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Abstract
In this survey, we review the field of human shoulder functional kinematic representations. The central question of this review
is to evaluate whether the current approaches in shoulder kinematics can meet the high-reliability computational challenge.
This challenge is posed by applications such as robot-assisted rehabilitation. Currently, the role of kinematic representations
in such applications has been mostly overlooked. Therefore, we have systematically searched and summarised the existing
literature on shoulder kinematics. The shoulder is an important functional joint, and its large range of motion (ROM) poses
several mathematical and practical challenges. Frequently, in kinematic analysis, the role of the shoulder articulation is
approximated to a ball-and-socket joint. Following the high-reliability computational challenge, our review challenges this
inappropriate use of reductionism. Therefore, we propose that this challenge could be met by kinematic representations, that
are redundant, that use an active interpretation and that emphasise on functional understanding.

Keywords Kinematics · Robot-assisted rehabilitation · Human movement understanding · Human-robot interaction ·
Shoulder

1 Introduction

Human movement is in the spotlight as researchers attempt
to design and successfully interface machines with humans.
Importantly, the success of these devices relies on the inter-
action design. Equivalently, the reliable parameterisation of
human movement is important in generating computer mod-
els in biomechanics. Although human movement kinematics
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is of central importance in both these fields, the underlying
level of abstraction, detail and purpose are diverse. Here,
the fundamental difference lies in the underlying mech-
anisms. Robot motion can often be modelled repeatably
using simplified laws of physics, such as pure rotational
joints. In contrast, such laws cannot completely and reliably
describe biological motion [1]. Therefore, this review aims
not only to classify and summarise the existing literature but
also to draw attention towards several knowledge gaps in
movement kinematics in general and shoulder kinematics in
particular.

Need for a review Reviewing shoulder kinematics is
challenging due to the functional complexity [2], diversity
of objectives, diversity in kinematic representations and
protocols used in the literature [3–5]. Traditionally, in
biomechanics, 3D motion analysis has been used in
the qualitative and quantitative evaluation of biological
health [6]. In human motor control, kinematics is used
to understand the underlying neural policy [3]. Although
human movement has been studied in biomechanics and
motor control for several decades, it is only recently that
human movement has emerged as a mainstream research
topic in robotics [7, 8]. Current trends in robotics research
are moving towards the concept of human-centric models.
Such models are based on a functional understanding of
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humans and have the potential to act as templates for
developing technology that can improve the end goals of a
rehabilitation intervention [9].

Despite this need, there is a lack of up-to-date literature
on functional shoulder kinematics. To the best of our
knowledge, the only available review on this topic was
published by Maurel and Thalmann [10], in which the
main focus was on dynamic simulation. Note that in such
applications, the interest is in describing and reproducing
observed movements. Such an analysis is not of immediate
help in human-robot interaction (HRI).

Role of movement kinematics in HRI In HRI, a key
bottleneck exists as to how the robot can understand the
movement cues from the human user [11]. Without this
essential knowledge, the robot cannot operate in synchrony
with the human, thus raising concerns of usability and safety
[11]. Estimating human intention from the brain signals or
muscles is computationally daunting. However, kinematics
has the potential to be the primary level of understanding
intention because the higher we climb the ladder of motor
hierarchies, the greater the level of abstraction of the
intention signals is [1]. However, even if kinematics can
be used as an implicit command, there is no agreement on
the mathematical framework that is most suitable for this
purpose [12–18].

Currently, the majority of HRI review papers cover only
the physical aspects [18–20]. In fact, it is the cognitive
interaction that in turn drives the physical HRI [21].
Mainly, in cognitive HRI (cHRI), such as in robot-assisted
rehabilitation, there is an active knowledge-based two-way
dialogue between the human user and the robot [22]. In such
an advanced HRI problem, kinematics is essential in the
steps of intention modelling, design, reasoning, planning,
execution and user evaluation [9, 21, 23–25].

In HRI, replicating 3D upper arm kinematics is a chal-
lenge [12, 13]. Understanding the principles of the human
upper limb poses a non-trivial computational problem; over-
all, there is a lack of reliable tools and evaluation metrics
for this purpose [3, 12, 14]. In recent years, there have
been strong criticisms against the validity of “the promise
of robot-assisted rehabilitation” (see [26]). Thus far, robot-
assisted rehabilitation has been able to demonstrate its
real benefits only at a kinematic level [27]. Despite these
promising results, many of the existing robotic solutions
oversimplify the upper limb kinematics [23].

