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Abstract
One of the key challenges for automatic assistance is the support of actors in the operating room depending on the status of 
the procedure. Therefore, context information collected in the operating room is used to gain knowledge about the current 
situation. In literature, solutions already exist for specific use cases, but it is doubtful to what extent these approaches can be 
transferred to other conditions. We conducted a comprehensive literature research on existing situation recognition systems 
for the intraoperative area, covering 274 articles and 95 cross-references published between 2010 and 2019. We contrasted 
and compared 58 identified approaches based on defined aspects such as used sensor data or application area. In addition, 
we discussed applicability and transferability. Most of the papers focus on video data for recognizing situations within 
laparoscopic and cataract surgeries. Not all of the approaches can be used online for real-time recognition. Using different 
methods, good results with recognition accuracies above 90% could be achieved. Overall, transferability is less addressed. 
The applicability of approaches to other circumstances seems to be possible to a limited extent. Future research should place 
a stronger focus on adaptability. The literature review shows differences within existing approaches for situation recognition 
and outlines research trends. Applicability and transferability to other conditions are less addressed in current work.
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1  Introduction

The vision of intraoperative context-aware systems is the 
automatic support of processes in the operating room (OR) 
based on the course of the operation and the current process 
step. Context-aware systems use context information of the 
environment to provide services relevant to the current task 
[51]. This would allow surgeons and their team to be sup-
ported in a highly targeted manner. The application area of 
such systems is comprehensive and ranges from the situa-
tion-dependent provision of context-relevant information, 
like preoperative images (e.g., filter information automati-
cally [26]), to the automatic execution of defined subtasks, 
such as informing about delays (e.g., estimating the interven-
tion time [17]), or semi-automatic generation of OR reports. 
To realize these kinds of systems, it is crucial to detect the 

actual situation reliably to provide information suitable to 
the situation. For this recognition task, a system that is capa-
ble of deriving a “situation” information from sensor input 
is needed. We define this system as a “situation recognition 
system” to provide situation and context awareness.

Three of the main aspects of context awareness for sur-
gical support are formal modeling of processes, intraop-
erative tracking and processing, and implementation of 
context-aware equipment [18]. The basis for context-aware 
systems in the OR is knowledge of the intraoperative pro-
cedures and the current situation of the operation (situ-
ation awareness). For this, the current situation must be 
recognized at specific granularities [37]. Lalys and Jan-
nin [33] differentiate between procedures, phases, steps, 
activities, and motions in ascending granularity. Similarly, 
the ontology of Nakawala et al. [47] includes the granu-
larities: phases, steps, and actions (in our case defined as 
activities). Activities can be represented by different infor-
mation [38, 45]. Lalys et al. [38] describe an activity as a 
triplet of action, surgical tool, and anatomical structure, 
whereas Meißner et al. [45] define a 5-tuple: actor, used 
body part, used surgical instrument, surgical action, and 
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treated structure. To identify the surgical workflow, data 
from available sensors in the OR are used [13] to detect 
different information about the context (instruments, per-
sons, anatomical structures, etc.). Sensors can be of any 
kind like location sensors, endoscopy images, and medi-
cal device communication messages. The acquired data 
is then used in interpretation systems, in our case defined 
as situation recognition systems, to automatically recog-
nize the situation in the OR. A situation can be repre-
sented internally in various forms (e.g., ontologies, state 
machines). For situation interpretation, approaches like 
machine learning techniques or formal methods can be 
applied [26]. The information about the current situation 
can then be used for various use cases, such as situation-
related displays or workflow automation. The recognition 
of situations is the foundation for supportive context-aware 
systems and therefore of significant relevance in research 
to enable context-aware systems.

For different interventions, solutions already exist in 
the research literature which enable the recognition of the 
current situation. But it is doubtful to what extent these 
approaches can react to process and technology changes to 
be transferred to other circumstances, like more complex 
interventions or sensor systems. This would be advanta-
geous considering the additional effort for commissioning, 
maintenance, etc. for different systems. To examine which 
approaches already exist to what extent, an overview and 
analysis of the current state of research could highlight 
similarities and differences between existing systems and 
examine aspects of applicability and transferability.

In the area of situation recognition, reviews of litera-
ture that deal with data acquisition techniques or situation 
interpretation already exist. The work of Kranzfelder et al. 
[32] presents a literature review of 2010 with currently 
promising technologies for real-time data acquisition in 
the OR. The feasibility results indicate that methods for 
continuous sensor-based data acquisition and online analy-
sis based on device information are suitable. Instrument 
recognition via barcodes, tracking of persons via RFID, 
and emotion recognition via speech seem promising. Simi-
lar work by Pernek et al. [51] deals with a literature review 
of 2015 with currently existing approaches for automatic 
context recognition during surgical interventions. The 
comparison results indicate that there is a large discrep-
ancy in methods, depending on the type of surgical context 
that is recognized. For future approaches, more elaborate 
evaluations should be carried out under real conditions. 
The work of Padoy [49] includes a literature review of 
2019 with current machine and deep learning techniques 
for contextual analysis during interventions, using video 
data from endoscopes or ceiling-mounted cameras. The 
results show to what extent videos can be used to rec-
ognize phases, instruments, and persons. One of the 

challenges for current developments is to scale methods 
to more intervention types and more granular activities.

Other work in the field of situation awareness focuses on 
specific recognition strategies in defined application areas 
or summarizes their results. The work of Bouget et al. [7] 
presents a comprehensive overview of recognition possibili-
ties of vision-based and markerless instruments. The focus 
is the analysis of available data sets, the comparison of rec-
ognition methods, and the analysis of validation techniques. 
The overview aims to identify key challenges and fields for 
further development. The work of Ahmidi et al. [1] includes 
a comparison of different strategies for gesture recognition 
to evaluate surgical skills. Also, a data set and a consistent 
methodology for performance assessment are described. 
Based on the data set, an evaluation of surgical techniques 
for gesture recognition is performed to provide an overview 
and recommendations for research. The work of Stauder 
et al. [56] presents their methods for workflow recognition 
intending to use this knowledge for context-aware systems. 
Subsequently, possible future applications, such as context-
aware visualizations, as well as a context-aware OR of the 
future are discussed.

The research works mentioned above provide an over-
view of techniques, methods, etc. in the context of situa-
tion awareness, focusing on different aspects and discussion 
goals. The review papers do not show any current evaluation 
of full, closed systems and their applicability. The goal of 
this research is an up-to-date overview of approaches for 
automatic information acquisition and analysis in the OR. 
Therefore, current situation recognition techniques to recog-
nize the current situation of an intervention (cutting-suture) 
will be presented in a clear and categorized manner. For this 
purpose, research work is used which presents closed sys-
tems for the recognition of the surgical situation on different 
granularities. The systems will be compared and discussed 
with regard to relevant aspects such as used sensor technol-
ogy, area of application, or real-time capability. Focus is also 
the applicability and transferability of the solutions to differ-
ent surgical and sensory contexts to examine if the solutions 
are adaptable to other circumstances. The result provides 
an assessment of the current state of research in the field of 
situation awareness in the OR. To the best of our knowledge, 
no other research group has presented a review of closed 
situation recognition systems for intraoperative procedures 
of the last ten years clearly and concisely and in relation to 
each other, with a focus on applicability and transferability.

2 � Methods

A literature search of scientific publications on situation 
recognition technologies in the operative field was carried 
out, essentially following the PRISMA 2009 guidelines. 
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We adapted the procedure from the method described by 
Pernek et al. [51]. The PubMed research database was que-
ried extensively for search terms such as “situation recogni-
tion”, “context recognition”, “workflow recognition”, “phase 
recognition”, “step recognition”, and “activity recognition” 
in combination with “operating room”, “operating theatre”, 
and “surgery” in title/abstract (query: “{situation, context} 
aware(-ness)”, “{situation, context, workflow, process, 
phase, step, activity, action, instrument, anatomy} {recog-
nition, detection, identification}” AND “operating {room, 
theatre}”, “surgery”, “surgical”). The focus was on the iden-
tification of papers that address recognition strategies and 
technologies in the context of situations, and the papers are 
filtered according to their application in the intraoperative 
area. Only recent papers published within the last 10 years 
(2010–2019), written in English, and available in full text 
have been taken into account. Papers with electronic pre-
print and print publication in 2020 were included, as far as 
they could be covered by the search. The last search was 
conducted on 20.01.2020, where we found 274 papers.

As the next step, we analyzed the titles and abstracts of 
the identified papers with regard to the topic of situation 
awareness in the OR to identify those that appear relevant. 
The focus was set on recognition strategies and technologies 
for achieving situation awareness in the intraoperative area, 
regardless of whether instruments, phases, or other aspects 
are recognized, to get a first overview of any recognition 
approaches. The 54 identified papers were divided into cat-
egories: relevant, adjacent (may be relevant), and review. 
To include publications not covered by the search terms, we 
analyzed the references of the papers categorized as relevant 
and included corresponding papers (95 references) with 
appropriate title and abstract in the overall list of papers. 
Papers of the cross-referencing were not re-examined for 
further references.

After filtering and cross-referencing, we examined the 
paper’s contents to create a final selection of identified 
papers. The selection was made based on appropriate topics 
and sufficient information. Because the focus of this work 
was set on full, closed situation recognition systems (i.e., 
recognition of phases, steps, and activities), regardless of 
the support for which they are ultimately used, we excluded 
all papers that fall below the granularity of activities (i.e., 
gestures) or recognize instruments or persons and do not 
have a recognized phase or similar as result. Papers with a 
different focus (e.g., not automatic) and missing information 
(e.g., accuracy) were not considered. A total of 58 papers 
were finally identified for the literature review. To the best of 
our knowledge, these are complete according to our research 
procedure.

To present the state-of-the-art clearly and concisely, a 
table was created. Therefore, we grouped the papers by the 
granularity of the used recognition, as this shows which 

possibilities currently exist for situation awareness in dif-
ferent levels of detail. For the tabular representation, we 
defined aspects based on [32] and [51], as shown in Table 1. 
Due to the different levels of detail and the partly ambiguous 
or incomplete information, we summarized the contents of 
the papers according to the following procedure.

The category granularity was divided into phases, steps, 
and activities. Because of deviated or inconsistent defini-
tions in and between the papers (e.g., using “task “ or simul-
taneously “phase” and “step”), our definition based on the 
definitions of [33, 47] and [38, 45] (see Table 2) was used 
to classify the papers. The required sensory and overarching 
methods were extracted for each approach. For the category 
sensor data (source), the sensor data and data source were 
identified, but more detailed information (e.g., object to be 
recognized in the videos, such as instruments via visual 
features) was left out. For the category method, the main 
techniques (like machine learning and formal methods) were 
identified while delimiting the highest methods and ignoring 
details of the recognition. Methods on the feature extraction 
layer, fine-tuning methods, or similar (e.g., normalization) 
were largely disregarded, except for unclear boundaries or 
seemingly important aspects. Abbreviations were used for 
methods, algorithms, and models (see Table 3). The area 
of application was determined for the category application 
area according to the data set used for evaluation. For the 
category usage, approaches described as online-capable or 
respectively intraoperatively applicable (i.e., performance 
in real-time while only using information obtained up to 
this point for “live” analysis) were specified as “online.” 
If defined as real-time-capable, it was assumed that this 
refers to “online,” unless otherwise stated. If stated as 
offline, not real-time-capable (i.e., too slow), or data from 
the entire process was used (i.e., postoperative analysis), it 
was reported as “offline.” If the online capability was not 
specified or unclear, the corresponding approaches were 
defined as “-”. The recognition time (and time for training/
model generation) itself was not listed since many papers 
did not provide detailed information and the numbers are 

Table 1   Identified aspects for the categorization of situation recogni-
tion systems, defined based on [32] and [51]

• Granularity (phases, steps, activities)

• Year
• Sensor data (source) (video (laparoscope), instrument usage 

(RFID), measurements (OR devices), etc.)
• Method (support vector machines, hidden Markov models, etc.)
• Application area (cataract, laparoscopic cholecystectomy, etc.)
• Usage (online, offline)
• Evaluation (data set) (training, test) (RealOp, SimOp, SimDat 

(number of cases for training and test))
• Accuracy (possibly precision etc.) (% value)
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usually not comparable due to different hardware specifica-
tions and programming languages used. For the category 
evaluation (data set), a distinction was made between data 
sets recorded during real operations (“RealOp”), data sets 
recorded during simulated operations mimicking real opera-
tions (“SimOp”), and artificially generated data sets using 
manually annotated data, i.e., simulated data provided by 
the user, also mimicking real operations (“SimDat”). The 
number of test data and training data (including validation 
data) was stated in brackets, if identifiable, regardless of 
whether this data is used several times in changing combi-
nations. If this information is not available, only the total 
amount of used interventions was stated. The average results 
of the approaches were expressed in the category accuracy 
as accuracy value in percent. The accuracy was chosen 
because it is often stated in the machine learning literature 
as a primary measure of algorithm performance [67]. The 
definition of accuracy was taken from the respective papers, 
even though they might have used different definitions on 
how the accuracy is measured. If no accuracy value was 
available, the value for, e.g., precision was used and noted 
as such in brackets. Since many studies compare different 
approaches (interpretation methods, sensor combinations, 
and evaluations), the approach with the best result, i.e., the 
highest accuracy, was chosen. Other results were ignored 
to avoid the cluttering of the table. Accordingly, only the 
sensor technology, method, etc. for this result were stated. 
Approaches for online use and without manual annotation 
are favored, even if they have lower accuracy.

