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Abstract
The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel
for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and
was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several
TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical
database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods.
The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the
performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG
signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended
modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels.
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1 Introduction

In patients undergoing surgery, scientific evidence supports the
correlation of advanced hemodynamic monitoring with good
tissue perfusion and better hemodynamic optimization. This
improves patient outcome and reduces mortality rates and hos-
pital costs [1–5]. However, monitoring of cardiovascular

hemodynamic changes requires specialized equipment which
can be very expensive. Impedance cardiography (ICG) is an
inexpensive, non-invasive method which uses the fact that dif-
ferent human tissues are characterized by different imped-
ances. While bones, lungs, and muscles are poor electrical
conductors, blood offers low resistance to currents, and there-
fore, thoracic ICG signals represent the change in the cardiac
blood volume.

Advanced techniques for the analysis of biomedical signals
such as the ICG signals and automatization techniques are
increasingly important for diagnosis. The visual inspection
of biomedical signals may be a tedious task, and subjective
judgements and errors can occur even when skilled inter-
preters are involved.

Several hemodynamic indices can be extracted from ICG
signal [6, 7], and applications range from stroke volume cal-
culation to diagnosis of cardiac or work-related conditions
[8–10]. In order to improve the calculation of these indices,
several authors have exploited the periodic or quasi-periodic
behavior of the ICG signals for denoising or for locating their
characteristic points [11, 12]. The study of these signals in the
frequency domain can shed light on the quasi-periodical be-
havior of ICG signals and also on ICG features which cannot
be directly observed in the time domain. Some features could
be related to HRV, for which ECG analysis would be more
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effective, but other features could be related to the patient’s
hemodynamic state. However, the ICG behavior in the fre-
quency domain varies with time, and therefore, it is conve-
nient to analyze how the frequency distribution of the signal
changes with time [13].

Time-frequency distribution (TFD) studies how the fre-
quency content changes with time, and it has been used for
analyzing electroencephalogram (EEG) [14–18], evoked po-
tentials [19], heart rate variability (HRV) [20–23], and patho-
logical speech signals [24, 25], amongst others. There are
several different ways to formulate valid TFDs [26], but any
application would ideally require high definition in spectral
components, no cross-terms (in order to avoid confusing real
components from artifacts or noise), a low computational
complexity, and some mathematical properties [27].
However, these properties do not normally occur together,
and the selection of an appropriate TFD depends on the char-
acteristics of the signal to analyze.

When it comes to selecting the best TFD for synthetic
signals, several quantitative measurements can be used based
on geometrical properties [28, 29], error, and entropy proper-
ties [30–33] of the TFDs. These measurements can be applied
when the time-frequency characteristics of real signals are
known. Nevertheless, these characteristics are usually un-
known in real physiological signals.

In this work, in order to test the goodness of TFDs for real
biological signals such as the ICG, we propose the usage of
synthetic signals modeling the real ICG signals. The TFDs can
then be optimized for its usage with real ICG signals bymeans
of using ICG synthetic signals fulfilling the following require-
ments: synthetic signals should resemble very much to the
original signals from a time-frequency perspectives, and
time-frequency parameters should be easily modifiable. To
the best of our knowledge, the application of TFDs to ICG
signals has not been extensively researched.

In order to accomplish these requirements, a pattern ana-
lyzer was designed and used on a real ICG signal to decipher a
patient’s typical ICG beats. This patient was randomly chosen
from a database of patients scheduled for general anesthesia in
the Zhongshan Hospital (Shanghai, PRC). The most frequent
pattern was calculated and a Fourier series model was created.
This Fourier model was modified in order to create signals
with time-frequency variations. These synthetic signals were
used to evaluate different TFDs based on geometric criteria.
The most common TF distributions available were tested: the
Wigner-Ville distribution (WVD), the Born-Jordan distribu-
tion (BJD), the spectrogram (SP), the S-Method (SM), the
Choi-Williams distribution (CWD), the Zhao-Atlas-Marks
distribution (ZAM), the modified B-distribution (MBD), and
the extended modified B-distribution (EMBD) [26]. The in-
stantaneous frequency (IF) of the different spectral compo-
nents on the TFDs was determined, and its errors with theo-
retical IFs were measured. The robustness against low signal-

to-noise ratios has also been tested. In addition, optimized
TFDs were used on synthetic ICG signals derived from pat-
terns of the rest of patients in the ICG database.