Aims and scope In this review, we aim to summarise the
existing literature on functional shoulder kinematics. Beca-
use this topic is interdisciplinary, we attempt to integrate

the knowledge from several diverse research communities.
Importantly, in rehabilitation technology, it is expected that
the robotic solutions yield consistent results [28]. Therefore,
it is a pre-requisite that the computational framework which
drives the HRI be highly reliable [28]. In the future, we
hope that the findings of our review will be translated
into effective robot-assisted rehabilitative solutions like
exoskeletons. Primarily, this technology aims for functional
compensation or assistance [29, 30]. Therefore, we limit our
review to papers addressing functional shoulder kinematics.

To clarify, a “functional shoulder” is gauged by painless-
ness, mobility, a harmonious motion pattern between the
joints, and stability [31, 32]. In this review, function implies
that the emphasis is on the day-to-day use of the shoulder.
Although the focus is on functional kinematic representa-
tions, we briefly mention other existing literatures wherever
relevant.

Role of kinematic representations Kinematic representa-
tions can be thought of as mathematical structures that
model the movement of interest. Different kinematic rep-
resentations are helpful in extending and updating our
understanding of various underlying mechanisms of the
neuromuscular system [33]. Note that their choice is not
unique; rather, it is context- or application-specific [34, 35].

What is the high-reliability requirement in shoulder
kinematics? The answer can be divided possibly into
three parts. First, when using kinematic representations,
numerical singularities pose the problem of ambiguity,
which in turn might lead to ambiguity in the volitional
command that drives HRI. Such a situation must be avoided
at any cost. Therefore, a lack of numerical singularities is
paramount.

Second, when movement variability is used to understand
the underlying neural policy, computational reliability is
very important. A compromise in this regard can undermine
the conclusions of the study [36, 37]. Mainly, for the same
movement, a different choice of kinematic representations
can result in conflicting results [38]. This fact is often
overlooked in robotics. In robotics, interest has been limited
to finding a consistent and repeatable solution with no
element of causation or reasoning in mind [8, 39].

Third, the mathematical representation must faithfully
follow the physiological kinematics [37]. A violation of
this requirement results in a representational mismatch.
This error is usually small for joints with small range of
motion (ROM). However, because the shoulder is one of the
joints with the largest ROM, this error would be very high.
Therefore, we critically evaluate the existing literature in
light of this high-reliability computational challenge.
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Our review opens with a description of human shoul-
der anatomy and basic shoulder movements (see Section 2).
This description is followed by a section on the challenges
involved in shoulder kinematics (see Section 3 ). This is fol-
lowed by the review search strategy, outline, classification
and summary (see Section 5). This section is supplemented
by a discussion in Section 6. Finally, we present possi-
ble research directions that can meet the high-reliability
computational challenge (see Section 7).

2 Functional anatomy andmovements

A functional shoulder is a pre-requisite for good upper arm
functioning, as it places, operates and controls the fore-
arm [40]. Without the active and significant contribution of
the human shoulder, many daily living activities like hair
combing and reaching the back cannot be performed suc-
cessfully. Importantly, the musculoskeletal system provides
the basis for constraining and allowing movement. This
ability to generate movement is dependent on the structural
morphology, which is studied under the realm of functional

anatomy. Understanding the functional anatomy provides
insight into the working aspects of any complex joint. Note
that the muscular system and the structure of the various
joint capsules are outside the scope of this paper.

2.1 Bones and joints

Bones are primarily rigid structures that form the supportive
base for the muscles to act on. The kinematic role of the
bone is approximated by straight-line distances between
end-points known as links [31]. A detailed illustration of the
shoulder articulation from the anterior and posterior views
with labelled bony landmarks is shown in Figs. 1 and 2. The
shoulder kinematic chain starts from the sternum, the chest
bone that constitutes the midline of the anterior thorax. The
sternum is followed by the S-shaped collar bone, known as
the clavicle. The mechanical action of the clavicle is like
that of a crankshaft [5, 31, 41].

The third bone that forms the shoulder girdle is the
flat posteriorly located bone known as the scapula. The
positioning of the scapula in turn depends on the hand usage
and loading [40]. The glenoid cavity of the scapula acts as

Fig. 1 Anterior view of right
shoulder with the International
Society of Biomechanics
(ISB)-recommended bony
landmarks: 1 incisura jugularis
(IJ), 2 processus xiphoideus
(PX), 3 sternoclavicular joint
(SC), 4 acromioclavicular joint
(AC), 5 processus coracoideus
(PC), 6 glenohumeral joint
(GH), 7 medial epicondyle
(EM), 8 lateral epicondyle (EL),
9 angulus acromialis (AA), 10
angulus inferior (AI) (image
courtesy: Visible Body Skeleton
premium)
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Fig. 2 Posterior view of the
right shoulder with International
Society of Biomechanics (ISB)-
recommended bony landmarks:
6 glenohumeral joint (GH), 11
processus spinous 7th cervical
vertebra (C7), 12 processus
spinous 8th thoracic vertebra
(T8), 13 trigonum spinae
scapulae (TS) (image courtesy:
Visible Body Skeleton premium)
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the site of attachment for the upper arm bone called the
humerus. This attachment to the glenoid is mainly achieved
through the spherical head of the humerus.