Based on the created table, the presentation and com-
parison of the strategies were carried out using the defined 
criteria to show their similarities and differences and to iden-
tify trends in research, like favored methods, data sources, 
and use cases. Therefore, we created partial tables, each 
focusing on one category of Table 1 (see Online Resource 
1, 2, 3, 4, 5). The comparison does not include all properties 
of the very different approaches (e.g., number of defined 
phases, modified data set), even if these could be decisive 
for the results. We neither considered aspects such as the 
system’s architecture or the detailed functionality. In the 
discussion, the approaches were discussed within the cat-
egories beyond the given aspects of the table. For discussing 
the best approaches, another partial table was created (see 
Online Resource 6). In the following section, we focused on 

the applicability and transferability of the approaches and 
evaluated their feasibility for achieving situation awareness 
in the OR during different surgical procedures and used 
sensor systems. It should be noted that the results of the 
approaches are based on different evaluation methods and 
that the comparative results must, therefore, be considered 
with caution. In contrast to the chapter 3 Results, all values 
for accuracy, performance, etc. were treated as equal for the 
chapter 4 Discussion, while uniformly referring to accuracy.

3 � Results

A total of 58 papers were identified, covering a wide range 
of different approaches. Six papers differ in granularity or 
area and were listed separately (see chapter 3.7 Approaches 
with differing aspects). The remaining 52 papers, summa-
rized in Table 4, are fulfilling all inclusion criteria. Thirty-
eight papers have been identified that recognize situations 
at the granularity of phases, ten papers deal with the level 
of steps, and four focus on activities in a fine-grained way. 
The papers are grouped according to their granularity and 
sorted in ascending order by year. As described in chapter 2 
Methods, only the best results according to the given defini-
tion were shown.

3.1 � Sensor data (source)

Various approaches for intraoperative data acquisition exist, 
through which situations can be identified, either with data 
sources already available in the OR, such as the endoscopic 
camera [24], or additional sensor technology, such as RFID 
[45] or infrared trackers [58]. In the identified papers, differ-
ent video data [12, 24, 59], information about instruments 
[50] or persons [48], system events [43], activities [27], or 
combinations of different sensor data [63] are used. The 
table shows that the majority of the identified works, 34 
papers, uses only video data to detect the current situation 
in the OR through different features recognized in the vid-
eos. Eighteen papers deal with laparoscopic or endoscopic 
videos. Only real data sets with mostly ~ 40–120 interven-
tions are used. Very different methods are used for inter-
pretation. Thirteen of the approaches are based on CNN or 
LSTM, which are also combined with each other or with 

Table 2   Definition of 
granularities for procedures in 
this work, defined based on [33, 
47] and [38, 45]

Granularity Definition

Phases Phases describe the execution of the main objectives of a procedure (e.g., “renorraphy”)
Steps Steps are taken within the phases to achieve sub-goals (e.g., “cortical suturing”)
Activities Activities describe the actions performed within steps (e.g., “suture”) and may also 

contain further information about the specific action, such as anatomical structure and 
used instrument
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other methods. For phase recognition, 15 cases exist, of 
which 12 of them use laparoscopic cholecystectomies for 
application. In the remaining three cases, other laparoscopic 

interventions are used. Eleven approaches that detect phases 
can be used online and achieved up to 93.3% accuracy. In the 
case of step recognition, laparoscopic or endoscopic videos 
are used in three cases for different applications. There are 
no online-capable approaches, and a maximum of 85% could 
be achieved.

Microscopic videos are used in 14 papers. Only real data 
sets with mostly ~ 20–180 interventions are used. Very dif-
ferent methods are used for detection, which does not indi-
cate preferred methods. Ten papers recognize phases, of 
which seven concern cataract procedures. The remaining 
three cases use other scenarios like pituitary or epiretinal 
membrane surgery. Since 2014, there could always be identi-
fied methods for phase recognition that are online-capable, 
including six papers. These achieved accuracies of up to 
87.0%, whereas offline-capable approaches reached up to 
94.8%. For step recognition, three approaches exist, which 
all use cataract surgeries. The only online-capable approach 
reached 91.4%, whereas the unspecified approaches achieved 
an accuracy of up to 95.6%. One approach detects activi-
ties for cataract interventions. It is not specified as online-
capable and only achieved an accuracy of 64.5%.

Two papers use external surgical videos. Only real data 
sets are used. Both approaches are not specified as online-
capable and have different use cases. For the recognition of 
phases, the video of an external surgical camera is used in 
combination with the endoscopic video. An accuracy of 90% 
could be achieved. For activity recognition, the multi-view 
RGBD video of an external surgical camera is used, where 
an accuracy of 85.53% could be reached.

Instrument information as the only resource, such as 
usage or position, is used for situation recognition in six 
papers. All these approaches use simulated data or data 
collected during a simulation. Favored methods could not 
be identified. For phase recognition, only two approaches 
exist for different scenarios. One of them uses the kinemat-
ics captured by electromagnetic trackers, the other approach 
manually annotated data on instrument usage. Both are not 
online-capable and achieved up to 86.25% accuracy. Three 
papers focus on recognizing steps. In two cases, manually 
annotated instrument usage is used in the area of laparo-
scopic interventions. The remaining paper uses the instru-
ment position via electromagnetic trackers for the lumbar 
puncture use case. Two of the approaches are online-capable 
with an accuracy of up to 91.6%. The approach for activity 
recognition uses RFID and accelerometers to record instru-
ment usage and instrument movement, respectively. The 
approach is not specified as online-capable but achieved an 
accuracy of 92%.

Manually annotated activities are used less frequently for 
phase detection, just in three cases. The focus here is on lap-
aroscopic interventions, whereby different methods are used. 
Two of the approaches can also be used online and achieved 

Table 3   Overview of methods, algorithms, and models used in the 
papers with abbreviations

Abbreviation Method/algorithm/model (singular)

AdaBoost AdaBoost
ATM Adaptive trace model
BA Bayesian approach
biLSTM Bidirectional long short-term memory
BN Bayesian network
BoW Bag of words
CCA​ Canonical correlation analysis
CNN Convolutional neural network
CO Cultural optimization
CRF Conditional random field
CoRF Composition of random forests
DT Decision tree
DTW Dynamic time warping
GMMAR Gaussian mixture multivariate autoregressive model
GRU​ Gated recurrent unit
HC Hierarchical clustering
HHMM Hierarchical hidden Markov model
HMM Hidden Markov model
HsMM Hidden semi-Markov model
k-d-tree k-d-tree
k-Means k-means
k-Means +  +  k-means +  + 
k-NN k-nearest neighbor
LSTM Long short-term memory
MDL Minimum description length
MIL Multiple instance learning
MLN Markov logic network
MM Markov model
mSVM Multiclass support vector machine
NB Naïve Bayes
NN Neural network
NNS Nearest neighbor search
OWL Web ontology language
PCA Principal component analysis
PKI Prior knowledge inference
ResNet Residual network
R(D)F Random (decision) forest
RNN Recurrent neural network
SPM Surgical process model
SQWRL Semantic query-enhanced web rule language
SWRL Semantic web rule language
ST-CNN Spatiotemporal convolutional neural network
SVM Support vector machine
tCNN Temporal convolutional neural network
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Table 4   Overview of identified situation recognition systems

Paper Year Sensor data 
(source)

Method Application area Usage Evaluation (data 
set)

Accuracy

Granularity: phases
Lalys et al. [34] 2010 Video (microscope) mSVM, PCA Pituitary surgery Offline RealOp (16) 82.2%
Bouarfa et al. [5] 2011 Video (endoscope, 

OR camera)
BN, HMM Laparoscopic chol-

ecystectomy
- RealOp (9, 1) 90%

Lalys et al. [35] 2011 Video (microscope) DTW Cataract Offline RealOp (18, 2) 94.8%
Lalys et al. [36] 2011 Video (microscope) SVM, HMM Pituitary surgery Offline RealOp (16) 93%
Nara et al. [48] 2011 Person trajecto-

ries (ultrasound 
tracker)

MDL, k-means, DT Neurosurgical 
tumor resection

- RealOp (9, 1) 77.18%

Bouget et al. [6] 2012 Video (microscope) HMM/DTW Cataract - RealOp (20) 94.4%
Weede et al. [63] 2012 Instrument position 

(tracker), video 
(endoscope), 
audio (OR micro-
phone)

NB Single-port sigma 
resection

- SimOp (3, 6) 93.2%

Loukas and Geor-
giou [42]

2013 Kinematic (electro-
magnetic tracker)

GMMAR, PCA, 
k-NN

Laparoscopic chol-
ecystectomy

Offline SimOp (20, 1) 81.67% (precision)

Charrière et al. [11] 2014 Video (microscope) NNS Cataract Online RealOp (15, 15) 85.59% (perfor-
mance)

Katić et al. [27] 2014 Activities (manu-
ally annotated)

OWL, SWRL Laparoscopic chol-
ecystectomy

Online SimDat (19) 96%

Quellec et al. [52] 2014 Video (microscope) NNS Epiretinal mem-
brane surgery

Online RealOp (23) 87.0%

Quellec et al. [53] 2014 Video (microscope) CRF Cataract Online RealOp (93, 93) 83.2% (performance)
Stauder et al. [55] 2014 Measurements (OR 

devices), binary 
signals object sta-
tus (OR devices), 
instrument usage 
(RFID)

RDF Laparoscopic chol-
ecystectomy

Online RealOp (3, 1) 68.78%

DiPietro et al. [15] 2015 Measurements (OR 
devices), binary 
signals object sta-
tus (OR devices), 
instrument usage 
(RFID)

SVM Laparoscopic chol-
ecystectomy

- RealOp (16, 10) 75.9%

Forestier et al. [16] 2015 Low-level activities 
(manually anno-
tated), binary 
signal microscope 
usage (manually 
annotated)

DT, HC Lumbar disk her-
niation

- SimDat (22) 87.1% (precision)

Katić et al. [28] 2015 Activities (manu-
ally annotated)

SPM, SQWRL Laparoscopic pan-
creas resection

Offline SimDat (11) 90.16%

Quellec et al. [54] 2015 Video (microscope) MIL, k-NN Cataract Online RealOp (93, 93) 85.6% (performance)
Cadène et al. [8] 2016 Video (endoscope) ResNet, HMM Laparoscopic chol-

ecystectomy
Online RealOp (27, 15) 88.90%

Charrière et al. [10] 2016 Video (microscope) BN, CRF, k-NN Cataract Online RealOp (25, 5) 82.8% (performance)
Dergachyova et al. 