2 Methods

2.1 ICG database

ICG signals were obtained from a study conducted at the
Zhongshan Hospital (Shanghai, People’s Republic of China)
under the requirements of its Ethical Committee and the pro-
tocol adhered to the principles of the Declaration of Helsinki.
ECG signals were concurrently acquired. The study included
15 patients undergoing major surgery in an observational
study. Age ranged between 43 and 67 years, with a mean
age of 58.9 ± 6.7 years and a mean body mass index of 22.8
± 2.6 kg/m2. These signals were obtained using the qCOmon-
itor (QuantiumMedical, Barcelona, Spain). This monitor reg-
isters the impedance cardiography (ICG) and electrocardio-
gram (ECG) by using four electrodes, with one pair injecting
a constant current of 50 kHz and a second pair of electrodes
measuring the resulting voltage. The impedance signal repre-
sents the changes of the thoracic impedance due to variations
in the blood flow.

In practice, the raw impedance signal is transformed into
the negative time-derived impedance waveform by using the
first derivative to remark the inflection points of the raw im-
pedance signal. This signal is also low-pass filtered at 30 Hz to
reduce high-frequency noise in both the forward and reverse
directions to avoid zero-phase distortion. All the signal pro-
cessing techniques have also been developed using
MATLAB®.

2.2 Synthetic ICG signal generated

Synthetic ICG signals were generated in order to select the
best TFDs for the real ICG signals. Firstly, the most typical
waveform of a real ICG recording was recognized. This pat-
tern was later used to create a Fourier model approximation
with several instantaneous frequencies (IFs), and synthetic
signals were created including concrete variable time-
frequency characteristics.

2.2.1 Pattern recognition analysis

A pattern recognition algorithm has been designed to detect
the most typical waveforms which are contained in the ICG
signals. Each ICG beat is isolated and normalized for zero
mean and unit standard deviation. Moreover, the length of
all ICG beats is normalized to a constant number of samples.
The starting and endpoints are defined as the QRS peaks in the
ECG before and after an ICG maximal peak. Moreover, ICG
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maxima were located using the QRS peaks in the ECG, which
are easier to locate with a Pan-Tompkins approach [30].

The first pattern of the database is the first ICG beat avail-
able in the recording. The rest of ICG beats are correlated with
all the patterns in the database. For each ICG beat, the pattern
which offers a higher Pearson correlation above a threshold th
(th > 0.85) with the beat is then averaged with such beat. If the
correlation threshold is not met, a new pattern is created.
Moreover, the algorithm ensures that there will not be two
patterns with a cross-correlation higher than 0.95.

2.2.2 Fourier modeling

If a long periodic ICG signal has a most frequent pattern
which repeats itself periodically every Np samples with a
frequency ωn = 2π/Np, the ICG signal can be represented as
a Fourier series. This Fourier series requires an infinite num-
ber of terms to accurately reproduce the square wave signal.
Generally, the model for the pattern ICG signal will have a
structure with a defined number of terms of a discrete-time
Fourier series of frequency ωn = 2π/Np where Np will be the
length of the single pattern.

The Fourier model for the template signal allows modify-
ing the time-frequency characteristics of a longer signal x(n) in
a controlled, straightforward fashion, similar to the time-
frequency dependency in chirp signals. The frequency sweeps
considered were linear, which specifies an instantaneous fre-
quency (IF) sweep given by

IF nð Þ ¼ f 0 þ Bn ð1Þ

B ¼ f 1− f 0ð Þ=2n1 ð2Þ

In the linear sweep, B ensures that the desired frequency
breakpoint f1 at the time n = n1 is maintained departing from
an initial frequency f0 at the time n = 0. For ICG signals, it
would be desirable to implement frequency variations from
f0=50 bpm to f1=90 bpm in n1=10 s in order to test extremely
variable conditions.