The joints are the meeting surfaces of the bones. There
are three synovial joints in the shoulder. The interface
between the sternum and the proximal end of the clavicle
forms the sternoclavicular (SC) joint. The distal end of the
clavicle connects with the acromion process of the scapula,
forming the acromioclavicular (AC) joint. Furthermore, the
humeral head articulates with the glenoid cavity of the
scapula, forming the glenohumeral (GH) joint. Additionally,
the concave anterior surface of the scapula slides over the
convex surface of the thoracic cavity by sandwiching a
group of soft tissues, forming the scapulothoracic (ST)
joint. The ST is a functional joint that accounts for one-
third of the shoulder ROM [42]. This fictitious joint is
often modelled as a fixed [43] or dynamic contact [10, 44,
45]. Functionally, the shoulder girdle can be approximated
by a non-existing humerothoracic (HT) joint, which is
commonly found in activities of daily living (ADL) studies.

2.2 Basic shoulder movements

Although the joints of the shoulder articulation are capable
of individual motions, their actions are not entirely sequen-
tial. Instead, they are simultaneous and well coordi-
nated, resulting in the phenomenon of shoulder rhythm
[42]. Importantly, the GH joint has the largest ROM
among the shoulder joints due to its low bony congru-
ency and capsular laxity [46]. This peculiarity of the
shoulder articulation results in a diverse array of move-
ments. Unfortunately, this diversity has resulted in confu-
sion regarding the most suitable nomenclature for these
movements. Therefore, we follow [47] as closely as
possible.

An illustration of different basic shoulder movements is
presented in Fig. 3. The shoulder movements in the sagittal
plane are called flexion and extension. During flexion, the
relative humeral angle between the rest position and the
fully flexed position varies in the range 0◦–180◦. The
reversal of this motion results in the extension phase. If this
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Fig. 3 Illustration of various basic shoulder movements

reversal proceeds posteriorly beyond the neutral position of
the humerus, it results in hyperextension.

In the coronal plane, movement away from the mid-line
of the body is called abduction. Similarly, the reverse motion
from a fully abducted position to the mid-line is known as
adduction. The movements in the transverse plane are internal
rotation and external rotation, which constitute the internal
or external axial rotation of the humerus. Additionally, the
movement of the humerus about the vertical axis results
in horizontal abduction, horizontal adduction and cross-
abduction, which are unique to the shoulder articulation.

Furthermore, there are movements that are not confined
to any cardinal plane (see Fig. 3), namely, the conical
movement of the humerus known as circumduction and
the generalised raising and lowering of the humerus called
elevation and depression.

3 Challenges in investigating human
shoulder kinematics

There are several challenges in analysing shoulder move-
ment, and they are related to anatomy, function, mathemat-

ical description, measurement difficulties or a combination
of factors:

• Complexity: Human movement is a hierarchical phe-
nomenon wherein the behaviour of the parts does not
completely explain the behaviour of the whole, and
vice versa [37]. Consequently, single-joint behaviour
cannot completely account for multi-joint behaviour
[39]. Such a situation makes it difficult to reliably
parametrise the upper limb kinematics [48]. The com-
plex anatomy (see Section 2) forces many researchers
to limit their analysis to planar motion tasks. It
is well known that such kinematic simplifications
cannot effectively capture the variety of movements
[48, 49].

• Inconsistent clinical description: Joint angles defined
across the cardinal planes form the basis of human mov-
ement analysis. Importantly, the validity of generalised
kinematics of rigid bodies depends on the symmetry-
preserving properties of the underlying kinematic
transformations. Mainly, these symmetry-preserving
relationships are mathematically formalised using the
notion of the theory of groups [50]. Mathematically, the
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clinical description does not form a group, which poses
mathematical and interpretation difficulties, resulting in
controversies such as the Codman paradox [50]. In the
shoulder, the actual motions deviate significantly from
the clinical description of the cardinal plane motions [6,
46, 48, 51].

• Measurement limitations: The large axial rotation of the
humerus results in significant soft tissue artefacts (STAs)
[4, 48, 50, 52–59], which presents measurement lim-
itations. Recently, a study based on intra-cortical pins
successfully quantified the effects of STA on humeral
kinematics [60]. Additionally, a study by Naaim et al.
[61] compares various multibody optimisation models
in STA compensation for different ST joint models.
Although this approach is very efficient in minimising
the STA, the performance of these group of techniques
does depend on the underlying kinematic model [62].