[13]
2016 Video (endoscope) SPM, AdaBoost, 

HsMM
Laparoscopic chol-

ecystectomy
Online RealOp (6, 1) 68.10%

Dergachyova et al. 
[14]

2016 Video (laparo-
scope)

SPM, AdaBoost, 
HsMM

Laparoscopic chol-
ecystectomy

Online RealOp (27, 15) 70.7%

Katić et al. [29] 2016 Activities (manu-
ally annotated)

CoRF, CO Laparoscopic pan-
creas resection

Online SimDat (10, 1)  ~ 70%
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Table 4   (continued)

Paper Year Sensor data 
(source)

Method Application area Usage Evaluation (data 
set)

Accuracy

Lea et al. [39] 2016 Video (laparo-
scope)

ST-CNN, DTW Laparoscopic chol-
ecystectomy

Offline RealOp (6, 1) 84.6%

Malpani et al. [43] 2016 System events 
(daVinci)

tCNN, CRF Robot-assisted 
hysterectomy

- RealOp (23, 1) 76.0%

Twinanda et al. 
[60]

2016 Video (laparo-
scope)

CNN, LSTM Laparoscopic chol-
ecystectomy

- RealOp (80) 80.7%

Bodenstedt et al. 
[4]

2017 Video (laparo-
scope)

CNN, GRU​ Laparoscopic chol-
ecystectomy

Online RealOp (6, 1) 74.5%

Charrière et al. [12] 2017 Video (microscope) BN, HMM, k-NN Cataract Online RealOp (25, 5) 83.2% (performance)
Stauder et al. [57] 2017 Binary signals 

instrument usage 
(OR instruments), 
binary signals 
device status 
(OR devices), 
measurements 
(OR devices)

RF, HMM Laparoscopic chol-
ecystectomy

- RealOp (17, 1) 82.4%

Twinanda et al. 
[61]

2017 Video (laparo-
scope)

CNN, SVM, 
HHMM

Laparoscopic chol-
ecystectomy

Online RealOp (40, 40) 81.7%

Volkov et al. [62] 2017 Video (laparo-
scope)

SVM, HMM Laparoscopic 
sleeve gastrec-
tomy

Online RealOp (9, 1) 92.8%

Jin et al. [23] 2018 Video (laparo-
scope)

ResNet, LSTM, 
PKI

Laparoscopic chol-
ecystectomy

Online RealOp (40, 40) 92.4%

Nakawala et al. [46] 2018 Instrument usage 
(manually anno-
tated)

SPM, SWRL, 
OWL

Thoracentesis - SimDat (3) 86.25%

Yengera et al. [64] 2018 Video (laparo-
scope)

CNN, LSTM Laparoscopic chol-
ecystectomy

- RealOp (120) 89.6%

Yu et al. [66] 2018 Video (laparo-
scope)

CNN-biLSTM-
CRF, CNN-
LSTM

Laparoscopic chol-
ecystectomy

Online RealOp (80, 40) 83.4%

Hashimoto et al. 
[21]

2019 Video (laparo-
scope)

ResNet, LSTM Laparoscopic 
sleeve gastrec-
tomy

- RealOp (88) 82%

Kitaguchi et al. [30] 2019 Video (laparo-
scope)

CNN Laparoscopic sig-
moidectomy

Online RealOp (63, 8) 91.9%

Yi and Jiang [65] 2019 Video (laparo-
scope)

LSTM, ResNet, 
PKI

Laparoscopic chol-
ecystectomy

Online RealOp (40, 40) 92.4%

Jin et al. [24] 2020 Video (endoscope) LSTM, CNN, PKI Laparoscopic chol-
ecystectomy

Online RealOp (40, 40) 93.3%

Granularity: steps
Blum et al. [3] 2010 Video (laparo-

scope)
DTW, CCA​ Laparoscopic chol-

ecystectomy
Offline RealOp (9, 1) 76.81%

Lalys et al. [37] 2012 Video (microscope) HMM Cataract Online RealOp (18, 2) 91.4%
Padoy et al. [50] 2012 Binary signals 

instrument usage 
(manually anno-
tated)

HMM Laparoscopic chol-
ecystectomy

Online SimDat (15, 1) 91.6%

Holden et al. [22] 2014 Instrument position 
(electromagnetic 
tracker)

PCA, k-means, 
MM

Lumbar puncture Online SimOp (11, 1) 82%
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an accuracy of up to 96%. Only one paper deals with per-
sonal data as the data source in form of person trajectories 
collected by ultrasound trackers. Another paper uses device 
data, system events of the daVinci surgical system.

Combinations of different data sources, such as device 
and instrument data, are also used more often, in seven 
papers. Both real data sets and simulated data are used. For 
detection, different methods are used. In the case of phase 
recognition, a combination of different data types is used 
in five cases, of which three use the application area lapa-
roscopic cholecystectomy. Two of them use measurements 
and binary signals of the object status of devices as well as 
the usage of instruments via RFID. The other paper uses 
binary signals of instrument usage as well as binary sig-
nals of the device status and measurements of devices. The 
remaining two papers use the instrument position of trackers, 
the endoscopic video, and the audio from a surgical micro-
phone or manually annotated low-level activities and the 
binary signal of microscope usage, respectively. Just one of 
the five approaches is online-capable, achieving an accuracy 

of 68.78%, while the remaining unspecified approaches 
reached up to 93.2%. The only paper to recognize steps 
uses device parameters via SDC, the instrument usage via a 
scale, and the endoscopic video as input. With this online-
capable approach, an accuracy of 94.3% could be achieved. 
For recognizing activities, just one paper exists that uses 
a combination of the eye gaze and the instrument position 
of infrared trackers as well as the laparoscopic video. The 
approach is not specified as online-capable but reached an 
accuracy of 93.3%.

3.2 � Application area

Twenty-seven approaches deal with laparoscopic cholecys-
tectomies (21 cases) or other laparoscopic procedures (six 
cases). For these, video data is mostly used, in 17 cases, but 
also other sensor data, such as instrument data, solely or in 
combination with device data, is applied in seven cases. Real 
data sets of interventions are predominantly used, despite 
of seven cases, often comprising ~ 20–120 interventions. 

Table 4   (continued)

Paper Year Sensor data 
(source)

Method Application area Usage Evaluation (data 
set)

Accuracy

Franke et al. [18] 2018 Device param-
eter (OR devices 
SDC), instrument 
usage (scale), 
video (endo-
scope)

ATM, DTW, 
HsMM

Functional endo-
scopic sinus 
surgery

Online SimOp (23, 1) 94.3%

Zisimopoulos et al. 
[69]

2018 Video (microscope) ResNet, LSTM Cataract - RealOp (20, 30) 78.28%

Meeuwsen et al. 
[44]

2019 Instrument usage 
(manually anno-
tated)

RF Laparoscopic 
hysterectomy

Offline SimDat (36, 4) 76.8%

Nakawala et al. [47] 2019 Video (endoscope) CNN, LSTM Robot-assisted par-
tial nephrectomy

Offline RealOp (9) 74.29%

Yu et al. [67] 2019 Video (microscope) CNN Cataract - RealOp (60, 40) 95.6%
Zia et al. [68] 2019 Video (endoscope) CNN, LSTM Robotic-assisted 

radical prostatec-
tomy

- RealOp (70, 30) 85% (Jaccard)

Granularity: activities
Thiemjarus et al. 

[58]
2012 Eye gaze (infrared 

tracker), video 
(laparoscope), 
instrument posi-
tion (infrared 
tracker)

BN/NN Laparoscopic chol-
ecystectomy

- SimOp (15) 93.3%

Lalys et al. [38] 2013 Video (microscope) mSVM, DTW Cataract Offline RealOp (19, 1) 64.5%
Meißner et al. [45] 2014 Instrument usage 

(RFID), instru-
ment movement 
(accelerometer)

HMM, 
k-means +  + 

Functional endo-
scopic sinus 
surgery

- SimOp (23, 1) 92%

Twinanda et al. 
[59]

2015 Multi-view RGBD 
video (OR 
camera)

BoW, k-means, 
SVM

Vertebroplasty - RealOp 85.53%
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Very different methods are used for recognition. Eighteen 
of the approaches are based on CNN, LSTM, or HMM, 
which are also used in combination with each other or with 
other methods. Fifteen of the approaches can be used online 
and achieved accuracies of up to 96% by detecting phases, 
whereas an accuracy of 91.6% could be reached in the case 
of recognizing steps. The only approach for activity rec-
ognition is not defined as online-capable and achieved an 
accuracy of 93.3%.

Many approaches, 11 cases, focus on cataract procedures 
that use microscopic videos exclusively. Only data sets of 
real interventions with ~ 20–180 interventions are used. A 
preferred method used by these approaches cannot be deter-
mined. The identified methods for phase recognition since 
2014 are all online-capable. These methods achieved an 
accuracy of up to 85.6%, whereas 94.8% could be reached 
offline. Similar for step recognition, online an accuracy of 
91.4% could be achieved but 95.6% by an approach not spec-
ified as online. Activity recognition reached only 64.5% with 
an offline-capable approach.

Other interventions are also used for evaluation, twice 
pituitary surgeries, twice functional endoscopic sinus sur-
geries, and ten other surgeries. The input data varies widely, 
from video data to instrument information to combinations. 
For pituitary surgeries, e.g., just the microscopic video is 
used. Real data sets are used in eight cases but also simu-
lated data or surgeries. Besides, different methods are used 
that do not indicate favorites. Only three of the approaches 
can be used online. For phase detection, online accuracies of 
up to 87.0% can be achieved but for an unspecified approach 
93.2%. For the recognition of steps, online 94.3% can be 
reached, for the recognition of activities up to 92% for non-
online-capable approaches.

3.3 � Evaluation (data set)

Thirty-nine out of 52 papers use data sets of real interven-
tions. The remaining works simulate interventions (six 
cases) or use simulated, manually annotated data (seven 
cases). The data sets used in the papers contain different 
naming and amount of situations (i.e., papers recognize their 
selected phases) as well as different use cases. The amount 
of data varies a lot. Sixteen of the approaches with real data 
sets use a total of more than 40 interventions, 12 less than 
20 interventions. Since 2018, the approaches for recogniz-
ing phases always use more than 70 interventions. Overall, 
different methods are used, whereby approaches based on 
CNN, LSTM, HMM, or SVM are listed in 30 cases, which 
are also used in combination with each other or with other 
methods. Mostly, all of these papers, 34 approaches, are 
based on video data; 31 have the use case laparoscopic sur-
gery, especially laparoscopic cholecystectomy, or cataract 
surgery. About half of the approaches are online-capable. 

With these, accuracies of up to 93.3% and 91.4% could be 
achieved in the detection of phases and steps, respectively. 
For unspecified approaches, an accuracy of 94.8% for phases 
and 95.6% for steps could be achieved.

The approaches that use simulations of real interventions 
for evaluation all contain less than 25 interventions. Favored 
methods could not be identified. The papers use different 
data sources, but always instrument data is included as input. 
The use cases are different. Online, only those approaches 
that recognize steps can be used which achieved an accu-
racy of up to 94.3%. Unspecified approaches in case of 
online capability reached an accuracy of up to 93.2% or 
93.3% for phases or activities, respectively. Approaches 
that use manually annotated data as data source evaluate 
with less than 20 interventions, despite of two exceptions. 
Different approaches without recognizable focus are used. 
The approaches focus on manually annotated activities or 
instrumental usage to interpret the current situation. Lapa-
roscopic interventions were chosen in five cases. Online, the 
approaches achieved up to 96% accuracy in phase recogni-
tion and 91.6% in step recognition.