2.3 Time-frequency distributions

High-resolution time-frequency analysis is useful for sig-
nals which are non-stationary and/or multicomponent.
Quadratic TFDs (QTFD) are based on estimating the in-
stantaneous power spectrum of the signal by using a bi-
linear operator [26]. The Wigner-Ville distribution (WVD)
is the basic QTFD and is defined by taking the Fourier
transform of an instantaneous auto-correlation function
Kz(t, τ) described in (3).

Wz t; fð Þ ¼ ∫þ∞
−∞Kz t; τð Þe−2jπfτdτ ð3Þ

where Kz(t, τ) is defined as

Kz t; τð Þ ¼ z t þ τ=2ð Þz* t−τ=2ð Þ ð4Þ
and where z(t) is the analytic associate of a real signal x(t)
obtained with the Hilbert transform z tð Þ ¼ x tð Þ þ jH x tð Þf g.
The main characteristic of the analytic signal of a real signal is
that it contains no negative frequencies. Both the real and the
analytic signals contain the same information but the latter has
two additional beneficial effects: it halves the total bandwidth
and avoid the appearance of interference terms generated by
the interaction of positive and negative components in
QTFDs.

The WVD provides a high-resolution representation of the
signal x(t) in time and frequency, but the presence of cross-
terms in multicomponent signals is deleterious for biomedical
signal processing. Cross-terms can be reduced by convolving
the WVD with a 2D kernel γ(t, f) to obtain the general formu-
lation of QTFDs in (5).

ρz t; fð Þ ¼ γ t; fð Þ **
t; fð Þ

Wz t; fð Þ ð5Þ

The 2D kernel γ(t, f) reduces cross-terms but it also blurs
auto-terms. Therefore, kernels need to be designed to obtain
the best tradeoff between minimizing cross-terms and main-
taining the auto-terms’ resolution. The general formulation of
the kernels γ(t, f) in (5) is usually formulated in the ambiguity
domain such as g(ν, τ), where ν and τ are Doppler and lag, as
indicated in (6). This is because the convolution operation in
the time-frequency domain becomes a multiplication in the
ambiguity domain, which reduces its complexity.

ρz t; fð Þ ¼ ∫∞−∞∫
∞
−∞g ν; τð ÞAz ν; τð Þe j2π νt−fτð Þdνdτ ð6Þ

where Az(ν, τ) is the ambiguity function of the analytic asso-
ciate z(t) of the real signal x(t). Separable kernels are a special
case when g(ν, τ) =G1(ν)g2(τ). If G1(ν) = 1, the kernel is
Doppler independent. If g2(τ) = 1, the kernel is lag indepen-
dent. Table 1 shows the TFDs tested along with the corre-
sponding kernels. The spectrogram is calculated using four
different windows: rectangular, Hamming, Hanning, and
Bartlett.

The S-Method (SM) is based on the relation of the short-
time Fourier transform (STFT) and the WVD: the STFT is a
linear operation and does not suffer from any cross-terms [34].
Cross-terms in TFDs appear due to the interaction of the
STFTs of different signal components, which can be avoided
using a window frequency function P(ν) = 0, |ν| > LP. By
changing LP, a gradual transition can be obtained ranging from
the spectrogram (LP→ 0, P(ν) = δ(ν)/2) to the WVD (LP→
signal length, P(ν) = 1). The best choice of LP would be the
value when P(ν) is wide enough to enable complete integra-
tion over the auto-terms, but narrower than the distance be-
tween the auto-terms, in order to avoid the cross-terms.
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Equation (7) describes how the SM is based on the STFT and
the window frequency function P(ν).