• Over-constrained system: Although the individual
shoulder bones can move, their motion is often cou-
pled and constrained. This pattern of coupled movement
between the shoulder bones is popularly known as shoul-
der rhythm [63–65]. The extent of this rhythm depends
on several aspects, including the plane and arc of eleva-
tion, joint anatomy and loading conditions [5, 40].

• Movement variability: Variability is an important issue
in the literature on human movement. It is a major
bottleneck in standardising upper arm kinematics [3].
Moreover, as upper limb movements are discrete, it
is challenging to compare the inter-subject and intra-
subject kinematics [48]. Movement variability has dif-
ferent origins of two main types: inter-subject and
intra-subject variability [37]. Importantly, inter-subject
variability has drawn attention and has led to many stan-
dardisation initiatives in human shoulder kinematics.
The work of the International Shoulder Group (ISG) has
led to the well-known International Society of Biome-
chanics (ISB) coordinate system [66] and an advanced
framework [67]. In contrast, such initiatives only par-
tially address the intra-subject variability. Intra-subject
variability in movement kinematics is known to emerge
from four main factors: representational mismatch,
non-standardised protocols, different data processing
methods and the actual variability in movement.

4 An overview of human shoulder kinematic
representations

This section presents a brief review of prominent kinematic
representations used to parametrise shoulder movement. We

begin with an overview of the relative kinematics problem
and present the various mathematical representations used
in the literature to address this problem.

Generalised relative kinematics problem As is evident from
Section 2.2, the distal segment is always described relative
to the proximal segment, which is known as the relative
kinematics problem. Consider Fig. 4, a compact way to
represent the relative kinematics between the moving body
B and reference body A is given by the homogeneous
transformation matrix T,

(1)

Here, R and t represent the rotation and translation of frame
B with respect to frame A, respectively. In human move-
ment, these frames can be defined using anatomical land-
marks, mechanical points or axes, or their combination [68].
Note that the interpretation of kinematic data is sensitive to the
choice of these frames of reference. In HRI, the robot is
equipped with different motion sensors that act both as a
measurement system and as a feedback loop. The kinematic
representations presented in this section differ in how elements
of T are computed [69]. We present below the prominent
kinematic representations in shoulder kinematics below.

Body A
XA

ZA

Reference body

Moving body

PA

PO PB

ZB

YB

XB

YA

Fig. 4 Generalised relative kinematics
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4.1 Euler/Cardan angles

Due to the simplicity and intuitive nature of Euler angles,
they are very popular in the shoulder kinematics literature.
In Euler angles, the rotation matrix R, defined in Eq. 1,
is interpreted as a product of three sequential rotational
transformations Ri,Rj, and Rk about the axes i, j, and k.

R(i,j,k) = Ri(θ1)Rj(θ2)Rk(θ3) (2)

Here, i, j, k ∈ {X, Y,Z}, provided i �= j, j �= k, resulting
in 12 different sequences of Euler/Cardan angles. When
i �= k, the resulting asymmetric Euler angles are called
Cardan angles [68]. The ISB recommends a symmetric
Euler sequence, YXY, for reporting HT kinematics [66].

Although Euler angles are popular due to their intuitive
nature, they present limitations due to their numerical
instabilities, temporal nature and interaction issues [70].
Numerical instabilities or gimbal lock occurs at θ2 = ±π

2
for Cardan angles and at θ2 = 0, ±π for Euler angles.

4.2 Joint coordinate system

Inspired by the clinical movement definition, Grood and
Suntay proposed the joint coordinate system in [71]. The
joint coordinate system (JCS) includes six parameters, three
each for rotation and translation. Importantly, the JCS

description is a part of the ISB recommendation for several
shoulder joints [66]. Figure 5 shows the relative kinematics
problem in terms of JCS definition as given in [71].

It is known that the JCS is equivalent to the cor-
responding Cardan sequence [72] and can be extended
to other parameterisations [71]. Similar to Euler angles,
numerical singularities also occur in the JCS, at β = 0
and at β = 0, S2 = 0 [71]. Importantly, the JCS is sen-
sitive to the choice of e1 and e3; an unsuitable choice can
result in substantial kinematic cross-talk. The claim that JCS
is “sequence-independent” in [71] is incorrect, as the spe-
cific choice of the embedded axes itself imposes a sequence
effect [72].

