034 15 166 81 0.918 39,550
2 165 81 0.922 35,270 16 168 85 0.919 25,346
3 124 59 0.918 51,906 17 149 75 0.919 41,838
4 164 81 0.921 37,774 18 170 86 0.922 41,350
5 148 76 0.919 46,910 19 168 84 0.920 42,990
6 171 87 0.920 25,486 20 167 85 0.921 29,602
7 131 64 0.915 49,414 21 167 84 0.919 36,554
8 171 86 0.920 26,390 22 164 79 0.921 31,890
9 170 87 0.921 33,126 23 169 86 0.922 31,402
10 167 84 0.923 36,902 24 135 68 0.918 45,494
11 165 81 0.917 43,854 25 168 86 0.919 43,834
12 165 82 0.918 28,066 26 129 62 0.919 47,986
13 168 85 0.923 46,346 27 170 87 0.920 27,038
14 172 87 0.922 22,998
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waiting time is 86 min in the range of 61 to 364 min. Inpatients 
also stay in the system from 25 to 8753 min, with an average 
of 546 min remaining in the system. The average waiting time 
for inpatients is 419 when the range of it was between 13 and 
293 min. The comparison of the average total time and waiting 
time of each category is shown in Fig. 6.

6  Scenarios patient flow simulation

As different 27 scenarios are defined in Table 2 with three 
levels described in Table 1, based on the simulation model 
running, the outputs of the model are obtained. The outputs 
of the model include the following:

• Total time: the time through all the processes in all activi-
ties of all departments

• Average waiting time: the average of the waiting times 
through all the processes in all activities of all departments

• Discharged patient ratio: the fraction number of discharged 
patients to all patients who arrived in the hospital

• Cost: the cost of each scenario for the hospital provider

Total time, average patient waiting time, and discharged 
patient ratio are extracted from the simulation run in each 
scenario. The last output, which is the cost, is calculated based 
on the average cost of all inputs needed for each scenario 

based on the expert opinion and wages. So, the outputs of 27 
scenarios for all types of patients are shown in Table 3.

7  Discussion

7.1  Scenario evaluation with the DEA

Now, when all the inputs and outputs are specified for all 
scenarios, the DEA can be done with eleven inputs and 

Fig. 7  DEA results of the sce-
narios (i.e., DMUs)

Table 4  DEA results of scenarios

Scenario no DEA result Rank Scenario no DEA result Rank

1 1.786 1 15 0.999 10
2 1.003 6 16 1 9
3 0.996 12 17 1 9
4 1.002 7 18 1.002 7
5 0.999 10 19 1 9
6 1.012 2 20 1.002 7
7 0.995 13 21 1 9
8 1.001 8 22 1.002 7
9 1.012 2 23 1.002 7
10 1.004 5 24 0.999 10
11 0.998 11 25 1 9
12 0.998 11 26 1 9
13 1.004 5 27 1.006 4
14 1.008 3
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four outputs to evaluate the scenarios and compare them 
as shown in Fig. 7. Also, Table 4 is depicted the efficiency 
score of each scenario and its rank.

As can be seen in Fig. 7, the least-efficient scenarios are 
scenarios of 3, 7, 11, and 12, which are less or equal to 
0.998 efficient scores. Also, the scenarios of 5, 15, and 24 
are 0.999 efficient. The base model has the best efficient 

score. Other scenarios, which have more input variables and 
sources, are not more efficient. The reason for this is because 
of the time need for the result of the CT scan and labora-
tory. So that the added resources (e.g., physicians, nurses, 
and beds) do not affect the total time and the waiting time 
amazingly. Consequently, the discharged patient ratio is not 
changed really. So, with more resources that lead to more 

Fig. 8  DEA results of the same 
scenarios (i.e., DMUs)

Table 5  Output effects of scenarios

Scenario Total time
(minutes)

Average 
patient waiting 
time
(minutes)

Discharged 
patient ratio

Cost
(million toman)

Scenario Total time
(minutes)

Average 
patient waiting 
time
(minutes)

Discharged 
patient ratio

Cost
(million toman)