3.4 � Usage

Many of the approaches are not designed for intraoperative 
use but for postoperative purposes. Twenty-four approaches 
can be applied online, whereas ten of the approaches can 
only be used for offline detection. Eighteen papers do not 
specify this aspect at all. To detect the current situation in 
the OR online, real data sets are used in 19 cases, mostly 
with ~ 20–120 interventions. Although various combinations 
of methods are used, approaches based on HMM or CNN 
are listed most frequently (13 cases). For recognition, the 
majority of papers, 18 approaches, uses video data, which 
is why the focused use cases are laparoscopic and cataract 
interventions, despite of three exceptions. Phase recogni-
tion achieved an accuracy of over 90% in six cases, espe-
cially since 2018, with the best result reaching 96%. For the 
recognition of steps, almost all approaches, despite of one, 
achieved accuracies above 90%, with the best result being 
94.3%.

For offline recognition, seven papers chose real data sets, 
three simulated data. The methods used are very differ-
ent. Video data is also preferred (seven cases), and lapa-
roscopic procedures are used in half of the approaches for 
evaluation. The approaches achieved an accuracy of up to 
94.8% for detecting phases, whereas steps can be detected 
with a maximum of 76.81% and activities with 64.5%. The 
approaches that are not defined as online or offline predomi-
nantly use data sets from real interventions, 13 cases, often 
comprising ~ 20–120 interventions. Specific methods are not 
favored. The approaches include more variance in terms of 
data sources. Video data, as well as combinations, are used 
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for 15 approaches. The approaches are evaluated in different 
interventions, seven times laparoscopic, but also in many 
other areas. For phase recognition, accuracies of up to 94.4% 
can be achieved, for steps 95.6% and activities 93.3%.

3.5 � Accuracy

The accuracy of the approaches ranges from 64.5 to 96%. 
Newer approaches are not necessarily better than older 
ones. The majority of the papers, 39 approaches, achieved 
a higher accuracy or comparable unit of over 80%. The 
best 18 approaches with 90% or more use different meth-
ods, whereby approaches based on HMM are used in eight 
of the cases, also in combination with other methods. For 
the detection of phases, real data sets are used, despite of 
three cases, which contain different numbers of interven-
tions. In eight cases, the use case laparoscopic intervention 
is focused. Nine of the papers recognize only via video data. 
Six of the approaches are online-capable for which accura-
cies of up to 96% were achieved. Since 2017, online-capable 
approaches could always be identified. For the recognition 
of steps and activities, no favored data source or use case 
could be identified. More simulated than real data is used 
(four vs. two cases). Steps were predominantly identified 
online, with one exception, with up to 94.3%, whereas the 
only unspecified approach even reached 95.6%. Activities 
were detected with up to 93.3%, whereas it is not defined 
whether the approaches are online-capable. The approach 
with the highest accuracy considering all granularities is 
online-capable and based on manually annotated activities 
of laparoscopic cholecystectomies, where phases are recog-
nized via OWL and SWRL.

Twenty-one approaches achieve accuracies of 80 to 90%, 
17 of them are evaluated on real data sets. Approaches based 
on CNN or LSTM could be identified in seven cases, which 
are also frequently used in combination with each other or 
with other methods. As a data source, video data is used 
conspicuously often, in 16 cases. The use cases laparoscopic 
procedures and also cataract procedures are used in 14 cases. 
Ten of the approaches are online-capable.

3.6 � Method

There are two main approaches for situation interpretation: 
machine learning techniques and formal methods (e.g., 
ontologies) for machine-readable modeling of medical 
knowledge [26]. Machine learning includes algorithms that 
analyze the data to build a statistical model that is then used 
to identify unknown aspects. The learning techniques are 
trained in advance using data sets. The trained models can 
then be used with sensor data as input (e.g., instrument posi-
tion) to provide an output that reflects the situation in dif-
ferent granularities. Formal methods, including ontologies 

or surgical process models (SPM), can be used to repre-
sent knowledge about the process or other relevant aspects 
and use logical links and rules for the interpretation of the 
situation.

In literature, for used methods, no clear trend could be 
identified. But it is noticeable that some approaches rely on 
only one method, while other approaches use a combina-
tion of different methods. Particularly in the detection within 
videos, additional methods are often used to detect features 
in the image data which have been left out for the overview 
as far as possible. Overall, machine learning techniques and 
formal models both are used for approaches, partly both in 
one approach. It could be identified in the individual catego-
ries that methods based on CNN, LSTM, HMM, or SVM 
(solely or in combination with various methods) are used 
more frequently, in 33 cases.

3.7 � Approaches with differing aspects

Six papers were listed separately due to deviating granular-
ity and application (see Table 5). Three of them recognize 
only very few intraoperative phases, but more pre- and post-
operative phases; one uses states (e.g., “risky situations”). 
The remaining two papers, and two of the papers mentioned 
before, deal with trauma resuscitations that do not represent 
an intervention.

Good results could also be achieved by these approaches. 
For evaluation, real and simulated data are used. The meth-
ods used are different. Four of the papers deal with the rec-
ognition of phases. For recognition, different data sources 
are used. In one case, RFID technologies for person loca-
tion, instrument/object location, and usage are used. Another 
paper uses optical trackers to obtain the instrument position. 
The remaining two papers use the audio of a surgical micro-
phone, solely or in combination with the depth video of an 
external surgical camera, respectively. Of three online-capa-
ble approaches, the best accuracy was 97%. On the granular-
ity of steps, an external surgical video or the object usage 
via RFID is used as input for recognition. Up to 91.14% was 
achieved with not as online-capable defined approaches.

4 � Discussion

The review shows that there are many approaches with 
good recognition rates. In the following, these are discussed 
beyond the table and afterward evaluated for their applicabil-
ity and transferability to other scenarios and data sources.

4.1 � Sensor data (source)

The table shows that up to 96% accuracy can be achieved 
for the seven cases which are using manually annotated 
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data from activities, microscope usage, or instrument 
usage. Overall, the results are usually over 85%. Certain 
work beyond the table can show that the use of manually 
annotated data, sometimes with a different method, can 
provide an improvement in accuracy. Dergachyova et al. 
[13], for example, can increase accuracy from 68.10 (video 
only) to 88.93% by combining visual and instrument infor-
mation, using manually annotated data on instrument 
usage in addition to video data. Similarly, Lea et al. [39] 
show that if manually annotated data on tool usage is used 
in addition to video, the accuracy can be increased from 
84.6 to 92.8%. The multi-level approach of Charrière et al. 
[10] shows that compared to the use of video data with 
82.8% for phase detection, better results of 98.6% can be 
achieved with manually annotated instrument data. Simi-
larly, Charrière et al. [12] show that 83.2% can be reached 
for phase recognition using video, whereas 98.6% could 
be achieved with manually annotated instrument data. Yu 
et al. [67] reached an accuracy of 95.6% with videos, while 
manually annotated instrument usage data can increase the 
accuracy to 95.9%. Gu et al. [20] (approach with differ-
ing aspects) describe a method that achieved 41.13% with 
audio recordings and 79.12% with manual transcriptions. 
All these results are due to the fact that errors can already 
occur during the recognition of instruments etc., which in 
turn affects the recognition of the current situation. With 
manually annotated data, these errors do not occur, so 
approaches can work with perfect data. If the data were 
collected via intraoperative sensors, worse results can be 
expected.

Video data is chosen for more than half of the approaches. 
Instrument data is the second most used data source, par-
tially in combination with device or other data. The accura-
cies for these are varying. A tendency for single data sources 
or a combination of data to yield better results could not be 
observed. Very good results can be reached with only one 
data source or with a combination of data sources, without 
focusing on a specific source. In any case, it seems reason-
able to include all available inputs for situation recognition. 
The most promising approach would probably be to integrate 
as many sensors as possible to take into account inaccuracies 
of a single sensor and to make the analysis more robust [31].

4.2 � Application area

The approaches seem to be designed for a specific interven-
tion and are specially trained for it. Laparoscopic and cata-
ract procedures are focused in research. For these, types of 
data sources are focused. For example, cataract procedures 
only used the microscopic video, and laparoscopic interven-
tions focus on the laparoscopic/endoscopic video. Overall, 
the application area is conspicuously set on standardized 
interventions or seems to provide the best results for them.

4.3 � Evaluation (data set)

Although the individual approaches often show a high 
degree of accuracy, the evaluations were not carried out 
during an intervention; either data sets from real interven-
tions or simulated data/interventions were used. The live 

Table 5   Overview of identified, but differing, approaches concerning situation recognition systems

Paper Granularity Year Sensor data 
(source)

Method Application area Usage Evaluation (data 
set)

Accuracy

Bardram et al. [2] Phases (few intra-
operative)

2011 Person loca-
tion (RFID), 
instrument/
object location 
(RFID), instru-
ment/object 
usage (RFID)

DT Laparoscopic 
appendectomy

Online SimOp (3, 1) 77.29%

Katić et al. [26] Phases (states) 2013 Instrument posi-
tion (optical 
tracker)

OWL, BA Laparoscopic 
cholecystec-
tomy

Online SimOp 97%

Li et al. [41] Phases (few intra-
operative)

2016 Depth video (OR 
camera), audio 
(OR micro-
phone)

CNN Trauma resusci-
tation

Online RealOp (20, 5) 80%

Gu et al. [20] Phases (few intra-
operative)

2017 Audio (OR 
microphone)

LSTM Trauma resusci-
tation

Offline RealOp (24, 3) 41.13%

Chakraborty 
et al. [9]

Steps 2013 Video (OR 
camera)

MLN Trauma resusci-
tation

- SimOp (10) 91.14% (precision)

Li et al. [40] Steps 2016 Object usage 
(RFID)

CNN Trauma resusci-
tation

- RealOp (16) 80.40%
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application was not tested extensively. The data that was 
recorded during interventions was also used for testing 
the approaches. No live evaluation in the OR was carried 
out, which questions the functionality. Some of the stud-
ies also describe that the approaches provide good results 
but are not yet good enough for clinical use. For example, 
the approach of Franke et al. [18] is suitable for laboratory 
conditions but must be extended for clinical use. Above all, 
some approaches cannot be integrated into the OR at all, as 
they are based on manually annotated data, i.e., they do not 
use real sensor data for interpretation. To use them, the input 
data first have to be determined automatically, for example, 
by intraoperative sensors (e.g., [27, 28]). Also, the number 
of data in the data sets used should be increased so that 
more variance can be represented within the data set and the 
approaches can be extensively trained and tested.

4.4 � Usage

Offline approaches can often reach better accuracies, 
because, for example, the entire video can be used for 
analysis instead of only using the video available up to the 
time of the operation (which is the case for online usage). 
This tendency is not visible in the tabular presentation. 
Very good results can also be achieved online. However, 
in Twinanda et al. [61], it is shown that an accuracy of 
81.7% can be reached online, whereas offline even 92.0% 
can be achieved. Similarly, Lalys et al. [37] show that an 
HMM-based approach reached an accuracy of 91.4% online, 
while a DTW-based approach achieved 94.4% offline. It 
can be concluded that it does make a difference whether the 
approach is used online or offline. But only online-capable 
systems can be used for situation recognition during proce-
dures. Approaches that are not defined as online-capable can 
probably not be used live. Offline approaches could be used 
for postoperative analysis and still be extended for online 
capability in future work.

4.5 � Accuracy

According to the table, the approaches cover a wide range 
of accuracies. Specific conditions for achieving the best 
results could not be identified, because of the very differ-
ent approaches regarding the combination of sensor data, 
method, area, etc.