4.3 Denavit-Hartenberg parameters

In robotics, the relative kinematics problem is often solved
using the Denavit-Hartenberg (D-H) convention. In D-H
parameters, the homogeneous transformation T in Eq. 1 is
represented by a set of four parameters. These parameters
for an ith joint are the link length (ai), the link twist (αi),
the link offset (di) and the joint angle (θi). These parameters
define the geometry of link i with respect to link i −1 about
a joint i, as shown in Fig. 6. The joints that connect these
links can be of either the rotary or prismatic type. In that
case, θi parameterises the rotary joint, and di parameterises
the prismatic joint. Because the D-H parameter definition
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Fig. 5 Concept of JCS and 3D motion description adapted from [71]
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Xi
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Xi-1

Zi-1

Zi
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ai

θi

Fig. 6 Denavit-Hartenberg parameters for joint i connecting link i and
link i − 1

is not unique, we follow the popular convention presented in
[73]. In this case, the homogeneous transformation is given
by

T=

⎡
⎢⎢⎣

cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

⎤
⎥⎥⎦

(3)

In shoulder kinematics, the GH joint is often parame-
terised as a pure spherical joint. This effect is obtained by
choosing three intersecting revolution DOF with a common
origin. The D-H parameters are also equivalent to Euler
angles and the JCS. Hence, numerical singularities occur.
Note that the D-H parameters cannot be used in closed-
loop kinematic chains as the parameter definitions become
inconsistent [74].

4.4 Other shoulder representations

Other representations are used in literature, though some-
what less prominently. The shoulder is often modelled as a
combination of serial and parallel chains, which is known
as a multibody or hybrid mechanism [62, 75–77]. The
globe representation describes functionally important shoul-
der kinematics that are not restricted to the cardinal planes
[78, 79]. Engin [80] used the finite helical axis (FHA) to
compute the HT centrode during a humeral elevation task.
Sweeping the bony links over the extreme range of motion
of a joint results in an excursion cone, called a joint sinus

cone [31]. An application of joint sinus cones in virtual
human modelling is presented in [81].

5 Review: search strategy, outline,
classification and summary

We begin this section by presenting the search strategy and
outline of the review, followed by the classification system
used to organise the relevant literature. Subsequently, we
summarise the key findings of this review.

5.1 Search strategy

A systematic search based on the ISI Web of Science
database was conducted on the 31 August 2017. The
search keywords were “Human shoulder kinematics”, which
yielded 1223 hits. Based on our review context, a four-stage
detailed filtering procedure was used to narrow down the
list of articles. Stages 1–3 of this filtering were based on the
title and the details of the article abstract, which yielded a
tentative list of 207 articles. The details of this search and
inclusion strategy are presented in Fig. 7.

Recall that in the context of a functional shoulder, it is
understood that clinical questions related to joint pathology,
dysfunction, pain and stability are not relevant. Add-
itionally, a few articles used healthy subjects as a control in
their respective study. Using the above exclusion criteria, in
Stage 4, a total of 56 articles were excluded, as they were
connected to cerebral palsy (3), stroke (12), exoskeleton
design (4), development disorder (6), sports (6), mechanism
design (6), clinical review (1), motion classification (1),
measurement (2), clinical questions (4), healthy subjects
used as control (2), human-robot interaction (3), ergonomics
(4) and animation (1). Additionally, one article was found
to be indexed twice by the search engine and was
discounted, resulting in a final list of 151 articles for review
tabulation.

5.2 Review table outline

The list of relevant papers identified in Section 5.1 is
summarised in Table 1 in the Appendix. Furthermore,
individual papers are arranged in rows with the columns
divided into six items, namely, citation, the kinematic rep-
resentation used in the study, the purpose of the study,
the details of the subjects used in the study, the type of mea-
surement instrumentation used and the activities studied.

Because the majority of studies use Euler angles, they
have been indicated by the relevant sequence only. The
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joints of interest in the respective studies have been indi-
cated by appropriate abbreviations presented in Section 2.1.

Because the statistical validity of any study depends on
the number of subjects involved, we decided to highlight the
subjects used in the reviewed articles by indicating the total
number of subjects in the study, followed by their details:
male (M), female (F), child (C) and their respective age
distributions.

The method of human motion tracking used is crucial.
Therefore, we have also tabulated the variety of measure-
ment techniques used in the reviewed articles. Additionally,

the different movements in the study have been summarised.
Let us proceed to examine the classification system used to
organise the literature.

5.3 Classification scheme for reviewed papers

From Section 4, it is clear that there is a large diversity
among the kinematic representations used in the shoulder
kinematics literature. Although it is challenging to classify
the available literature, we have proposed a three-point
classification strategy, which is discussed below.