1 (base) 172 86 0.919 21,034 15 6 ↓ 5 ↓ 0.001 ↓ 18,516 ↑
2 7 ↓ 5 ↓ 0.003 ↑ 14,236 ↑ 16 4 ↓ 1 ↓ = 4312 ↑
3 48 ↓ 27 ↓ 0.001 ↓ 30,872 ↑ 17 23 ↓ 11 ↓ = 20,804 ↑
4 8 ↓ 5 ↓ 0.002 ↑ 16,740 ↑ 18 2 ↓ = 0.003 ↑ 20,316 ↑
5 24 ↓ 10 ↓ = 25,876 ↑ 19 4 ↓ 2 ↓ 0.001 ↑ 21,956 ↑
6 1 ↓ 1 ↑ 0.001 ↑ 4452 ↑ 20 5 ↓ 1 ↓ 0.002 ↑ 8568 ↑
7 41 ↓ 22 ↓ 0.004 ↓ 28,380 ↑ 21 5 ↓ 2 ↓ = 15,520 ↑
8 1 ↓ = 0.001 ↑ 5356 ↑ 22 8 ↓ 7 ↓ 0002 ↑ 10,856 ↑
9 2 ↓ 1 ↑ 0.002 ↑ 12,092 ↑ 23 3 ↓ = 0.003 ↑ 10,368 ↑
10 5 ↓ 2 ↓ 0.004 ↑ 15,868 ↑ 24 37 ↓ 18 ↓ 0.001 ↓ 24,460 ↑
11 7 ↓ 5 ↓ 0.002 ↓ 22,820 ↑ 25 4 ↓ = = 22,800 ↑
12 7 ↓ 4 ↓ 0.001 ↓ 7032 ↑ 26 43 ↓ 24 ↓ = 26,952 ↑
13 4 ↓ 1 ↓ 0.004 ↑ 25,312 ↑ 27 2 ↓ 1 ↑ 0.001 ↑ 6004 ↑
14 = 1 ↑ 0.003 ↑ 1964 ↑
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costs in all scenarios and not better outputs, the efficient 
scores of all scenarios are less than the base scenario.

However, in Fig. 8, the scenarios with the same efficiency 
score are shown. Although they alter the outputs with dif-
ferent values, entirely, their performance is the same. The 
decision-makers should select among them considering 
their priority of total time, waiting time, and discharge ratio. 
Besides, the increase or decrease amount of each output 
based on all scenarios in comparison to the base scenario is 
calculated in Table 5.

Based on Tables 4 and 5, we have to find the worst sce-
nario. For finding the worst scenario, we do not focus on 
the DEA efficiency score and consider the output values, 
too. So, the scenario of number 14 can be considered as 

the worst based on its effects on outputs although it was 
efficient. However, it did not change total time, increased 
the average waiting time with more costs while improved 
the discharged patient ratio.

7.2  Time‑series prediction

This study proposes a time-series framework for three cat-
egories of patient entries (i.e., outpatients, emergencies, 
and inpatients). The framework of the prediction models is 
illustrated in Fig. 9. First, the raw data are preprocessed and 
checked for the stationary test. Then, the data are divided 
into train and test sets using the train-test-split module 

Fig. 9  Time-series prediction 
steps

Fig. 10  Daily patient entry of emergency patients, outpatients, and inpatients
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on “Sklearn. Model_selection” package in Python pro-
gramming language (70% train and 30% test). Finally, the 
SARIMA model is constructed. Then, the patient entry is 
predicted for 30 days later. The accuracy of the model will 
be verified by comparing the measured data with the real 
data via the RMSE.

For data preprocessing, the missing values for someday 
patient arrivals and the average values are considered. For 
checking the stationary of data, the rolling mean and stand-
ard deviation of each column are calculated within 6 days for 
mean and 24 days in standard deviation. Daily patient entry 
of emergencies, outpatients, and inpatients are depicted in 
Fig. 10 based on collected data. As can be seen in Fig. 11, 

we see that the rolling mean itself has a trend component 
even though the rolling standard deviation is fairly constant 
with time. For our time series to be stationary, we need to 
ensure that both the rolling statistics (mean and standard 
deviation) remain time-invariant or constant with time. Thus, 
the curves for both of them have to be parallel to the x-axis, 
which in the outpatient arrival is not so. Table 6 shows the 
ADF test results for three types of patients.

To help data to be stationary, detrending is done as 
Eq. (10) and the detrending patient’s arrivals are shown in 
Fig. 12.

(10)
y.detrend = (y − y.rolling(window = 6).mean())∕y.rolling(window = 24).std()

Fig. 11  Rolling mean and stand-
ard deviation of patient entry of 
emergency patients, outpatients, 
and inpatients
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Finally, Table 7 shows the ADF test results for outpa-
tients and emergencies after detrending. Now, three types 
of patients are stationary and the prediction model can be 
developed.

For tuning the parameters of the SARIMA model, the 
“gridsearch” method is used. This is a parameter-tuning 
solution. The key point about the performance of this 
method is that, for each possible combination of parameters 
in the grid, the model is constructed and evaluated. Hence, it 
can be said that this algorithm has a search nature. We define 
different ranges for the parameters and selected the AIC as 

evaluation metric. As mentioned before, the best prediction 
model is the model with the lowest AIC value. Based on 
results, the model of SARIMA(1, 1, 1) × (0, 1, 1, 12) has the 
lowest AIC value for inpatient entry, SARIMA(0, 1, 1) × (0, 
1, 1, 12) for outpatient and also emergency entry.

