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Abstract
Advances in EEG filtering algorithms enable analysis of EEG recorded duringmotor tasks. Althoughmethods such as artifact subspace
reconstruction (ASR) can remove transient artifacts automatically, there is virtually no knowledge about how the vigor of bodily
movements affects ASRs performance and optimal cut-off parameter selection process. We compared the ratios of removed and
reconstructed EEG recorded during a cognitive task, single-leg stance, and fast walking using ASR with 10 cut-off parameters versus
visual inspection. Furthermore, we used the repeatability and dipolarity of independent components to assess their quality and an
automatic classification tool to assess the number of brain-related independent components. The cut-off parameter equivalent to the
ratio of EEG removed in manual cleaning was strictest for the walking task. The quality index of independent components, calculated
using RELICA, reached a maximum plateau for cut-off parameters of 10 and higher across all tasks while dipolarity was largely
unaffected. The number of independent components within each task remained constant, regardless of the cut-off parameter used.
Surprisingly, ASR performed better inmotor tasks comparedwith non-movement tasks. The quality index seemed to bemore sensitive
to changes induced by ASR compared to dipolarity. There was no benefit of using cut-off parameters less than 10.
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1 Introduction

Electroencephalogram (EEG) is one of the most usedmethods
to record activity of the brain in both clinical and applied
research (e.g. epilepsy and exergaming, e.g. Acharya et al.
[1] and Anders et al. [2]). Recent developments in both hard-
ware and software, such as active electrodes [3] and advanced
filter algorithms [4] make it possible to record usable EEG,
while participants perform tasks involving physical move-
ments or even in real-world environments. This offers neuro-
scientists a plethora of novel research designs, such as the
concurrent measurement of brain activity during the execution
of motor tasks, instead of having to rely on pre-post EEG

comparisons or minimal participant behavior, thereby en-
abling the development of more natural behavior models [5].

However, the analysis of brain activity measured
while participants perform motor tasks remains challeng-
ing due to the lower signal-to-noise ratio compared
with, e.g., resting state analyses. EEG recordings are
typically contaminated with non-brain related signals
such as eye blink artifacts, artifacts due to impedance
changes caused by a relative shift between the electrode
and the skull, and artifacts due to electrical activity
produced by facial and skeletal muscles. In general,
the likelihood of the occurrence of the latter two types
of artifacts increases with the vigor of the motor task.

A commonly applied strategy to isolate stereotypical noise
sources such as eye blinks or repetitive motion artifacts is the
use of independent component analysis (ICA) [6]. In ICA, an
inverse model is used to reveal the independent components
(ICs), that is, the sources of the cortical activity. ICs can then
be classified as functional, non-functional, or a mixture of
both. In order to create the inverse model used for the calcu-
lation of ICs, the EEG data needs to be cleaned, i.e., long-term
signal non-stationarities [7] and large transient and non-
repetitive artifacts [8] need to be removed.
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Traditionally, EEG experts with experience in data
cleaning remove transient artifacts and noise-contaminated
channels through visual inspection [2, 9]. A major disadvan-
tage of the current state-of-the-art manual artifact removal
process is the loss of data. If an artifact is present in one
channel, data from corresponding time series in all other chan-
nels has to be removed as well. This problem has become even
more pronounced with the advent of high-density EEG sys-
tems (> 128 channels), since the likelihood for electrode shifts
which cause the rejection of data increases with the number of
EEG channels. Furthermore, manual cleaning of EEG data
using visual inspection is not fully reproducible and time-
consuming and requires extensive experience.

The recent advances in EEG processing algorithms [7] pa-
ve the way towards an automated and standardized method to
remove artifacts. From a practical perspective, automatic pre-
processing would speed up data processing as it would serve
as a replacement, either in full or in part, of time-intensive
manual artifact removal. This advantage becomes even more
pronounced when EEG datasets are of long duration or are
recorded using high-density EEG systems.

An important step towards automated and reproducible
EEG preprocessing in research is the development of recent
filter algorithms that originated in the field of brain-computer-
interfaces (BCIs). One promising example is the artifact sub-
space reconstruction (ASR) [10]. ASR creates a robust covari-
ance matrix based on the cleanest parts of an EEG recording.
Subsequently, principal component analyses are performed in
a sliding window of 1 second. A window is rejected if the
standard deviation of a principal component exceeds the stan-
dard deviation of the automatically chosen cleanest part of the
EEG recording multiplied by a tunable cut-off parameter (k).
A rejected window is then reconstructed using the covariance
matrix. A more detailed description of ASR can be found in
[11–14].