4.6 � Method

The table shows that models defined as SPM are used by 
four of the identified papers, which achieved an accuracy 
of up to 90.15% but do not stand out overall. Two of the 
approaches have a lower accuracy of 70%. Ontologies are 
also used in six cases, although not stated in the table, some 

of which reached an accuracy of more than 90% but do not 
particularly stick out as well. The use of SPMs in com-
bination with ontologies was also observed in two of the 
six ontology cases. Nakawala et al. [46] use an ontology 
to represent knowledge about thoracentesis interventions. 
For the interpretation, rules based on SWRL and OWL are 
created to realize an SPM. The approach achieved an accu-
racy of 86.25%. Katić et al. [27] use a rule-based situation 
interpretation using OWL and SWRL. The workflow of the 
interventions is formalized by an ontology. For laparoscopic 
cholecystectomies, an accuracy of 96% was achieved. Katić 
et al. [28] present a rule-based situation interpretation using 
SQWRL. The workflow of the interventions is formalized 
by an ontology to represent an SPM. In the use case lapa-
roscopic pancreas resection, an accuracy of 90.16% was 
achieved. Katić et al. [29] combine formal knowledge via an 
ontology with experience-based knowledge. The approach is 
based on CoRF and CO and achieved an accuracy of ~ 70% 
for laparoscopic pancreas resections. Lalys et al. [38] use 
an ontology, mSVM, and DTW to detect activities based 
on previously detected phases to automatically generate 
SPMs of cataract interventions. An accuracy of 64.5% was 
achieved. Katić et al. [26] (approach with differing aspects) 
present a combination of machine learning and formal meth-
ods, which uses OWL and BA in addition to an ontology-
based situation interpretation. An accuracy of 97% could 
be achieved in the scenario laparoscopic cholecystectomy. 
Although the papers that use SPMs and/or ontologies are 
not among the best overall, as there are both good and worse 
results, it seems to be useful to use SPMs and ontologies 
to represent knowledge about aspects of the process and to 
use this knowledge for situation awareness. A combination 
of machine learning techniques and formal methods seems 
reasonable.

4.7 � Best approaches

To identify clearer trends in the presented papers, the best 
approaches were defined. These include an accuracy above 
90%, the possibility of online usage, and the use of non-
manually annotated input data. Seven approaches could be 
identified with this criteria. It is noticeable that only endo-
scopic or laparoscopic videos are used for phase recognition 
(five approaches in total). With laparoscopic interventions as 
the application area, the best results were achieved from 91.9 
to 93.3%. Real data sets with ~ 70–80 procedures were used, 
except one with only ten procedures. Mostly combinations of 
methods were used, two of the studies use an approach based 
on ResNet, LSTM, and PKI. The best approach uses LSTM, 
CNN, and PKI. For step recognition, no laparoscopic proce-
dures are used but cataract and functional endoscopic sinus 
surgery (two approaches in total). For the cataract use case, 
the microscopic video is used, for the other case, in addition 
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to the endoscopic video, device parameters via SDC and 
information on instrument usage via scale. The accuracies 
were 91.4% and 94.3%, respectively. For the first approach, 
a real data set with 20 interventions was used, for the second 
24 simulated interventions. No comparisons could be made 
between the methods. The better approach uses ATM, DTW, 
and HsMM. The detection of activities could not keep up 
with the results of the other two granularities.

Video data is always used for both phase and step rec-
ognition to achieve the best accuracies. This seems to be 
a suitable source of data but can only be used for certain 
interventions that capture such videos. Only one approach 
uses other data sources in addition, which ultimately resulted 
in the highest accuracy. This approach is the only one that 
uses simulated interventions, which is therefore not neces-
sarily meaningful. Overall, the approaches are very current 
(since 2017), with one exception of 2012. The best approach 
for phase and step detection is always the most recent one. 
Favored methods could not be identified unambiguously, but 
combinations of different methods seem to make sense, as 
the lowest of the best accuracies are also achieved by those 
approaches with only one method for interpretation.

4.8 � Differing approaches

The best result by approaches with deviating aspects with 
an accuracy of 97% is reached when detecting states. For 
this purpose, the instrument position is recorded via optical 
trackers and interpreted via OWL and BA. The approach is 
online-capable, but the results were obtained by simulated 
laparoscopic cholecystectomies. The second best approach 
achieved 91.14% in the detection of steps in trauma resusci-
tation. Simulated procedures are also used, with surgical vid-
eos as input for recognition and MLN for interpretation. The 
approach is not defined as online-capable. The approaches 
show that good solutions also exist in non-focused areas, 
which can provide good results in deviating use cases. It 
may be useful to extend these to desired conditions (intra-
operative use).

4.9 � Concluding remarks

Overall, the table results and discussion only reflect trends, 
as not all characteristics of the very different approaches 
can be included. Depending on the case, the data sets may 
contain different defined phases etc., which may also vary 
in number. There is no clear definition of the phases, but 
the research groups define them themselves or they were 
determined based on existing data sets (number and alloca-
tion of activities to a phase varies). In addition, due to the 
focus on approaches with online usage and without manually 
annotated data, an increasing number of such approaches are 
listed. Due to the different evaluation methods, the results 

are not directly comparable. The comparison results must, 
therefore, be considered with caution. Nevertheless, it is 
recognizable that the approaches cover a broad spectrum 
of methods and sensors. There is a clear tendency towards 
video data and the corresponding use cases. However, it does 
not show that certain methods or sensor data only provide 
good results but rather that very different approaches are 
among the best, which do not all use the favored data sources 
or application cases.

4.10 � Applicability and transferability

Within the different studies, the approach with the best 
results is not always favored. Charrière et al. [12] are an 
example of this. In this paper, a different approach than the 
one with the best accuracy is recommended, because it can 
be transferred to other video-monitored interventions and 
levels. From this, it can be concluded that accuracy is not 
always the means to measure the best solution. We assume 
that applicability and transferability to other processes, gran-
ularities, and sensor data are also important. The impor-
tance of the transferability of strategies within the OR is 
addressed, for instance, in [19]. This paper discusses that 
many instrument recognition systems focus on specific inter-
ventions and are not generally applicable. Instead, a system 
that can be used for a large number of operations is defined 
as necessary [19]. Deducing from this, it is necessary for 
the broad application of a situation recognition system that 
it can be easily adapted to different conditions, so that it 
can be used for a majority of interventions, independent of 
available data and planned support.

4.10.1 � Papers that hypothesize transferability

Applicability and transferability of the approaches are not 
addressed in all papers. Regarding the flexibility of the sen-
sor technology used, the comparison of the identified sys-
tems showed that the approaches are designed for specific 
sensors. Concerning the usability of sensor sources, the 
choice often falls on endoscopic, laparoscopic, or micro-
scopic videos, as these are already available in the OR. 
Using video data avoids the need to install additional equip-
ment in the OR and provides a source of information that 
must not be controlled by humans, thereby automating the 
support of surgeons without the need to change the surgical 
routine [37]. In contrast, other data sources, such as RFID 
tags or different trackers, require that they were attached to 
instruments, devices, and people, which can be considerably 
more complex (e.g., if each instrument has to be equipped 
with an RFID tag). For using extra cameras or other ele-
ments (e.g., scales), they must be installed or integrated in 
the OR as well. The cost-effectiveness and feasibility of 
such strategies, which, for example, require modification 
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of instruments, are questionable [19]. Approaches that 
use video data already available in the OR allow for sim-
pler applicability and transferability, because no change of 
equipment or processes is necessary. These approaches can 
theoretically be transferred but only to other video-based 
interventions, without the need to integrate additional sen-
sors, provided that the method has been trained for them 
and knowledge about processes and situations exist. Very 
similar, solutions that use device information such as system 
events or measurements can be transferred as well if the 
data is available in the respective OR. However, there is a 
lack of available and suitable medical device data due to the 
lack of open communication standards [25]. Not in every 
OR certain technologies are integrated that can be used to 
collect data. For interventions for which no video data or 
sufficient device data are available, additional sensors must 
be attached for transmission. Moreover, many studies show 
that additional integrated sensors can achieve good results 
(e.g., RFID and accelerometers [45]). For as little effort as 
possible, sensors that are easy to integrate could be used 
(e.g., [15]).

In addition to the focus on video data, it is also very 
noticeable that the identified approaches deal with highly 
standardized interventions. The approaches for these are 
often designed for a specific intervention and are specially 
trained for defined phases etc. For individual use cases, there 
also exist extensive data sets for this purpose, with which the 
methods can be trained (e.g., using video data). The transfer-
ability of the approaches to other interventions is difficult to 
assess. A 1-to-1 transfer seems very unlikely since interven-
tions can vary greatly (e.g., steps to be performed, instru-
ments used), and therefore, it cannot be guaranteed that a 
trained approach can be used for other processes in the same 
way with similar results. In principle, this is possible with 
adjustments by training the methods for the new interven-
tions and, if necessary, additionally mapping the required 
knowledge about the new processes (incl. data). Thus, the 
approach can be trained for other defined phases etc. For 
more complex, variable interventions, the recognition does 
not seem to be successful so far due to the non-standardized 
and flexible processes. These are often unpredictable and 
make it difficult to define knowledge about the process that 
can be used to identify the situation. The processes cannot 
be modeled in a structured way, several data combinations 
may be possible, and therefore, this knowledge cannot be 
incorporated into the detection (e.g., dependencies between 
steps). Thus, many approaches are specialized in highly 
standardized interventions, which can be better analyzed 
based on the clear procedures and the often unambiguous 
assignment of data to situations. The definition of the work-
flow is only feasible for interventions if their procedure is 
standardized [32]. A transfer to more variable processes is 
therefore hardly possible.

The usability of the approaches for other processes is 
only addressed to a limited extent in the identified papers. 
For approaches that work with laparoscopic, endoscopic, or 
microscopic videos, it is more often described that these are, 
for example, generalizable or scalable and can therefore also 
be used for other types of interventions (e.g., [13]), more 
complex procedures (e.g., [4]), or other data sets (e.g., [61]). 
Rarely, the transferability to other granularities or sensor 
sources is mentioned. Nevertheless, some papers state that 
the approach can be adapted to other levels (e.g., [10]), be 
used in a more fine-grained way (e.g., [62]), or be extended 
to other sensor data (e.g., [47]). Also when using other data 
sources, approaches are described as generalizable or scal-
able and are therefore applicable to other procedures (e.g., 
[50]) or different settings (e.g., [9]). The detection of differ-
ent granularities or expandability of sensors is also rarely 
shown. Few papers describe that the approach is transferable 
to other levels of granularity (e.g., [16]) or can be extended 
by sensors (e.g., [41]). Other studies indicate that their 
approach is not well transferable to other interventions or 
data sets, for example, in the case of more variable data (e.g., 
[39]). Additionally, few papers define their approaches as 
generalizable or extendable but not necessarily applicable 
to other areas in their actual form, because cues are appli-
cation-dependent (e.g., [52]) or the approach needs to be 
trained for each department (e.g., [35]).

4.10.2 � Papers that demonstrated transferability

Rather rarely, the transferability of the approaches to other 
data sets or use cases is demonstrated in tests or experi-
ments. Some papers apply their approach to different data 
sets, which may also include other use cases or different 
methods. For example, Jin et al. [23] compare the results 
for two data sets of laparoscopic cholecystectomies, with 
slightly different accuracies of 90.7% and 92.4%. Twinanda 
et al. [60] use the same two data sets and achieved 79.5% 
with one data set and 80.7% with the other. Lea et al. [39] 
use two other data sets with laparoscopic cholecystectomy 
procedures, but the results are very different, 63.7% with one 
and 84.6% with the other. Quellec et al. [52] show results 
of two data sets, including different use cases, epiretinal 
membrane surgeries, and cataract surgeries, which reached 
87.0% and 72.9%, respectively. Bodenstedt et al. [4] also 
use two data sets with different cases, laparoscopic chol-
ecystectomies, and colorectal laparoscopies, which achieved 
74.5% and 67.2%, respectively. Katić et al. [27] even use 
three different data sets for the scenarios laparoscopic chol-
ecystectomy, pancreatic resection, and adrenalectomy which 
achieved 96%, 90%, and 83%, respectively.