SMZ t; fð Þ ¼ 2∫∞−∞P νð ÞSTFTz t; f þ νð ÞSTFT*
z t; f −νð Þdν ð7Þ

2.4 Identification of instantaneous frequency

The evaluation of different kernels by using synthetized ICG
signals with known time-frequency properties can lead to the
most adequate QTFD for real ICG signals. To validate this
extent, the IF can be calculated in the QTFDs with the opti-
mized kernels. There are several techniques to spot the differ-
ent IF. One of the first approaches used an iterative estimate of
the first moment of the spectrogram as the IF in order to also
construct a matched spectrogram estimate. This approach is
stopped when convergence between two consecutive spectro-
grams was reached and produces a match spectrogram con-
centrated along the IF of monocomponent signals [35]. IF
estimation from the maxima of the TFDs has a variance and
bias highly influenced by the lag window length. Therefore,
Stanković and Katkovnik [36, 37] proposed an adaptive algo-
rithm for determining the optimal lag width based on the in-
tersection of upper and lower confidence intervals of the IF
estimates for each time instant. The IF estimation methods of
multicomponent signals are highly dependent on the selected
TFR and presence of cross-terms which could be mistaken for
the IF estimate. A simple approach is to use time-frequency
filtering methods to retrieve individual IFs [26]. Other ap-
proaches require extending algorithms for estimation of
monocomponent IF to the case of signals with various IF
[38]. In general, concrete properties are required for the

TFDs when detecting the IF of multicomponent signals: high
time-frequency resolution and efficient suppression of cross-
terms; direct amplitude estimation for the individual compo-
nents and a function of the variance of the IF estimate contin-
uously decreasing as the lag window length increases while
the bias is continuously increasing. TFDs such as the MBD
satisfy these requirements, and the work by Stanković and
Katkovnik in [36, 37] can also be extended for the case of
multicomponent signals.

This work proposes an algorithm to search the IF without
setting the total number of existing IFs and their approximate
frequencies. The steps are as follows:

1. Find a number N of local maximum peaks for every time
instant in the TFD higher than the number of peaks
expected.

2. Group these peaks so that they form smooth lines along
time. This is the expected behavior since the synthetic
TFDs are created as a Fourier series of tones whose fre-
quency varies in a determined manner along time.

It is important to note that the first and last 10% of time of
the TFD is not to be taken into consideration in order to detect
the IF, since the starting and final instants of the TFD are
blurry and can introduce errors in calculations.

2.5 Selection of TFDs

Choosing the best kernel for a signal requires a concrete
strategy. In some studies, the kernel is selected in a vi-
sual way. However, this method is highly unpredictable
and biased and therefore quantification methods have
been proposed. Since the characteristics of the synthetic
ICG signal to analyze are well known, it is possible to
quantify which kernel produces the QTFD with charac-
teristics most similar to those of the ICG signal.
Boashash and Sucic [28] proposed to measure the differ-

ence between the instantaneous frequency ÎF nð Þ that a
QTFD produced and the theoretical instantaneous fre-
quency IF(n). For this purpose, two statistical measures
are used in order to measure these differences: the mean
square error (MSE) in (8) and the percentile root mean
square difference (PRD) in (9).

MSE ¼ ∑N
n¼1 IF nð Þ−ÎF̂ nð Þ� �2

n−1ð Þ ð8Þ

PRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1 IF nð Þ−ÎF̂ nð Þ� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1 IF nð Þ½ �2
q ð9Þ

where n is the time instant.

Table 1 Kernels for time-frequency distribution

TFD Kernel type Kernel g(ν, τ)

WVD 1

BJD Non-separable sinc(2αντ)

S-Method Non-separable Aw ν; τð Þ *
ν
P −ν=2ð Þ

Spectrogram Non-separable w(ν + τ/2) w(ν − τ/2)
CWD Non-separable e−ν

2τ2=σ

ZAM Non-separable w τð Þ a
2 τj j sinc

a
2 τj j

� �

MBD Lag-independent Γ βþjπνð Þj j2
Γ2 βð Þ

EMBD Separable Γ βþjπτð Þj j2
Γ2 βð Þ

Γ βþjπτð Þj j2
Γ2 βð Þ

Kernels for the QTFDs [31] used in this work. The parameters a,α, β, and
σ and the window length w define the kernel shape and are estimated
taking into account the characteristics of the signal to analyze. Aw(ν, τ) is
the ambiguity domain representation of the analysis window used in the
S-Method, and P(ν) is a frequency window where the width controls the
cross-term suppression of the TFD
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Furthermore, Boashash and Sucic [28, 29, 39] also pro-
posed a method to measure the performance of a QTFD with
an objective quantitative criterion expressed in (10).