The degree of reconstruction in ASR is influenced by the
selected cut-off parameter k. However, selection of appropri-
ate cut-off parameters is challenging as the literature back-
ground is sparse and studies typically underreport cut-off pa-
rameters used in their processing pipelines. A rare exception
are the studies of Chang et al. [11, 14] on EEG data recorded
while participants performed a simulated driving task. They
found that cut-off parameters between 10 and 100 or 20–30,
respectively, and delivered the best results in terms of eye
artifact removal and conservation of brain activity. No studies
are currently available in which participants performed more
vigorous motor tasks during EEG recordings. It is therefore
not known whether ASR can be used in such tasks and how
they affect which ASR cut-off parameters are appropriate.

Following the identified gaps in our knowledge, the aim of
the current study was to investigate how movement vigor and
choice of cut-off parameters in ASR affect properties of the
EEG data. To this end, we (1) assessed the ratio of EEG data

removed or reconstructed in sensor-space for three tasks that
required different amounts and vigor of movement when
using an automated preprocessing pipeline including ASR
using 10 different cut-off parameters, compared to manually
cleaned EEG data using visual inspection, (2) evaluated the
reproducibility and dipolarity of the resulting ICs, and (3)
assessed whether either of these qualities were affected by
the cut-off parameter or the task. Furthermore, we assessed
the number and quality of functional ICs depending on the
task and the cut-off parameter used.

2 Methods

2.1 Sample population

To assess the effect of task on the artifact removal perfor-
mance of ASR, we used recorded EEG instead of simulated
EEG in order to test the algorithms under conditions as close
to reality as possible. A convenience sample of five healthy
young participants (all female; age: 23.2 ± 2.58 years, height:
172.4 ± 3.13 cm, weight: 63.8 ± 4.38 kg) was recruited.

All procedures performed in this study were in accordance
with the ethical standards of the institutional review board of
the University of Paderborn and with the 1964 Helsinki dec-
laration and its later amendments. All participants provided
informed consent prior to data collection.

2.2 Procedure

We recorded continuous EEG data during three tasks that
required different amounts of movement. All participants per-
formed the tasks in the same order.

The first task was a seated working memory n-back task,
with 10 sets of 30 stimuli of 2 s each. The participants looked
at a computer display presenting a 3 by 3 dot matrix. If the
current pattern was the same as the pattern three pictures be-
fore, they had to press a button with their right thumb. If not,
the participant had to press a button with their left thumb.

The second task consisted of 20 alternating single-leg
stance phases held for 30 s each, with a break of 10 s between
consecutive stance phases.

The third task consisted of two repetitions of a fast forward
and backward walking task of 5.5 min each, using the Witty
SEM (Microgate Slr, Bolzano, Italy). Five LED lamps were
mounted on tripods and placed at 0°, ± 22.5°, and ± 45° from
the participant’s point of view at a distance of 2.5 m. When
one of the five LED lamps was switched on, the participants
were asked to walk swiftly, not run, towards the lit LED lamp
and to cover the light using their right hand before walking
backwards to their starting position. This process was repeated
until the end of the task. Both repetitions were combined into
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one EEG recording and treated as a single recording in further
analyses.

2.3 Data acquisition

Brain activity was recorded at 500 Hz using an EEG system
consisting of a 64 channel Ag/AgCl active wet electrode elastic
cap (Easycap, Herrsching, Germany) in an extended 10–20 elec-
trode layout [15] and a wireless amplifier (Live Amp, Brain
Products GmbH, Gilching, Germany) placed in a backpack to
relief stress from the cables. The impedance was kept below
25 kΩ, in accordance with the manufacturer’s recommendations.

In order to ensure comparability of dipole locations be-
tween conditions, the electrode cap was not moved or manip-
ulated between conditions. Furthermore, no gel was reapplied
to the electrodes after participant preparation.