Fig. 7 Search strategy
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5.3.1 Realistic or humanoid representation

What is the real nature of shoulder motion? The answer
to this simple question is not straightforward, because the
definition of reality is both context- and purpose-specific
in nature. A recent survey and experimental study provides
a detailed summary on the use of multibody methods in
upper limb kinematics [62, 82]. As discussed in Section 2,
the functional shoulder motion consists of simultaneous
rotations and translations. Because HRI is situated in real
world, it is important that the models used in cHRI are
realistic [22]. Therefore, in the context of high-reliability
HRI, we classify the studies that represent the shoulder
joint as a ball-and-socket joint as a humanoid. In contrast,
the studies that treat the shoulder otherwise are classified
as realistic. Additionally, following the recommendation
by El-Habachi et al. [83], the studies that treat the
shoulder as a closed-loop kinematic chain are considered
realistic. Because the majority of the reviewed papers use
a humanoid approach in parameterising human shoulder
kinematics, we indicate realistic studies by the footnote
marker (*).

5.3.2 Forward or inverse kinematics

In shoulder kinematics, finding the humeral position given
the individual joint configurations poses the forward
problem. Note that the forward problem has guaranteed
uniqueness [8, 84]. Forward studies commonly extend
our understanding of individual joint contributions and
our knowledge of the human arm-reachable workspace.
In contrast, finding the joint variables from the kinematic
measurements poses the inverse problem. Note that this
challenging problem has no unique solution [8]. In both
cases, the kinematic inference is based on the representation
of choice. Note that because there are only a handful of
forward studies in shoulder kinematics, we denote them
using the footnote label (†).

5.3.3 Biological context

Traditionally, the anatomical understanding has emerged
from studies based on human cadavers, which are known
as in vitro studies. However, it is well known that in
vitro studies do not replicate the properties of any living
shoulder [41, 59, 85, 86]. Studies based on living humans
are called in vivo research [86]. Increased computational
power has enabled numerical and simulation studies of
the musculoskeletal system, which are known as in silico
studies [86]. They play an important role in investigations

that would be otherwise impossible to measure or quantify
or would require an invasive approach [49]. An example of
an in silico study in the context of musculoskeletal surgery
is given in [87]. In silico models will play a significant role
in future research because cadaveric studies are expensive
and pose ethical challenges [50].

Although the classification system is quite straightfor-
ward, in reality, different studies have used all the above
three combinations to varying degrees. The majority of
the reviewed papers fall under the purely in vivo category.
Therefore, we denote the in vitro studies by (!), the in silico
studies by (¶), the combination of in vivo and in vitro stud-
ies by (+), the combination of in vivo and in silico studies
by (%) and not an in vivo study by (#).

5.4 Review summary

In Table 1 in the Appendix, the entries have been grossly
grouped according to the kinematic representations used:
Euler angles, D-H parameters, joint coordinate system and
other. Out of the 151 reviewed studies, Euler angles were
used by 37 studies, whereas JCS was used by 35 studies.
The popularity of these representations might be due to the
intuitive nature of both of these representations and their
closeness to the clinical definition. Figure 8 presents the
results of the literature classification of our survey. Note that
the majority of the reviewed papers are in the humanoid,
inverse kinematics and in vivo categories.

We could also see that the purpose of the various studies
is diverse. The most frequent ones are GH kinematics
[34, 50, 52, 55–57, 59, 85, 88–98], scapular kinematics
[55, 99–119] and shoulder rhythm [58, 65, 116, 120–125].
Several studies in shoulder kinematics have been interested
in analysing the effects of various factors on kinematics,
including age [112, 122, 126, 127], load [58], dominance
[57, 128, 129] and gravity [130].

The frequency of the basic shoulder movements in the
reviewed literature is presented in Fig. 9. This histogram
shows that shoulder abduction and flexion are frequently
evaluated in kinematic analysis. They are followed by
abduction in the scapular plane, which is seldom used in
daily life. The preference for the abduction movement might
be due to the ease of measurement and the almost ball and
socket behaviour of the GH joint during the initial phases of
abduction. However, internal/external rotation and elevation
were used less frequently. The reason might be connected to
the presence of STA, which might pose initial measurement
challenges. In contrast, the abduction movement generates
the least STA. Additionally, several studies [4, 33, 38, 126,
131–141] took an interest in analysing ADL.
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Fig. 8 The histogram shows the
number of reviewed articles
classified according to the
categories presented in
Section 5.3. The three different
colours respectively represent
the three literature classification
categories

6 Discussion

Although the ISB recommends the Euler YXY sequence
for reporting HT kinematics, there is a lack of consensus
on the best rotation sequence [142]. In 3D-ROM analysis,
it is a common practice to extrapolate the planar ROM,
but it is now known that such analysis leads to 60% non-
physiological poses [46].

Because the GH joint has the largest ROM in the
shoulder, it is a common practice to approximate the
shoulder kinematics to that of the GH joint. Therefore, a
common assumption prevails that the GH joint is equivalent
to a ball and socket joint, which we will challenge below.