These examples show that when approaches are applied 
to different data sets, the accuracies can vary greatly, espe-
cially when data sets from different interventions are used. 
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If data sets of the same procedures are used, very similar 
results could be observed in some cases, although a larger 
difference can occur here as well. The examples seem to 
show that one approach cannot be used equally well for 
other data sets. This is probably due to the differences in the 
data (e.g., detecting other phases) and to the different pro-
cess flows (e.g., more complex interventions or ambiguous 
assignment of data to situations). The data set and thus the 
use case seem to have a strong influence on the recognition 
accuracy. The amount of training data will also influence the 
results. For future approaches, more complex evaluations 
should be carried out under real conditions [51]. Further-
more, more experiments with more complex and variable 
interventions should be done.

The transferability of the approaches to other granulari-
ties or the recognition beyond one granularity is also rarely 
shown practically. Nakawala et al. [47] show that, beyond 
the already recognized step, an ontology-based SPM and 
rules can identify complementary context (activities, phases, 
and instruments) based on the step. However, further context 
could be identified with less accuracy, since the recognition 
is based on the recognized step. Lalys et al. [38] identify 
activities based on previously recognized phases, whereas 
Franke et al. [18] identify steps based on previously recog-
nized activities. Charrière et al. [10] use phases and steps 
and their influence on each other for multi-level recognition, 
whereby phases could be recognized with higher accuracy. 
Similarly, Charrière et al. [12] use knowledge of the relation-
ship between phases and steps to identify situations. Again, 
the results for phase recognition were better. The examples 
show that the granularities are interdependent. Beyond one 
granularity, further knowledge about other contexts can be 
identified. Furthermore, the granularities seem to be able 
to influence each other, through which multi-level recogni-
tion can benefit. The transferability to other granularities 
thus seems to be possible in principle via knowledge of the 
interventions.

Even less frequently, the transferability of the approaches 
to other sensor data is demonstrated in the papers. A flexible 
connection of available sensors would result in independence 
so that transferability to new ORs with other sensor technol-
ogy is possible. In different works, the results using differ-
ent sensor data are compared. Malpani et al. [43] show, for 
example, that a subset of features, in contrast to the system 
events of a daVinci surgical system, can be used for many 
interventions (laparoscopic, endoscopic, and open) and can 
also deliver comparatively good results, only slightly worse 
with 72.5% instead of 76.0%. DiPietro et al. [15] show that 
with fewer, rapidly deployable sensors, very good results 
can be achieved (73.9%), whereas more sensors could reach 
75.9%. The examples make it clear that for transferability, 
it makes sense to choose data sources that can be used for 
a variety of interventions or that are easy to integrate. So 

approaches can be used not only for one intervention, for 
example, by using a specific device. With current techniques, 
this seems to be possible only to a limited extent.

4.10.3 � Concluding remarks

Most papers do not address the transferability of their 
approaches nor demonstrated it based on different data sets. 
In these cases, it was assumed that they are not transferable. 
Some papers state that the approaches are generalizable, but 
they do not describe in detail or demonstrate only slightly 
how the individual approaches can be transferred exactly 
to other interventions, phase definitions, granularities, or 
sensor data. The approaches always seem to be limited in 
terms of training data set (type of intervention), process 
modeling, sensor technology, and other aspects. The meth-
ods are trained based on a data set and must, therefore, be 
trained for the new application. In addition to training based 
on a new data set, new process models or similar may be 
necessary. Furthermore, different situations (e.g., additional 
phases, data sources) must be considered. For easy transfer-
ability, all this must be given. Therefore, the approaches, 
although described as generalizable, do not seem to be used 
easily without additional effort, because these aspects are 
not addressed in this way. The papers that show applicability 
and transferability usually use only two different data sets 
for evaluation. For this purpose, more different data for suf-
ficient tests or respectively the application directly in the OR 
would be advantageous. The differences in detection accu-
racy also make it clear that transferability is possible, but 
the results can vary greatly. For very similar interventions, 
simple transferability might be possible without having to 
adapt the entire approach, but for different interventions, the 
approaches have to be adapted and, if necessary, extended 
(training, knowledge, data, etc.).

5 � Conclusions

The identified approaches differ in many aspects, such as 
method, area, or accuracy. The focus is clearly on the use of 
video data for standardized use cases such as laparoscopic 
and cataract surgery, although not all of them necessarily 
achieve good results. Videos are probably preferred as they 
are already available in the OR. In addition to video, instru-
ment data is also quite often used solely or in combination 
with other sources. The works are often based on data sets 
from real interventions but sometimes use only a small 
amount of data. More data should be used for training and 
testing. We assume that broader availability of annotated 
intervention recordings with a broad range of sensor input 
would be a significant contribution to this research field. Fur-
thermore, the approaches should also be tested live. Often 
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the approaches can be used online, but this is not always 
stated. During surgery, only approaches that are online-
capable can be used, which limits the number of possible 
systems for intraoperative use. Nevertheless, many online 
approaches already show very good recognition results. The 
accuracy of the strategies varies as much as used methods. 
Many of the studies show very good results with accuracies 
above 80% or even 90%. However, no clear trend could be 
identified for methods, although combinations of different 
methods and the usage of machine learning combined with 
formal methods seem to be useful.

The discussion of the papers concerning applicability and 
transferability showed that the approaches can be used in 
principle to achieve situation awareness about intraopera-
tive processes. Transferability is less addressed in the papers 
and is hardly ever demonstrated by experiments. Neverthe-
less, especially the approaches based on video data seem 
to be transferable to other video-based interventions due to 
the availability of the data source. Therefore, flexibility in 
adapting to the changed processes must be guaranteed. The 
transferability to other processes, granularities, and data 
sources is only outlined in a few papers and seems to be 
possible only to a limited extent. Although some studies 
mention that their approaches can be generalized to other 
types of interventions etc., they do not show this enough in 
experiments. Through a few examples, it could be shown 
that different data sets can strongly vary in recognition. A 
few studies demonstrate that their approaches can be used 
beyond a granularity or a specific sensor source combina-
tion. The recognition of more context and also the adapt-
ability with regard to sensor data is an important step for 
the broad usability of such a system. Therefore, future work 
should focus more on aspects of applicability and transfer-
ability to make recognition systems more adaptive. The goal 
for future developments should be much more on the broad 
applicability of solutions to reduce highly specific systems 
for a minimum of interventions. For this purpose, it is rec-
ommended to make the system easily adaptable to differ-
ent circumstances by, e.g., supporting different sensor data 
sources and application areas. We assume that a unified solu-
tion that can be adapted to different processes and granulari-
ties of the intraoperative area and that robustly detects the 
current situation in the OR without requiring specific sensor 
technologies would allow for greater flexibility, applicabil-
ity, and thus, transferability to different applications.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11517-​022-​02520-4.

Author contribution  The idea for this article was developed between 
Oliver Burgert and Denise Junger. The literature search and data analy-
sis were performed by Denise Junger. The categorization and focus of 
the paper were carried out by Denise Junger in discussion with Oliver 
Burgert. Sina Frommer supported the creation of the review table. The 

draft of the article was done by Denise Junger. Oliver Burgert critically 
revised the work. Sina Frommer gave additional feedback. The revi-
sions were conducted by Denise Junger and Oliver Burgert.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. This research was funded by the Ministry of Science, Research 
and Arts Baden-Württemberg and the European Fund for Regional 
Development (EFRE).

Declarations 

Consent to participate  This article does not contain patient data.

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, 
Khudanpur S, Vidal R, Hager GD (2017) A dataset and bench-
marks for segmentation and recognition of gestures in robotic 
surgery. IEEE Trans Biomed Eng 64:2025–2041. https://​doi.​org/​
10.​1109/​TBME.​2016.​26476​80

	 2.	 Bardram JE, Doryab A, Jensen RM, Lange PM, Nielsen KLG, 
Petersen ST (2011) Phase recognition during surgical procedures 
using embedded and body-worn sensors. In: 2011 IEEE Interna-
tional Conference on Pervasive Computing and Communications 
(PerCom). IEEE 45–53

	 3.	 Blum T, Feussner H, Navab N (2010) Modeling and segmenta-
tion of surgical workflow from laparoscopic video. Med Image 
Comput Assist Interv 13:400–407. https://​doi.​org/​10.​1007/​978-
3-​642-​15711-0_​50

	 4.	 Bodenstedt S, Wagner M, Katić D, Mietkowski P, Mayer B, 
Kenngott H, Müller-Stich B, Dillmann R, Speidel S (2017) Unsu-
pervised temporal context learning using convolutional neural net-
works for laparoscopic workflow analysis

	 5.	 Bouarfa L, Jonker PP, Dankelman J (2011) Discovery of high-
level tasks in the operating room. J Biomed Inform 44:455–462. 
https://​doi.​org/​10.​1016/j.​jbi.​2010.​01.​004

	 6.	 Bouget D, Lalys F, Jannin P (2012) Surgical tools recognition and 
pupil segmentation for cataract surgical process modeling. Stud 
Health Technol Inform 173:78–84

	 7.	 Bouget D, Allan M, Stoyanov D, Jannin P (2017) Vision-based 
and marker-less surgical tool detection and tracking: a review of 
the literature. Med Image Anal 35:633–654. https://​doi.​org/​10.​
1016/j.​media.​2016.​09.​003

	 8.	 Cadène R, Robert T, Thome N, Cord M (2016) M2CAI workflow 
challenge: convolutional neural networks with time smoothing and 
hidden Markov model for video frames classification

936 Medical & Biological Engineering & Computing (2022) 60:921–939

https://doi.org/10.1007/s11517-022-02520-4
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TBME.2016.2647680
https://doi.org/10.1109/TBME.2016.2647680
https://doi.org/10.1007/978-3-642-15711-0_50
https://doi.org/10.1007/978-3-642-15711-0_50
https://doi.org/10.1016/j.jbi.2010.01.004
https://doi.org/10.1016/j.media.2016.09.003
https://doi.org/10.1016/j.media.2016.09.003


1 3

	 9.	 Chakraborty I, Elgammal A, Burd RS (2013) Video based activity 
recognition in trauma resuscitation. In: 2013 10th IEEE Interna-
tional Conference and Workshops on Automatic Face and Gesture 
Recognition (FG). IEEE 1–8

	10.	 Charriere K, Quelled G, Lamard M, Martiano D, Cazuguel G, 
Coatrieux G, Cochener B (2016) Real-time multilevel sequencing 
of cataract surgery videos. In: 2016 14th International Workshop 
on Content-Based Multimedia Indexing (CBMI). IEEE 1–6

	11.	 Charrière K, Quellec G, Lamard M, Coatrieux G, Cochener B, 
Cazuguel G (2014) Automated surgical step recognition in nor-
malized cataract surgery videos. Conf Proc IEEE Eng Med Biol 
Soc 2014:4647–4650. https://​doi.​org/​10.​1109/​EMBC.​2014.​69446​
60

	12.	 Charrière K, Quellec G, Lamard M, Martiano D, Cazuguel G, 
Coatrieux G, Cochener B (2017) Real-time analysis of cataract 
surgery videos using statistical models. Multimed Tools Appl 
76:22473–22491. https://​doi.​org/​10.​1007/​s11042-​017-​4793-8

	13.	 Dergachyova O, Bouget D, Huaulmé A, Morandi X, Jannin P 
(2016) Automatic data-driven real-time segmentation and rec-
ognition of surgical workflow. Int J Comput Assist Radiol Surg 
11:1081–1089. https://​doi.​org/​10.​1007/​s11548-​016-​1371-x

	14.	 Dergachyova Olga, Bouget David, Huaulmé Arnaud, Morandi 
Xavier, Jannin Pierre (2016) Data-driven surgical workflow detec-
tion: technical report for M2CAI 2016 surgical workflow chal-
lenge. IEEE Trans. on Medical Imaging