2.4 Preprocessing

Data processing was performed in EEGLAB 14.1.1b [16], a
toolbox for Matlab (Mathworks Inc., Nantick, MA).

In order to remove sinusoidal noise at 50 Hz and their
harmonics, the CleanLine plug-in [7] was used. A band-pass
filter with limiting frequencies of 3 and 30Hz [17] was used to
remove disturbances caused by both direct current drift and
higher frequency disturbances such as electrical activity
caused by the innervation of skeletal muscles.

After the removal of line noise and band limitation, all EEG
data was copied to obtain 11 identical datasets, which were
subsequently processed separately.

In one dataset, after re-referencing to average and
downsampling to 250 Hz, an EEG expert removed noise con-
taminated channels and transient, non-stereotypical artifacts
using visual inspection.

The remaining 10 datasets were preprocessed using the arti-
fact subspace reconstruction [10] implemented in the
clean_rawdata plug-in [12] separately for each task and partici-
pant. Channels were removed when poorly correlated (r< 0.85)
to neighboring channels or when non-transient noise exceeded 4
SDs. ASR then reconstructed time windows contaminated with
transient artifacts that exceeded k SDs based on the automatically
chosen reference data or removed timewindowswhenmore than
25% of the remaining channels exceeded the threshold cut-off
parameter. The cut-off parameter k was set to 1, 2, 5, 10, 20, 50,
100, 200, 500, and 1000, respectively. The cut-off parameters
were chosen to cover the same range as in [11, 14]. Due to the
expected computation time, we opted to use cut-off parameters
that would result in equal intervals between values on a logarith-
mic scale. The available random-access memory for ASR was
limited to 8GB on a 16GB computer to ensure equal availability
for all iterations of automatic preprocessing. The 10 automatical-
ly processed datasets were subsequently re-referenced to average
and downsampled to 250 Hz.

Subsequently, the following processing steps were applied
to all 11 datasets in preparation for source space analysis:

Data of removed channels was interpolated using the
EEGLAB function pop_interp in order to avoid bias towards
a hemisphere with more remaining channels. This does not
change the number of resulting ICs, as the rank of the matrix
remains unchanged.

Spatiotemporal sources of brain activity were calculated by
using an adaptive mixture independent component analysis
(AMICA) [18, 19]. The locations of the spatiotemporal
sources were determined by the dipfit plug-in for EEGLAB
[20] based on a boundary element model [21, 22]. The
fitTwoDipoles plug-in [23] was used to account for bilaterally
symmetrical ICs.

ICs were classified into seven categories, namely “brain,”
“muscle,” “eye,” “heart,” “line noise,” “channel noise,” and
“other,” using the IClabel plug-in [24]. We chose this classi-
fication algorithm based on classification performance and
computation time.

2.5 Quality assessment of the results in source-space

In order to assess reproducibility of ICs across participants, we
used the EEGLAB plug-in RELICA [25]. In RELICA,
BeamICA [26], a less computationally expensive ICA com-
pared with AMICA, allows for bootstrap statistics, which pro-
vides a quality index for all discovered ICs. BeamICA was set
to use “point-by-point” mode with 50 iterations. The quality
index is a measure for the dispersion of resulting ICs and can
thereby be used to assess the reproducibility of ICs in terms of
their localization. Subsequently, source localization as de-
scribed above was applied to calculate the dipolarity of the
ICs, as brain-related ICs are dipolar [8]. Dipolarity is a mea-
sure for how well the estimated dipole explains the original
data. It describes the percentage to which a scalp map of an
independent component can be explained by the scalp projec-
tion of a single equivalent dipole [4, 27]. The resulting
dipolarity and quality index coordinates were used to classify
the ICs into four categories (I, II, III, and the “forbidden re-
gion”), as described in [25]. ICs in category I are highly dipo-
lar and reproducible (dipolarity > 0.85 and a quality index >
0.95). ICs in category II are a combination of brain signal and
artifacts or a mixture of multiple cortical processes (dipolarity
≤ 0.85 and quality index > 0.95). ICs in category III are an
inseparable mixture of artifacts and brain signals (quality in-
dex ≤ 0.95). ICs in the last category, the so-called “forbidden
region,” have high dipolarity but low-quality index (dipolarity
> 0.75 and quality index of < 0.45).