Results for the next 30 days of patient arrival prediction 
for all patient categories are shown in Fig. 13. The RMSE 
of the SARIMA with a season length of 12 for inpatients, 
outpatients, and emergencies are 4.87, 27.54, and 3.06, 
respectively. The gray area above and below the orange line 
in this figure represents the 95% confidence interval and as 

Table 6  ADF test results

Type of patients P-value 99% level of 
confidence

95% level of 
confidence

90% level of 
confidence

Emergency 0.071  − 3.471  − 2.879  − 2.576 Data are not stationary with all confidence levels
Inpatient 0.005  − 3.472  − 2.880  − 2.576 Data are stationary with all confidence levels
Outpatient 0.996  − 3.474  − 2.880  − 2.577 Data are not stationary with all confidence levels

Fig. 12  Rolling mean and standard deviation of detrending patient arrivals
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Table 7  ADF test results after 
detrending

Type of patients P-value 99% level of 
confidence

95% level of 
confidence

90% level of 
confidence

Emergency 0.000  − 3.478  − 2.882  − 2.587 Data are 
stationary 
with all 
confidence 
levels

Outpatient 0.000  − 3.482 2.884  − 2.578 Data are 
stationary 
with all 
confidence 
levels

Fig. 13  SARIMA patient arrivals prediction within 30 days
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with virtually all forecasting models, as the predictions go 
further into the future, the less confidence we have in our 
values. In this case, we are 95% confident that the actual 
patient arrivals will fall inside this range as shown in Table 8 
for each patient category.

8  Managerial implications

Assume that the worst situation will be happening. So, the 
simulation model of scenario 14 is run again with the upper 
bound of time-series prediction of patient arrivals. This sce-
nario had the worst outputs among other scenarios and could 
be considered the worst situation. However, all the scenarios 

can be run again, we obtain whether there are some bot-
tlenecks in the patient flow in a pessimistic situation. In the 
simulated system used in this study, the most bottlenecks 
are related to the ICU, CCU, and corona special beds. After 
these three bottlenecks, the number of nurses in CCU and 
ICU wards and laboratories is the biggest challenge in the 
system. In this regard, to evaluate the stability of the system 
against the number of patients and their deterioration and the 
ability to respond to existing needs, the future of the system 
should be simulated. Therefore, scenario 14, which has the 
least increase in resources in the expressed bottlenecks and 
also does not improve significantly compared to the baseline, 
is selected and the number of patients admitted to the system 
in all three types of outpatients, inpatients, and emergency 