P ¼ 1−
1

3N
∑
N

n¼1

AS nð Þ
AM nð Þ þ

1

2

Ax nð Þ
AM nð Þ þ

E nð Þ
Δ f nð Þ

� �
ð10Þ

where for a pair of signal components at time n (in the total
interval of N time instants), AM is the average of the compo-
nent main lobe amplitudes, As is the average of the component
sidelobes, AX is the in-between component cross-term ampli-
tude, E is the average of the component main lobe band-
widths, and Δf is the frequency separation between the IF
components. A low P indicates poor performance while
values close to one indicate good performance. Both perfor-
mance P and the different statistical measures are used to
select the best TFD and its parameters.

The performance P calculation has undergone some chang-
es to take into account that the tones in a synthetized ICG
signal will not have the same amplitude. Equation (11) shows
the adaptation of the performance for a two-tone synthetized
ICG signal.

P ¼ 1−
1

3N
∑
N

n¼1

1

2

As1 nð Þ
A1 nð Þ

				
				þ 1

2

As2 nð Þ
A2 nð Þ

				
				þ Ax nð Þ

A1 nð Þ þ A2 nð Þ
				

				þ 1−D nð Þð Þ
� �

ð11Þ

where, As1(n) and As2(n) are the sidelobe amplitudes of tones 1
and 2, A1(n) and A2(n) are the tone amplitudes of tones 1 and
2, Ax(n) is the amplitude of the cross-term between both tones.

D nð Þ ¼ V1 nð Þ=2þ V2 nð Þ=2ð Þ= f 2 nð Þ− f 1 nð Þð Þ ð12Þ

where V1(n) and V2(n) are the bandwidths, and the instanta-
neous frequencies of the first and second tones are f1(n) and
f2(n), respectively.

A new approach has also been used in order to validate the
performance of the studied distributions. Taking into account
that the WVD of a linear frequency-modulated signal gives an
unbiased estimate of the IF of such frequency, the perfor-
mance of a TFD can also be studied as the likelihood between
such TFD and the addition of the WVDs of every single tone
in a test signal such as the synthetic ICG signal. This likeli-
hood can be quantified by means of the cross-correlation (CC)
between the studied TFD of the synthetized ICG signal and
the addition of the WVDs of every single tone in the
synthetized ICG signal.

Finally, the previously mentioned measurements (P, MSE,
PRD, and CC) have been applied to synthetic ICG signals
with and without noise. To test the behavior of the different
TFDs, noise tests have been conducted by corrupting the syn-
thetic ICG signals with white noise in signal-to-noise ratios
(SNR) decreasing from 20 to − 5 dB. According to the

literature [26, 40–42], the sources of error in the estimation
when detecting the IFs by using the TFD maximal positions
are the estimate bias, the random deviation of the maxima in
the auto-term due to small noise, and the large random devi-
ations due to false detection of maximal points outside the
auto-terms. In [41], an adaptive IF estimator with a time-
varying and data-driven window length is presented, and the
results are similar to the quality obtained if the IF information
was known in advance. The work in [42] shows that the esti-
mator of the polynomial WVD for signals with additive white
Gaussian noise can be improved by the adequate selection of
the kernel coefficients in the distribution. These works are
expanded in [40] for the case of high noise, and it explains
that the crucial parameter is the ratio of auto-term magnitude
and the standard deviation of the distribution.

2.6 Testing of the selected TFDs

Once the initial synthetic signals have been designed and the
optimized TFDs have been selected, these results have been
applied to the complete database of 15 patients. Synthetic ICG
signals have been designed using ICG patterns extracted from
the real ICG signals in every patient. The synthetic ICG sig-
nals have been used to test the performance P, cross-correla-
tion, and IF errors for the optimized TFDs.

3 Results

3.1 Synthetic ICG signals

In total, 7544 beats were analyzed for the first patient. The
correlation threshold of 0.85 produced 92 different patterns
with at least 4 appearances, but 8 patterns covered more than
60% of beats. Figure 1 shows the most typical patterns for this
correlation threshold.