2.6 Statistical analyses

Because the data was non-normally distributed, Kruskal-
Wallis tests by ranks were used in R [28] to assess the effects
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of task and cut-off parameter on the quality indices and
dipolarity, the number of ICs classified as brain related and
the certainty of the classification as brain-related ICs.
Wilcoxon’s signed-rank tests were used as follow-up in case
of significance. The resulting p-values after the Wilcoxon’s
signed-rank tests were corrected for multiple comparisons
using Benjamini and Hochberg’s [29] method. The level for
significance was set to p < 0.05.

3 Results

Below, we first present the ratio of data removed and recon-
structed for each task using ASR compared with the amount
of data removed using visual inspection. Secondly, the
dipolarity and reproducibility measured using the quality in-
dex calculated by RELICA for each task and cut-off parameter
is presented. Thirdly, we present the classification results of
ICs using IClabel.

3.1 Ratio of data removed and reconstructed using
ASR

As to be expected, lower cut-off parameters led to higher
removal and reconstruction ratios. The walking task showed
the highest overall removal ratio after visual inspection com-
pared with single-leg stance task and the working memory
task.

Figure 1 shows the ratio of removed and reconstructed
EEG data in sensor-space for ASR cut-off parameters ranging
from 1 to 1000 for each of the three tasks. Each line represents
one participant performing one task. The dots indicate the
intersection of each line with the respective ratio of manually
removed data after visual inspection by an EEG expert. Linear
interpolation was used to estimate the ratio of removed and
reconstructed data in between calculated data points.

All curves showed a similar shape, except the curve of one
participant performing the n-back task (dashed line). This was
likely caused by a sudden onset of excessive noise in channel
CP4 after 311 s of 600 s, resulting in larger ratios of data
reconstructed. Excluding this task for this participant, the
resulting ranges of cut-off parameters across participants were
7–14 for the walking task, 5–40 for the single-leg stance task,
and 10–45 for the working memory n-back task.

The intersection of the ratio of manually removed data after
visual inspection and the ratio curve of automatically
preprocessed data using ASR for the single-leg stance task
was at a cut-off parameter equal to 5 for one participant. For
the other participants, the intersections in this task were locat-
ed in the range between 20 and 40.

As indicated, ASR removes and reconstructs EEG data
based on the input parameters. As can be seen in Fig. 1, no
EEG data was reconstructed when using cut-off parameters

larger than 100. The flat lines parallel to the x-axis for the
range above 100 show the amount of data removed without
being reconstructed by ASR. Based on this, we present results
for cut-off parameters between 5 and 100 only in Figs. 2 and 3,
in order to enhance readability.

3.2 Dipolarity and quality of independent
components

The quality indices calculated for each task and across all cut-
off parameters using the RELICA plug-in for ICs with a
dipolarity of > 0.85 increased until it reached a plateau at a
cut-off parameter of 10 (solid lines in Fig.2). The total number
of all ICs and the remaining ICs after removing ICs with a
dipolarity of < 0.85 can be seen in Fig. 3. Quality index curves
for all tasks showed roughly the same general behavior. The
standard errors were comparable in size across all cut-off pa-
rameters and tasks. The highest quality indices were recorded
for the walking task, followed by the n-back task, and the
single-leg stance task. Dipolarity, on the other hand, only
showed a slight increase towards higher cut-off parameters
(dashed lines in Fig.2). The dipolarity and quality indices of
the subset of ICs with a dipolarity of 0.85 or higher and
preprocessed using ASR with cut-off parameters of one and
two were significantly lower than the remaining ICs
preprocessed with cut-off parameters of > 2 (all p’s < 0.001,
except for k = 2 versus 5 and 10: p < 0.01 and p < 0.005, re-
spectively). Furthermore, the dipolarity of ICs discovered in the
fast-walking task was significantly lower (p < 0.05) compared
with the ICs in both other tasks. Furthermore, the quality indi-
ces of ICs discovered in EEG recorded during the walking task
were significantly higher than the quality indices of ICs of the
remaining tasks (both p’s < 0.001, see Fig. 2). The resulting
quality indices for ICs based on data processed using cut-off
parameters of one or two were significantly lower compared
with IC-based preprocessed using the remaining cut-off param-
eters (all p’s < 0.001, except for k = 2 versus 5: p < 0.005).