Fig. 9 A summary of major shoulder movements in the literature.
Note that only the movements that occur with a frequency greater
than five are considered here. The notations are as follows: ABD—
abduction, FLX—flexion, Sc-ABD—adduction in the scapular plane,
EXR—external rotation, ELE—elevation and INR—internal rotation

6.1 Ball and socket assumption

Fundamentally, the ball and socket assumption neglects
the role of joint structures such as ligaments [34, 94],
translations [54], joint asymmetries [95] and the role of
the girdle [14, 50, 143]. This assumption only holds for a
small ROM and deviates significantly during a large ROM
[144]. Therefore, it can be argued that this approach is
an inappropriate use of reductionism. Hence, the validity
of this assumption in high-reliability applications must be
reconsidered.

Thus, it can be argued that the GH joint alone cannot
completely capture the function of the shoulder articulation.
Moreover, mathematical simulations aimed at comparing
the pure GH and the whole girdle workspace have shown
significant kinematic differences [77]. Importantly, as we
have emphasised before, even small ROM contributions
from joints other than the GH are important and signifi-
cantly affect the end goal of an activity [139]. However, this
simplification remains popular due to the ease of clinical
interpretation [50].

6.2 Kaltenborn’s convex-concave rule

Approximating the shoulder articulation by lower kinematic
pairs (see Section 4) is based on the assumption that the
articulation follows the convex-concave principle [2]. This
principle describes the relation between a joint’s congruency
and its kinematics [47]. The principle is stated as: “A
concave joint surface will move on a fixed convex surface in
the same direction the body segment is moving. On the other
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hand, a convex joint surface will move on a fixed concave
surface in the opposite direction as the moving body
segment [47].” Importantly, several experimental studies
have shown that the convex-concave rule is violated by the
shoulder even for simple movements [145, 146]. Moreover,
the validity of this reductionism in turn depends on the joint
curvature [147]. If the shoulder articulation does not follow
this rule, the error we commit in assuming a lower kinematic
pair is significant. Therefore, it is important to reconsider
this incorrect usage of reductionism in the context of high-
reliability applications.

6.3 A note on common kinematic errors

1. The spherical coordinate system presented in [148]
uses a combination of rotations about the local and
global axes that is not recommended [149]. Although
the representation can be physically intuitive, note
that spatial rotations are path-dependent even if their
initial and final positions are the same [38]. Therefore,
it is mathematically incorrect to claim “sequence
independence”. Such a situation can be avoided by
precisely and explicitly describing the steps, rotation
vectors, axis orientations, reference frames and order of
rotation [149].

2. Another common erroneous usage of rotation angles
is in the computation of ROM, when researchers treat
them as vectors. Importantly, this approach can result
in the misinterpretation of phenomenon [150]. Instead,
it is recommended to use the difference of rotation
matrices to extract the ROM [150].

7Moving towards high-reliability
human-centric kinematic models

Now, we ask whether the existing shoulder kinematic rep-
resentations are suitable for high-reliability HRI. Based
on our review, it is clear that humanoid representations
(see Section 5.3.1) are the most commonly preferred ones
in shoulder kinematics. Undoubtedly, this approach rep-
resents a highly simplified situation. Such simplifications
make error due to representational mismatch unavoidable.
Moreover, the non-linear and time-varying nature of kine-
matics exacerbates this situation, thereby undermining the
very purpose of these representations. This computational
challenge is even more daunting in the case of the human-
centric models that form the basis of HRI [12, 48]. For
successful robot-assisted rehabilitation, the robot needs to
somehow incorporate the knowledge of the patient’s health
that emerges from functional understanding.

Importantly, existing clinical scales in rehabilitation have
been criticized to be low in validity, reliability and sen-
sitivity [28]. Moreover, for such an analysis, it is time
consuming and expensive to collect data. Alternatively,
a robot-based or sensor-based solution can provide high-
quality data; thereby, many of the above limitations can
be overcome [28]. If properly designed, robot-based reha-
bilitative solutions can simplify the patient’s assessment
[28]. With highly reliable rehabilitation technology, even
the group size for the randomised control trials (RCTs)
can be reduced [28, 151]. Eventually, we will be able
to minimise the high costs involved in running RCTs
[152]. Moreover, highly reliable measurements will enhance
the confidence in the interpretation of clinically relevant
treatment effects [153]. Therefore, improving the mea-
surement reliability will have a significant impact on
the future of both rehabilitation research and practice
[151, 152].

7.1 Meeting the high-reliability computational
challenge

As we have mentioned before, meeting this challenge
remains an open research question. Therefore, for possible
answers, we might have to look beyond current approaches
in biomechanics, robotics and human motor control
[48]. Therefore, we suggest possible ways to meet this
computational challenge.