	15.	 DiPietro Robert, Stauder Ralf, Kayis Ergün, Schneider Armin, 
Kranzfelder Michael, Feussner Hubertus, Hager Gregory D., 
Navab Nassir (2015) Automated surgical-phase recognition using 
rapidly-deployable sensors. Proc MICCAI Workshop M2CAI

	16.	 Forestier G, Riffaud L, Jannin P (2015) Automatic phase predic-
tion from low-level surgical activities. Int J Comput Assist Radiol 
Surg 10:833–841. https://​doi.​org/​10.​1007/​s11548-​015-​1195-0

	17.	 Franke S, Meixensberger J, Neumuth T (2013) Intervention time 
prediction from surgical low-level tasks. J Biomed Inform 46:152–
159. https://​doi.​org/​10.​1016/j.​jbi.​2012.​10.​002

	18.	 Franke S, Rockstroh M, Hofer M, Neumuth T (2018) The intel-
ligent OR: design and validation of a context-aware surgical work-
ing environment. Int J Comput Assist Radiol Surg 13:1301–1308. 
https://​doi.​org/​10.​1007/​s11548-​018-​1791-x

	19.	 Glaser B, Dänzer S, Neumuth T (2015) Intra-operative surgical 
instrument usage detection on a multi-sensor table. Int J Com-
put Assist Radiol Surg 10:351–362. https://​doi.​org/​10.​1007/​
s11548-​014-​1066-0

	20.	 Gu Y, Li X, Chen S, Li H, Farneth RA, Marsic I, Burd RS (2017) 
Language-based process phase detection in the trauma resuscita-
tion. IEEE Int Conf Healthc Inform 2017:239–247. https://​doi.​
org/​10.​1109/​ICHI.​2017.​50

	21.	 Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-
Welton AJ, Rattner DW, Lillemoe KD, Rus DL, Meireles OR 
(2019) Computer vision analysis of intraoperative video: auto-
mated recognition of operative steps in laparoscopic sleeve gas-
trectomy. Ann Surg 270:414–421. https://​doi.​org/​10.​1097/​SLA.​
00000​00000​003460

	22.	 Holden MS, Ungi T, Sargent D, McGraw RC, Chen ECS, Gana-
pathy S, Peters TM, Fichtinger G (2014) Feasibility of real-time 
workflow segmentation for tracked needle interventions. IEEE 
Trans Biomed Eng 61:1720–1728. https://​doi.​org/​10.​1109/​TBME.​
2014.​23016​35

	23.	 Jin Y, Dou Q, Chen H, Yu L, Qin J, Fu C-W, Heng P-A (2018) SV-
RCNet: workflow recognition from surgical videos using recurrent 
convolutional network. IEEE Trans Med Imaging 37:1114–1126. 
https://​doi.​org/​10.​1109/​TMI.​2017.​27876​57

	24.	 Jin Y, Li H, Dou Q, Chen H, Qin J, Fu C-W, Heng P-A (2020) 
Multi-task recurrent convolutional network with correlation loss 
for surgical video analysis. Med Image Anal 59:101572. https://​
doi.​org/​10.​1016/j.​media.​2019.​101572

	25.	 Kasparick M, Andersen B, Franke S, Rockstroh M, Golatowski F, 
Timmermann D, Ingenerf J, Neumuth T (2019) Enabling artificial 
intelligence in high acuity medical environments. Minim Invasive 
Ther Allied Technol 28:120–126. https://​doi.​org/​10.​1080/​13645​
706.​2019.​15999​57

	26.	 Katić D, Wekerle A-L, Görtler J, Spengler P, Bodenstedt S, 
Röhl S, Suwelack S, Kenngott HG, Wagner M, Müller-Stich BP, 
Dillmann R, Speidel S (2013) Context-aware augmented Reality 
in laparoscopic surgery. Comput Med Imaging Graph 37:174–182. 
https://​doi.​org/​10.​1016/j.​compm​edimag.​2013.​03.​003

	27.	 Katić D, Wekerle A-L, Gärtner F, Kenngott H, Müller-Stich BP, 
Dillmann R, Speidel S (2014) Knowledge-driven formalization of 
laparoscopic surgeries for rule-based intraoperative context-aware 
assistance. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, 
Kobsa A, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu 
Rangan C, Steffen B, Terzopoulos D, Tygar D, Weikum G, Stoy-
anov D, Collins DL, Sakuma I, Abolmaesumi P, Jannin P (eds) 
Information processing in computer-assisted interventions, vol 
8498. Springer International Publishing, Cham, pp 158–167

	28.	 Katić D, Julliard C, Wekerle A-L, Kenngott H, Müller-Stich BP, 
Dillmann R, Speidel S, Jannin P, Gibaud B (2015) LapOntoSPM: 
an ontology for laparoscopic surgeries and its application to surgi-
cal phase recognition. Int J Comput Assist Radiol Surg 10:1427–
1434. https://​doi.​org/​10.​1007/​s11548-​015-​1222-1

	29.	 Katić D, Schuck J, Wekerle A-L, Kenngott H, Müller-Stich BP, 
Dillmann R, Speidel S (2016) Bridging the gap between formal 
and experience-based knowledge for context-aware laparoscopy. 
Int J Comput Assist Radiol Surg 11:881–888. https://​doi.​org/​10.​
1007/​s11548-​016-​1379-2

	30.	 Kitaguchi D, Takeshita N, Matsuzaki H, Takano H, Owada Y, 
Enomoto T, Oda T, Miura H, Yamanashi T, Watanabe M, Sato 
D, Sugomori Y, Hara S, Ito M (2019) Real-time automatic surgi-
cal phase recognition in laparoscopic sigmoidectomy using the 
convolutional neural network-based deep learning approach. Surg 
Endosc. https://​doi.​org/​10.​1007/​s00464-​019-​07281-0

	31.	 Kowalewski K-F, Garrow CR, Schmidt MW, Benner L, Müller-
Stich BP, Nickel F (2019) Sensor-based machine learning for 
workflow detection and as key to detect expert level in laparo-
scopic suturing and knot-tying. Surg Endosc 33:3732–3740. 
https://​doi.​org/​10.​1007/​s00464-​019-​06667-4

	32.	 Kranzfelder M, Schneider A, Gillen S, Feussner H (2011) New 
technologies for information retrieval to achieve situational aware-
ness and higher patient safety in the surgical operating room: the 
MRI institutional approach and review of the literature. Surg 
Endosc 25:696–705. https://​doi.​org/​10.​1007/​s00464-​010-​1239-z

	33.	 Lalys F, Jannin P (2014) Surgical process modelling: a review. Int 
J Comput Assist Radiol Surg 9:495–511. https://​doi.​org/​10.​1007/​
s11548-​013-​0940-5

	34.	 Lalys F, Riffaud L, Morandi X, Jannin P (2010) Automatic phases 
recognition in pituitary surgeries by microscope images classifica-
tion. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern 
F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, 
Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Navab 
N, Jannin P (eds) Information Processing in Computer-Assisted 
Interventions, vol 6135. Springer. Berlin Heidelberg, Berlin, Hei-
delberg, pp 34–44

	35.	 Lalys F, Riffaud L, Bouget D, Jannin P (2011) An application-
dependent framework for the recognition of high-level surgical 
tasks in the OR. Med Image Comput Assist Interv 14:331–338. 
https://​doi.​org/​10.​1007/​978-3-​642-​23623-5_​42

	36.	 Lalys F, Riffaud L, Morandi X, Jannin P (2011) Surgical phases 
detection from microscope videos by combining SVM and HMM. 
In: Menze B, Langs G, Tu Z, Criminisi A (eds) Medical computer 
vision Recognition techniques and applications in medical imag-
ing, vol 6533. Springer. Berlin Heidelberg, Berlin, Heidelberg, pp 
54–62

937Medical & Biological Engineering & Computing (2022) 60:921–939

https://doi.org/10.1109/EMBC.2014.6944660
https://doi.org/10.1109/EMBC.2014.6944660
https://doi.org/10.1007/s11042-017-4793-8
https://doi.org/10.1007/s11548-016-1371-x
https://doi.org/10.1007/s11548-015-1195-0
https://doi.org/10.1016/j.jbi.2012.10.002
https://doi.org/10.1007/s11548-018-1791-x
https://doi.org/10.1007/s11548-014-1066-0
https://doi.org/10.1007/s11548-014-1066-0
https://doi.org/10.1109/ICHI.2017.50
https://doi.org/10.1109/ICHI.2017.50
https://doi.org/10.1097/SLA.0000000000003460
https://doi.org/10.1097/SLA.0000000000003460
https://doi.org/10.1109/TBME.2014.2301635
https://doi.org/10.1109/TBME.2014.2301635
https://doi.org/10.1109/TMI.2017.2787657
https://doi.org/10.1016/j.media.2019.101572
https://doi.org/10.1016/j.media.2019.101572
https://doi.org/10.1080/13645706.2019.1599957
https://doi.org/10.1080/13645706.2019.1599957
https://doi.org/10.1016/j.compmedimag.2013.03.003
https://doi.org/10.1007/s11548-015-1222-1
https://doi.org/10.1007/s11548-016-1379-2
https://doi.org/10.1007/s11548-016-1379-2
https://doi.org/10.1007/s00464-019-07281-0
https://doi.org/10.1007/s00464-019-06667-4
https://doi.org/10.1007/s00464-010-1239-z
https://doi.org/10.1007/s11548-013-0940-5
https://doi.org/10.1007/s11548-013-0940-5
https://doi.org/10.1007/978-3-642-23623-5_42


1 3

	37.	 Lalys F, Riffaud L, Bouget D, Jannin P (2012) A framework for 
the recognition of high-level surgical tasks from video images for 
cataract surgeries. IEEE Trans Biomed Eng 59:966–976. https://​
doi.​org/​10.​1109/​TBME.​2011.​21811​68

	38.	 Lalys F, Bouget D, Riffaud L, Jannin P (2013) Automatic knowl-
edge-based recognition of low-level tasks in ophthalmological 
procedures. Int J Comput Assist Radiol Surg 8:39–49. https://​
doi.​org/​10.​1007/​s11548-​012-​0685-6

	39.	 Lea Colin, Choi Joon Hyuck, Reiter Austin, Hager Gregory D 
(2016) Surgical phase recognition: from instrumented ORs to 
hospitals around the world. MICCAI: M2CAI Workshop

	40.	 Li X, Zhang Y, Marsic I, Sarcevic A, Burd RS (2016) Deep learn-
ing for RFID-based activity recognition. Proc Int Conf Embed 
Netw Sens Syst 2016:164–175. https://​doi.​org/​10.​1145/​29945​51.​
29945​69

	41.	 Li X, Zhang Y, Li M, Chen S, Austin FR, Marsic I, Burd RS 
(2016) Online process phase detection using multimodal deep 
learning. ubiquitous comput electron mob commun conf (UEM-
CON) IEEE Annu 2016. https://​doi.​org/​10.​1109/​UEMCON.​
2016.​77779​12

	42.	 Loukas C, Georgiou E (2013) Surgical workflow analysis with 
Gaussian mixture multivariate autoregressive (GMMAR) mod-
els: a simulation study. Comput Aided Surg 18:47–62. https://​
doi.​org/​10.​3109/​10929​088.​2012.​762944

	43.	 Malpani A, Lea C, Chen CCG, Hager GD (2016) System events: 
readily accessible features for surgical phase detection. Int J 
Comput Assist Radiol Surg 11:1201–1209. https://​doi.​org/​10.​
1007/​s11548-​016-​1409-0

	44.	 Meeuwsen FC, van Luyn F, Blikkendaal MD, Jansen FW, van 
den Dobbelsteen JJ (2019) Surgical phase modelling in minimal 
invasive surgery. Surg Endosc 33:1426–1432. https://​doi.​org/​10.​
1007/​s00464-​018-​6417-4

	45.	 Meißner C, Meixensberger J, Pretschner A, Neumuth T (2014) 
Sensor-based surgical activity recognition in unconstrained 
environments. Minim Invasive Ther Allied Technol 23:198–205. 
https://​doi.​org/​10.​3109/​13645​706.​2013.​878363