The majority of ICs were sorted in category III [25], indi-
cating that there is inseparable noise mixed into the ICs. Only a
few ICs were sorted as category I (both quality index and
dipolarity above retention threshold) or category II (either arti-
fact or a mix of two or more processes). We found 21 ICs in the
“forbidden region,” where dipolarity is larger than 0.75 but the
quality index below 0.45. As BeamICA did not deliver consis-
tent results in any of the tasks for the manually cleaned data,
resulting in quality indices of 0, these are not included in Fig. 2.

3.3 Classification of independent components

Compared with manual cleaning, using ASR to clean the data
resulted in more ICs due to fewer removed channels, as can be
seen in Fig. 4 (black dots).
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The automatic classification of ICs into functional or
brain-related ICs and non-functional ICs revealed no
difference in the number of brain-related ICs for either
cleaning method (red dots). As expected, the number of
ICs classified as brain activity by the IClabel plug-in
was significantly lower in the walking task compared
with the other conditions (both p’s < 0.001). There was
no clear trend whether the cut-off parameter influenced
the number of discovered brain-related ICs in this
dataset, which was confirmed by the non-significant re-
sult of the Kruskal-Wallis test (χ2 = 1.7163, df = 10, p =
0.9981).

No ICs were classified as line noise since the CleanLine
plug-in was used to remove line noise, as well as a bandpass
filter with an upper edge frequency of 30 Hz.

IClabel classified more ICs as “other noise” when cut-off
parameters of k = 1, 2, and 5 where used comparedwith higher
ASR cut-off parameters or manual cleaning. This result seems
to be due to fewer ICs being classified as “muscle” (orange
dots). The number of ICs classified as “eye”-related (light
green) seems to be largely unaffected by the cut-off parameter
and cleaning method.

Furthermore, the certainty of the classification is based on
the mean probability value that can be interpreted as a measure
of classifier confidence in the discrete classification as brain-

related IC [24, 30] seems to be unaffected by both the method
of cleaning used and the cut-off parameter used in automatic
cleaning (red crosses).

However, the certainty of the classification as brain-related
IC was affected by the type of task, and significantly lower in
the walking task than in the other two tasks (both p’s < 0.001).
Furthermore, the classification certainty of brain-related ICs in
the n-back task was significantly lower compared with the
single-leg stance (p < 0.05).

4 Discussion

The present study investigated the effect of ASR cut-off pa-
rameters on characteristics of EEG data recorded under three
different tasks (n-back task, single-leg stance, and short bursts
of fast walking). The effect of task and cut-off parameter was
assessed using (1) the ratio of data removed or reconstructed
using ASR in sensor-space, (2) the dipolarity and reproduc-
ibility of ICs as assessed by RELICA, and (3) the classifica-
tion of ICs using IClabel. This knowledge is needed, particu-
larly when motor tasks are employed with higher likelihood
for causing movement artifacts such as in postural control or
walking tasks.
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Fig. 1 Mean ratio and range of removed and recovered data using ASR
for cut-off parameters (k) between 1 and 1000 for each of the three tasks.
The dots indicate the intersection of the ratio of removed data after
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ASR, as a preprocessing step before ICA, delivered the best
results in terms of reproducibility and dipolarity in EEG re-
corded during bursts of fast walking compared with EEG re-
corded during a cognitive task and single-leg stance. The
number and certainty of the classification as brain-related
ICs were unaffected by the choice of cut-off parameter across
all tasks. The cut-off parameters resulting in the same ratio of
data removed and reconstructed as in manual cleaning using
visual inspection revealed a lower range of equivalent cut-off
parameters in the walking task compared with the cognitive
and single-leg stance task.