7.1.1 Embracing redundancy

Biologically, redundancy is advantageous and highly desir-
able [135]. However, minimalist parameterisations such as
the Euler angles are widely preferred, as is evident from our
review (see Table 1 in the Appendix). Mainly, these rep-
resentations cannot effectively capture this inherent redun-
dancy in upper limb kinematics [34, 135]. Mathematically,
minimal representations using three parameters are prone
to numerical singularities [149], which are undesirable in
high-reliability applications.

One of the strongest criticisms against minimalism is that
the computational power of the human brain is immense.
Therefore, controlling multiple DOF should not pose any
problem to the human brain [154]. Although simplicity and
lower levels of abstraction are highly desirable traits in a
model, it can be argued that such an approach provides only
limited understanding in applications such as robot-assisted
rehabilitation [155]. Non-minimal representations, however,
need to be backed by highly reliable measurements
[34]. Moreover, complexity in mathematical representation
leads to an increased level of abstraction, resulting in
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interpretation difficulties [34]. These points are important
limitations of redundant approaches. However, the issue
of redundancy holds the key to the high-reliability
computational challenge. Therefore, we believe that new
kinematic representations might present a possible answer
to this challenge.

7.1.2 Incorporating the translations well

As can be seen in Section 6.1, the shoulder function is
mathematically approximated by a ball and socket joint.
In fact, it is a challenge to encode the translations using
the clinical movement definition [34, 50], which motivates
the widespread use of this approximation. Through a slight
change in the mathematical perspective, however, it is
possible to handle the simultaneous rotation and translation
with ease.

Mathematically, the order in which the homogeneous
transformation matrix is decomposed into rotation and
translation has important implications, as this decomposi-
tion is not commutative (see Eq. 1). Generally, the homo-
geneous transformation is decomposed following the dis-
placement first and rotation second rule. This rule results in
the passive kinematic interpretation of the movement [156].
In contrast, reversing this order of interpretation results in
an active interpretation [156]. Importantly, active interpre-
tations embed translations effortlessly without the need of
any explicit body-fixed frame. Although active representa-
tions are simpler, their clinical interpretation is still difficult.
Because existing clinical interpretation is inherently pas-
sive. Currently, it is challenging to switch between active
and passive kinematic representations [157].

7.1.3 Emphasis on functional understanding

Thus far, current approaches in shoulder kinematics fall
under the umbrella of deterministic models, especially if
they are hierarchical in nature. In hierarchical models,
the mechanical quantities involved in the first level must
completely determine the factors included in the next higher
level [158]. Conversely, the performance of these models
worsens in the presence of joint translations and irresolvable
information on axial rotations [159, 160]. On a similar note,
a common criticism exists that the hierarchical approach
does not contribute to functional understanding [161].

An alternative to this existing approach is the 6-DOF
approach, which can potentially address many of the
abovementioned shortcomings of the hierarchical models.
The 6-DOF models can ensure kinematic decoupling,
lower error propagation and better tracking of non-sagittal
joint rotations [159]. However, the 6-DOF marker set is

sensitive to noise [159]. Despite this shortcoming, the 6-
DOF models have the potential to be used in high-reliability
HRI because such an approach would enhance functiona
l understanding.

Movement kinematics forms the cornerstone of today’s
neuromuscular modelling. Therefore, kinematics will be
crucial in addressing many open problems in neuromuscular
modelling: development of universal biological joint,
rigorous validation of developed models, and not limited to
automating movement analysis [86]. From the perspective
of robot-assisted rehabilitation, future cognitive models
must be able to answer the “When to assist and what to
assist?” question [21].

8 Conclusions

In conclusion, we have highlighted the importance of shoul-
der articulation in daily life, and we have systematically
searched and compiled the existing literature on human
shoulder functional kinematics. We have thereby success-
fully highlighted important gaps in our current knowledge
with respect to the high-reliability computational require-
ment, in applications such as robot-assisted rehabilitation.
The findings of our review were reframed in the light
of this high-reliability computational challenge. It was
found that current approaches in different disciplines can-
not meet this challenge. Possibly, this challenge could
be met by new kinematic representations that are redun-
dant, active and that emphasise on functional understand-
ing. Therefore, more efforts are needed in this direction.
Only then can robot-assisted rehabilitation reach its full
potential.
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model of the shoulder complex to evaluate the arm-
reachable workspace. J Biomech 40(1):86–91. https://doi.org/
10.1016/j.jbiomech.2005.11.010

185. Lenarcic J, Klopcar N (2005) Positional kinematics
of humanoid arms. Robotica 24(01):105. https://doi.org/
10.1017/S0263574705001906
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