Table 8  Predicted patient arrival based on the SARIMA time-series model

Date Emergency Inpatient Outpatient

Predicted 
mean

Lower 
bound

Upper 
bound

Predicted 
mean

Lower 
bound

Upper 
bound

Predicted 
mean

Lower 
bound

Upper bound

2020–10-16 7.714765 2.380448 13.049082 7.134354  − 5.983584 20.252292 88.456091 50.784333 126.127850
2020–10-17 6.833679 1.484595 12.182763 10.583554  − 4.733418 25.900526 79.107164 41.431561 116.782767
2020–10-18 6.892752 1.479368 12.306135 11.636985  − 4.618131 27.892101 86.825900 48.962829 124.688971
2020–10-19 6.567111 1.102572 12.031651 11.834827  − 4.962317 28.631972 85.994904 48.049741 123.940067
2020–10-20 6.603010 1.081454 12.124566 11.281688  − 5.925693 28.489070 81.500242 43.416682 119.583802
2020–10-21 7.447026 1.868506 13.025545 14.715041  − 2.839410 32.269492 86.285286 48.058568 124.512003
2020–10-22 8.719867 3.084997 14.354738 15.536804  − 2.332997 33.406605 92.999393 54.630500 131.368285
2020–10-23 7.832468 2.141802 13.523135 15.553853  − 2.614186 33.721891 81.214134 42.703539 119.724730
2020–10-24 8.189716 2.443796 13.935636 12.704779  − 5.751255 31.160813 89.928065 51.276291 128.579838
2020–10-25 8.544715 2.744067 14.345363 11.422879  − 7.314197 30.159955 89.499555 50.707116 128.291993
2020–10-26 7.496343 1.641479 13.351207 11.067539  − 7.945247 30.080324 84.071060 45.138466 123.003655
2020–10-27 6.763107 0.854525 12.671690 9.925537  − 9.358467 29.209541 81.285414 42.213163 120.357665
2020–10-28 7.909421 1.877557 13.941284 11.006963  − 8.721438 30.735365 86.817813 47.286145 126.349482
2020–10-29 7.342166 1.254010 13.430323 12.539233  − 7.549615 32.628081 85.150103 45.484902 124.815305
2020–10-30 7.373639 1.225027 13.522251 12.686006  − 7.724744 33.096757 91.987222 52.161673 131.812771
2020–10-31 7.050426 0.845532 13.255320 12.455023  − 8.259257 33.169303 91.257414 51.314495 131.200334
2020–11-01 7.086111 0.823717 13.348506 11.699061  − 9.311660 32.709781 86.751139 46.661027 126.841251
2020–11-02 7.930145 1.609969 14.250322 15.036483  − 6.260328 36.333293 91.537515 51.293059 131.781971
2020–11-03 9.202985 2.825613 15.580357 15.812873  − 5.762232 37.387979 98.251469 57.853992 138.648946
2020–11-04 8.315586 1.881522 14.749651 15.808462  − 6.039282 37.656206 86.466228 45.916222 127.016234
2020–11-05 8.672834 2.182572 15.163096 12.949238  − 9.166743 35.065220 95.180157 54.478202 135.882111
2020–11-06 9.027833 2.481857 15.573810 11.662538  − 10.71796 34.043044 94.751647 53.898308 135.604985
2020–11-07 7.979461 1.378240 14.580682 11.304927  − 11.33677 33.946633 89.323152 48.318989 130.327315
2020–11-08 7.246225 0.590219 13.902232 10.161851  − 12.73796 33.061667 86.537506 45.383068 127.691945
2020–11-09 8.392539 1.615944 15.169134 11.242769  − 12.07175 34.557293 92.069905 50.444961 133.694850
2020–11-10 7.825284 0.991351 14.659218 12.774799  − 0.880407 36.430006 90.402196 48.633432 132.170959
2020–11-11 7.856757 0.961474 14.752041 12.921458  − 11.04040 36.883318 97.239314 55.299390 139.179239
2020–11-12 7.533544 0.578227 14.488861 12.690422  − 11.57018 36.951032 96.509507 54.424582 138.594431
2020–11-13 7.569229 0.555947 14.582511 11.934434  − 12.61316 36.482033 92.003231 49.763246 134.243216
2020–11-14 8.413263 1.341502 15.485025 15.271844  − 9.551368 40.095056 96.789607 54.385763 139.193451

986 Medical & Biological Engineering & Computing (2022) 60:969–990



1 3

patients using the time-series machine learning method is 
predicted. Based on the simulation findings of scenario 14 in 
the future of the system, it is concluded that the system will 
collapse after 14 days according to the predictions made. 
This means that the bottleneck of the ICU and CCU becomes 
problematic. In this regard, the following solutions must be 
taken for the system to continue:

• Creating more capacities for hospitalization of coronary 
patients in the studied hospital

• Creating the capacity to hospitalize coronary patients 
referred to the studied hospital in other hospitals

• Establishment of temporary capacities (i.e., hospitals) to 
transfer patients required to be admitted to those places

• Transferring more patients to their homes and providing 
services remotely and in patients’ homes

It is mentioned that, for practical use and exploitation, 
managers of the hospital can analyze each decision they 
are going to make using this proposed model as what has 
been carried out above. So, it can be a decision support 
tool for evaluating every policy before implementation.

9  Conclusion

In this study, the COVID-19 patient flow in the hospital of 
a case study was first investigated. Then, the process with 
detailed data was simulated and the outputs were obtained. 
Consequently, 27 scenarios based on 11 inputs were defined 
based on the Taguchi method and simulated all scenarios. 
Then, the DEA method was used to calculate the efficiency 
score of scenarios. Finally, the worst scenario was simulated 
with predicted patient arrivals, which was the output of the 
SARIMA time-series model and the bottlenecks were iden-
tified. Moreover, we tried to highlight the simulation tools 
as decision support systems for hospital managers, who are 
willing to be more efficient and rely on data as the data-
driven decision-makers. Since simulation can visualize the 
future and help the managers in human resource planning, 
facilities procurement, and other strategic and tactical deci-
sions, we demonstrate the proposed approach in the case 
study for helping the managers in decision-making.

Our study presents some limitations. First, we only con-
sidered the patient arrival rate and not the other features 
which could be the impact on being infected. Second, we 
did not consider the impact of workload on the physician 
and nurse capability or even their infection as well as their 
specialty level. Third, we did not consider the beds can be 
transferred from other units to ICU and their quality. As 
these are the limitations of our study, we should highlight 
that, although our proposed approach could be as a decision 

support system, it does not guarantee optimal results that 
could be continued by future studies.

Furthermore, future studies can focus on different pre-
diction models of patient arrivals based on other exog-
enous features for other time-series prediction models 
such as LSTM and machine learning regression models. 
Also, using other methods of investigating different inputs’ 
effects on the outputs (e.g., system dynamic approach) can 
analyze different scenario results. Besides, other studies 
can focus on the same problem using process mining tools.
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