4.1 Ratio of data removed and reconstructed using
ASR

Tasks more likely to cause movement artifacts seem to require
lower cut-off parameters for ASR, when compared with the
ratio of removed data during manual cleaning, as shown in
Fig. 1. The ranges of cut-off parameters determined by the
comparison to manually cleaned data for the single-leg stance
task and the n-back task (Fig. 1) show rough agreement with
recent literature. Mullen et al. [12] used cut-off parameters

between 5 and 7. However, their application of ASR was in a
BCI system using dry electrodes. Chang et al. [11] recom-
mended to use cut-off parameters between 10 and 100 which
was later adjusted to cut-off parameters between 20 and 30
[14]. These results were based on EEG recorded while
performing a simulated driving task. Our results show that a
human rater would remove a similar percentage of EEG as
ASR with previously recommended cut-off parameters in the
single-leg stance task and the n-back task. The range of cut-off
parameters in the walking task was lower than the recommen-
dations in recent literature. A possible explanation could be
differences in the level of movement artifact contamination
compared with the EEG used in [11, 14]. The walking task in
our study might show higher levels of contamination as walk-
ing is a more vigorous task compared to simulated driving.

4.2 Dipolarity and reproducibility of independent
components

Surprisingly, significantly higher quality indices were ob-
served for ICs in the walking task. This indicates the best
reproducibility of ICs using EEG from this task. This finding
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was not anticipated since the walking task was the most con-
taminated with movement artifacts. The single-leg stance task
showed the lowest quality indices, despite being the task with
presumably the second lowest likelihood for causing artifacts.
A possible explanation for this result might be that ASR partly
removed brain-related activity in addition to removing noise
and artifacts, since alpha waves were the most prominent fea-
ture in the EEG from this task.

The high plateau for all quality indices for cut-off parame-
ters higher than 10 indicates that the quality of ICs is nega-
tively affected by more aggressive cut-off parameters. This
supports the findings of Chang et al. [14] that cut-off param-
eters of less than 20 are not advisable and resulted in signifi-
cantly lower quality indices and dipolarity across tasks.

Interestingly, dipolarity was not affected as severely as the
quality index by the choice of cut-off parameters. A conse-
quence of this is that dipolarity alone might not be the optimal
tool to determine whether an IC is brain-related and of high
quality or not. Although computationally expensive, RELICA
can potentially serve as a more dependable assessment tool for
quality assurance of source-space results.

The overall quality of ICs was lower than those of
Artoni et al. [25]. Our results are likely related to the
amount of movement and the thereby induced artifacts.
However, the cognitive task had no, or a very limited
amount, movement. The reason for the difference in the
quality index may be related to Artoni et al. using
event-related potentials in their experiment whereas we
used continuous EEG recordings.

Contrary to the findings of Artoni et al. [25], we found ICs
in the “forbidden region.” They hypothesized that highly di-
polar ICs cannot have extremely low-quality indices. Most
ICs in the “forbidden region” (17 out of 21) were calculated
using EEG preprocessed with ASRwith a cut-off parameter of
10 or less. Twelve of those ICs used a cut-off parameter of 1.
This indicates that low cut-off parameters may reduce the
quality indices but do not affect the dipolarity of ICs. The
single-leg stance task was the most prominent task in the “for-
bidden region,” with 15 of the 21 ICs. It seems possible that
ASR, when used with cut-off parameters below the recom-
mended range (k < 20) [14], can have a negative effect on
the reproducibility of ICs. This assumption is supported by

Fig. 3 The number of ICs for
each task identified by BeamICA.
Teal dots represent all ICs, and
red dots represent ICs with a
dipolarity of > 0.85. The vertical
bars indicate the standard error of
the measurements
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the significant difference between ICs preprocessed with cut-
off parameters of one or two compared with the remaining
cut-off parameters used.

Unfortunately, it was not possible to calculate quality indi-
ces of ICs that were based on manually cleaned data using
RELICA. To further investigate whether this was related to
eye blinks or remaining movement artifacts, we used the
RELICA plug-in on manually cleaned and artifact-free seated,
open-eyes baseline data from a previous study [6]. Despite
this dataset not containing any movement contamination but
only artifacts due to eyeblinks, we arrived at similar results. It
was possible to obtain plausible resulting values from
RELICA after removing the eyeblink artifacts from either
EEG data set using ASR, ruling out the possibility that manual
cleaning with resulting boundaries between the remaining
EEG caused the issue. Although we cannot answer for sure
what may have caused RELICA to perform unsatisfactory in
manually cleaned EEG data, it seems reasonable to assume
that the prominent eyeblink artifacts in both cases had an
important role in its inability to deliver quality indices.