	46.	 Nakawala H, Ferrigno G, de Momi E (2018) Development of an 
intelligent surgical training system for thoracentesis. Artif Intell 
Med 84:50–63. https://​doi.​org/​10.​1016/j.​artmed.​2017.​10.​004

	47.	 Nakawala H, Bianchi R, Pescatori LE, de Cobelli O, Ferrigno 
G, de Momi E (2019) “Deep-Onto” network for surgical work-
flow and context recognition. Int J Comput Assist Radiol Surg 
14:685–696. https://​doi.​org/​10.​1007/​s11548-​018-​1882-8

	48.	 Nara A, Izumi K, Iseki H, Suzuki T, Nambu K, Sakurai Y 
(2011) Surgical workflow monitoring based on trajectory data 
mining. In: Onada T, Bekki D, McCready E (eds) New frontiers 
in artificial intelligence, vol 6797. Springer. Berlin Heidelberg, 
Berlin, Heidelberg, pp 283–291

	49.	 Padoy N (2019) Machine and deep learning for workflow rec-
ognition during surgery. Minim Invasive Ther Allied Technol 
28:82–90. https://​doi.​org/​10.​1080/​13645​706.​2019.​15841​16

	50.	 Padoy N, Blum T, Ahmadi S-A, Feussner H, Berger M-O, Navab 
N (2012) Statistical modeling and recognition of surgical work-
flow. Med Image Anal 16:632–641. https://​doi.​org/​10.​1016/j.​
media.​2010.​10.​001

	51.	 Pernek I, Ferscha A (2017) A survey of context recognition in 
surgery. Med Biol Eng Comput 55:1719–1734. https://​doi.​org/​
10.​1007/​s11517-​017-​1670-6

	52.	 Quellec G, Charrière K, Lamard M, Droueche Z, Roux C, 
Cochener B, Cazuguel G (2014) Real-time recognition of sur-
gical tasks in eye surgery videos. Med Image Anal 18:579–590. 
https://​doi.​org/​10.​1016/j.​media.​2014.​02.​007

	53.	 Quellec G, Lamard M, Cochener B, Cazuguel G (2014) Real-
time segmentation and recognition of surgical tasks in cata-
ract surgery videos. IEEE Trans Med Imaging 33:2352–2360. 
https://​doi.​org/​10.​1109/​TMI.​2014.​23404​73

	54.	 Quellec G, Lamard M, Cochener B, Cazuguel G (2015) Real-
time task recognition in cataract surgery videos using adaptive 
spatiotemporal polynomials. IEEE Trans Med Imaging 34:877–
887. https://​doi.​org/​10.​1109/​TMI.​2014.​23667​26

	55.	 Stauder R, Okur A, Peter L, Schneider A, Kranzfelder M, Feuss-
ner H, Navab N (2014) Random forests for phase detection in 
surgical workflow analysis. In: Hutchison D, Kanade T, Kittler 
J, Kleinberg JM, Kobsa A, Mattern F, Mitchell JC, Naor M, 
Nierstrasz O, Pandu Rangan C, Steffen B, Terzopoulos D, Tygar 
D, Weikum G, Stoyanov D, Collins DL, Sakuma I, Abolmae-
sumi P, Jannin P (eds) Information processing in computer-
assisted interventions, vol 8498. Springer International Publish-
ing, Cham, pp 148–157

	56.	 Stauder R, Ostler D, Vogel T, Wilhelm D, Koller S, Kranzfelder 
M, Navab N (2017) Surgical data processing for smart intraopera-
tive assistance systems. Innov Surg Sci 2:145–152. https://​doi.​org/​
10.​1515/​iss-​2017-​0035

	57.	 Stauder R, Kayis E, Navab N (2017) Learning-based surgical 
workflow detection from intra-operative signals

	58.	 Thiemjarus S, James A, Yang G-Z (2012) An eye–hand data 
fusion framework for pervasive sensing of surgical activities. 
Pattern Recogn 45:2855–2867. https://​doi.​org/​10.​1016/j.​patcog.​
2012.​01.​008

	59.	 Twinanda AP, Alkan EO, Gangi A, de Mathelin M, Padoy N 
(2015) Data-driven spatio-temporal RGBD feature encoding for 
action recognition in operating rooms. Int J Comput Assist Radiol 
Surg 10:737–747. https://​doi.​org/​10.​1007/​s11548-​015-​1186-1

	60.	 Twinanda AP, Mutter D, Marescaux J, Mathelin M de, Padoy N 
(2016) Single- and multi-task architectures for surgical workflow 
challenge at M2CAI 2016

	61.	 Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin 
M, Padoy N (2017) EndoNet: a deep architecture for recognition 
tasks on laparoscopic videos. IEEE Trans Med Imaging 36:86–97. 
https://​doi.​org/​10.​1109/​TMI.​2016.​25939​57

	62.	 Volkov M, Hashimoto DA, Rosman G, Meireles OR, Rus D 
(2017) Machine learning and coresets for automated real-time 
video segmentation of laparoscopic and robot-assisted surgery. In: 
2017 IEEE International Conference on Robotics and Automation 
(ICRA). IEEE, pp 754–759

	63.	 Weede O, Dittrich F, Worn H, Jensen B, Knoll A, Wilhelm D, 
Kranzfelder M, Schneider A, Feussner H (2012) Workflow analy-
sis and surgical phase recognition in minimally invasive surgery. 
In: 2012 IEEE International Conference on Robotics and Biomi-
metics (ROBIO). IEEE, 1080–1074

	64.	 Yengera G, Mutter D, Marescaux J, Padoy N (2018) Less is more: 
surgical phase recognition with less annotations through self-
supervised pre-training of CNN-LSTM networks

	65.	 Yi F, Jiang T (2019) Hard frame detection and online mapping for 
surgical phase recognition. In: Shen D, Liu T, Peters TM, Staib 
LH, Essert C, Zhou S, Yap P-T, Khan A (eds) Medical image 
computing and computer assisted intervention – MICCAI 2019, 
vol 11768. Springer International Publishing, Cham, pp 449–457

	66.	 Yu T, Mutter D, Marescaux J, Padoy N (2018) Learning from a 
tiny dataset of manual annotations: a teacher/student approach for 
surgical phase recognition

	67.	 Yu F, Silva Croso G, Kim TS, Song Z, Parker F, Hager GD, 
Reiter A, Vedula SS, Ali H, Sikder S (2019) Assessment of auto-
mated identification of phases in videos of cataract surgery using 
machine learning and deep learning techniques. JAMA Netw 
Open 2:e191860. https://​doi.​org/​10.​1001/​jaman​etwor​kopen.​2019.​
1860

	68.	 Zia A, Guo L, Zhou L, Essa I, Jarc A (2019) Novel evaluation of 
surgical activity recognition models using task-based efficiency 
metrics. Int J Comput Assist Radiol Surg 14:2155–2163. https://​
doi.​org/​10.​1007/​s11548-​019-​02025-w

938 Medical & Biological Engineering & Computing (2022) 60:921–939

https://doi.org/10.1109/TBME.2011.2181168
https://doi.org/10.1109/TBME.2011.2181168
https://doi.org/10.1007/s11548-012-0685-6
https://doi.org/10.1007/s11548-012-0685-6
https://doi.org/10.1145/2994551.2994569
https://doi.org/10.1145/2994551.2994569
https://doi.org/10.1109/UEMCON.2016.7777912
https://doi.org/10.1109/UEMCON.2016.7777912
https://doi.org/10.3109/10929088.2012.762944
https://doi.org/10.3109/10929088.2012.762944
https://doi.org/10.1007/s11548-016-1409-0
https://doi.org/10.1007/s11548-016-1409-0
https://doi.org/10.1007/s00464-018-6417-4
https://doi.org/10.1007/s00464-018-6417-4
https://doi.org/10.3109/13645706.2013.878363
https://doi.org/10.1016/j.artmed.2017.10.004
https://doi.org/10.1007/s11548-018-1882-8
https://doi.org/10.1080/13645706.2019.1584116
https://doi.org/10.1016/j.media.2010.10.001
https://doi.org/10.1016/j.media.2010.10.001
https://doi.org/10.1007/s11517-017-1670-6
https://doi.org/10.1007/s11517-017-1670-6
https://doi.org/10.1016/j.media.2014.02.007
https://doi.org/10.1109/TMI.2014.2340473
https://doi.org/10.1109/TMI.2014.2366726
https://doi.org/10.1515/iss-2017-0035
https://doi.org/10.1515/iss-2017-0035
https://doi.org/10.1016/j.patcog.2012.01.008
https://doi.org/10.1016/j.patcog.2012.01.008
https://doi.org/10.1007/s11548-015-1186-1
https://doi.org/10.1109/TMI.2016.2593957
https://doi.org/10.1001/jamanetworkopen.2019.1860
https://doi.org/10.1001/jamanetworkopen.2019.1860
https://doi.org/10.1007/s11548-019-02025-w
https://doi.org/10.1007/s11548-019-02025-w


1 3

	69.	 Zisimopoulos O, Flouty E, Luengo I, Giataganas P, Nehme J, 
Chow A, Stoyanov D (2018) Deep phase: surgical phase recogni-
tion in CAT​ARA​CTS Videos

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Denise Junger, M.Sc.  has studied Medical Technical Informatics 
and subsequently Human-Centered Computing, focusing on Medical 
Informatics, at Reutlingen University. After her Master’s degree, which 
she received in 2017, she worked in the Research Group “Computer 
Assisted Medicine” (CaMed) at Reutlingen University, initially in the 
Research Project bwHealthApp in the field of personalized medicine. 
Currently, Ms. Junger is working in the Research Project OR-Pad for 
provision of clinical relevant data during procedure, focusing on situ-
ation awareness and recognition. During her studies, she already dealt 
with the areas of computer-assisted surgery and perioperative process 
support within project work.

Sina M. Frommer, M.Sc.  has studied Media and Communication 
Informatics and subsequently Human-Centered Computing at Reutlin-
gen University. After her Master’s degree, which she received in 2018, 
she worked in the Research Group “Computer Assisted Medicine” 
(CaMed) at Reutlingen University, in the Research Project OR-Pad 
for provision of clinical relevant data during procedure, focusing on 
human-computer interaction and software architecture.

Prof. Dr.‑Ing. Oliver Burgert  graduated 2005 at the University of 
Karlsruhe on volume based surgical simulation and planning. From 
2005 to 2011, he was scientific director of a research group at the 
Innovation Centre Computer Assisted Surgery (ICCAS). He headed 
the development of a modular model-based system architecture for 
the operating room based on open standards, developed methods for 
surgical workflow analysis, and is active in several DICOM working 
groups. In 2007, he co-founded the SWAN — Scientific Workflow 
Analysis GmbH. Since Oct. 2011, he is Professor at Reutlingen Uni-
versity for Medical Informatics. Currently, he is Dean of the Faculty 
for Informatics and head of the Research Group “Computer Assisted 
Medicine“ (CaMed).

939Medical & Biological Engineering & Computing (2022) 60:921–939


	State-of-the-art of situation recognition systems for intraoperative procedures
	Abstract
	1 Introduction
	2 Methods
	3 Results
	3.1 Sensor data (source)
	3.2 Application area
	3.3 Evaluation (data set)
	3.4 Usage
	3.5 Accuracy
	3.6 Method
	3.7 Approaches with differing aspects

	4 Discussion
	4.1 Sensor data (source)
	4.2 Application area
	4.3 Evaluation (data set)
	4.4 Usage
	4.5 Accuracy
	4.6 Method
	4.7 Best approaches
	4.8 Differing approaches
	4.9 Concluding remarks
	4.10 Applicability and transferability
	4.10.1 Papers that hypothesize transferability
	4.10.2 Papers that demonstrated transferability
	4.10.3 Concluding remarks


	5 Conclusions
	References