4.3 Classification of independent components

The number of functional ICs classified by IClabel in each task
remained constant regardless of the cut-off parameter used. This
indicates that ASR does not lead to an artificial increase of brain-
related ICs. Significantly more ICs were classified as functional in
the n-back task and the single-leg stance task compared to the
walking task. This might be due to the level of movement artifact
contamination that remained in the EEG after cleaning. For the
walking task,more ICswere needed tomodel the remaining noise,
hence leaving fewer ICs available for functional processes.

The classification of noise sources was influenced by cut-off
parameters less than 10 across all three tasks. Hence, it can be
assumed that ASR, when used with cut-off values below 10,
alters the noise patterns in the EEG, so that they cannot be dis-
tinguished by the automatic IC classification tool IClabel. This
led to more ICs being classified as “other noise” instead of being
distinguished into specific classes of noise. This effect was most
notable in the class of “muscle” ICs. Therefore, it seems reason-
able to assume that strong high-frequency broadband activity
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with cut-off parameters ranging from 1 to 1000 and manually cleaned
EEG data. Spatiotemporal features were calculated using an adaptive
mixture-independent component analysis. Total number of independent
components (black) and independent components classified into seven

categories using IClabel (red, “brain”; blue, “other noise”; other colors,
“muscle,” “eye,” “heart,” “line noise,” and “channel noise”). The bars
indicate the standard error. The crosses indicate the certainty of the clas-
sification of independent components as brain-related
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used to classify ICs as “muscle”-related was affected by the
reconstruction of the signal by ASR [24]. The number of func-
tional ICs remained constant, suggesting that ASR preserves
functional ICs across cut-off parameters. Further research is
needed to further support this interpretation.

4.4 Next steps

Manual cleaning is likely to remove EEG linked to high in-
tensity movements, whereas ASR reconstructs them. A poten-
tial implication of this is a bias either due to systematic remov-
al of EEG or due to the reconstruction of EEG. Especially in
mobile brain/body imaging applications [5], EEG recorded
during movements is of high interest and an important topic
for future research. There are still many unanswered questions
such as which parameters can be used to automate the selec-
tion of cut-off parameters used in ASR and whether there is a
bias introduced by the reconstruction of data.

Our results based on two motor tasks and one cognitive task
indicate that it may not be possible to provide general recom-
mendations for the choice of ASR cut-off parameters across
different types of tasks performed while measuring brain activ-
ity. However, detecting the plateau in quality indices calculated
using RELICA might be a good candidate for the parameteri-
zation of the selection of ASR cut-off parameters. Despite being
computationally expensive, a data-driven approach for the se-
lection process of cut-off parameters would be beneficial for the
development of automatic processing pipelines.

4.5 Limitations

Using real-world data for analyzing filtering algorithms comes
with the caveat that there is no gold standard for EEG prepro-
cessing. However, it is important to compare the results of a
common preprocessing practicewith newly developed automatic
preprocessing algorithms as in the current study, in order to get a
better understanding of the behavior of the latter. In addition,
quantifiable quality features of the EEG were used to assess the
effect of the cut-off parameter used in ASR. A further limitation
is that the list of tasks included in this study is not exhaustive and
we only used one particular type of EEG system. Thus, the
results may vary for other motor tasks with different composi-
tions of noise or different EEG amplifiers and electrodes.
Nevertheless, this is the first study to investigate the effect of
movement tasks, showing differences in reproducibility and
dipolarity depending on the cut-off parameter used. This knowl-
edge is important for, and may inspire, future research.

5 Conclusion

Artifact subspace reconstruction appears a valuable tool for the
automatic cleaning of EEG data recorded while performing

motor tasks when used as a preprocessing step for an indepen-
dent component analysis. We showed that the dipolarity and the
reproducibility of independent components reached a combined
maximum when cut-off parameters of 10 or higher were used in
EEG data recorded from real participants. The number of func-
tional ICs classified by an automatic tool remained constant,
regardless of the cut-off parameter used. However, in EEG with
low levels of movement induced artifacts, we observed lower
combined reproducibility and dipolarity compared with more
contaminated data, indicating that ASR might be less suitable
for non-contaminated EEG datasets. Furthermore, ASR with
cut-off parameters lower than 10 produced ICs with high
dipolarity and low reproducibility.
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