A correlation threshold of 0.90 was also studied. The ICG
patterns obtained using either threshold were very similar.
However, the number of patterns with at least 100 repetitions
differs between both thresholds: it was higher with the th =
0.90 (11 patterns) compared to 10 relevant patterns obtained
with a th = 0.85.Moreover, the main pattern was appeared 699
times in the case of the th = 0.90, while in the case of the th =
0.85, the same pattern was repeated 1154 times.

The most repetitive pattern with th = 0.85 was selected as
the template for the Fourier modeling. However, it was nec-
essary to slightly modify the endpoints of the signal in a
smooth way so that the beginning and the end of the templates
happen to meet at the same point without creating noticeable
transitions when concatenating several templates together to
form a longer signal. All templates have been normalized to
zero mean and adjusted to a length Np = 200 samples. An
approximation of two tones has been used for the Fourier
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series with a fixed frequency. The results of the model can be
observed in Fig. 2. Characteristic points B, C, and X are
marked on the ICG curve: the point B coincides with the
opening of the aortic valve; the point C corresponds to the
peak of the ICG signal and it coincides with the ventricular
contraction; and the point X corresponds to the closure of the
aortic valve [43].

The previous modeled Fourier approximation has been
modified in order to include a linear frequency variation.
Figure 3 presents a synthetized ICG with a constant IF and a
synthetized ICG signal which frequency changes in a linear
fashion from f0=50 bpm to f1=90 bpm in 10 s.

The frequency response for the Fourier model of the ICG
pattern and for the linearly variable time-frequency ICG in
Fig. 4 is expected to have a similar frequency response with
some important differences in the shape of the frequency spec-
trum. The frequency response of the constant-frequency ICG

presents a set of periodically distributed peaks corresponding
to each of the Fourier terms, as shown in Fig. 4a. For the case
of the two-tone synthesized ICG, the linear variation in the
signal instantaneous frequencies makes both frequency peaks
IF1 and IF2 wider (see Fig. 4b), which causes them to interfere
with each other as the resulting spectrum shows (in black).

3.2 Performance of TFDs of synthetic ICG signals

To test the performance of different TFDs, the previous
synthetized two-tone ICG signal with a linear frequency var-
iation has been used. The performance has been calculated for
each type of TFD kernel with the different characteristic pa-
rameters for each type of kernel. For each TFD, the values of
the parameters for the best performance have been obtained
through an optimization procedure to find the combination of
parameters for which the performance P is maximal according
to (11).

The results of the optimization process are plotted in Fig. 5,
and the specifications are included in Table 2. Figure 5 shows
how the performance changes for each type of TFD depending
on the values of several parameters such as window length w
for the spectrogram (Fig. 5a), σ for the CWD (Fig. 5b), a for
the ZAM distribution (Fig. 5c), β for the MBD (Fig. 5d), LP
and window length w for the SM for all window types (Fig.
5e), and α and β for the EMBD (Fig. 5f). As the figure shows,
the highest P performances are obtained for the spectrograms
(except when the rectangular window is used) and the EMBD,
and the lowest P performances are for the CWD. The S-
Method provides results very similar to those offered by the
spectrogram for all cases although slightly inferior. The blank
spaces in Fig. 5e represent the combination of values for
which the performance calculation algorithm has not been
able to identify the IF tones. Table 2 presents the values for
these parameters for the best performance distributions, where
the maximum performances are for the spectrogram when the
Hamming (P= 0.781), Hanning, and Bartlett (P = 0.780)win-
dows are used and for the EMBD (P = 0.778).

In addition, the CC correlation between the studied TFDs
of the synthetized ICG real-based signal, and the addition of
theWVDs of the two single tone in the synthetized ICG signal
is included in the same table. TheCC correlation is best for the
MBD and worst for some of the spectrograms and S-Method
reaching even less than 0.5. Finally, a comparison between the
expected and the resulting instantaneous frequencies has been
performed using (8) and (9), whose results are also included in
Table 2.

Table 3 includes all the numerical values of the character-
istic points for the central slice, corresponding to the instant
5 s. Figure 6a contains the plot of the time slice at t = 5 s with
the characteristic points used to calculate the performance P
according to (10). Figure 6b shows the resulting TFDs for the
kernel spectrogram with Hanning window, CWD, and

Fig. 2 Fourier model of the ICG pattern: original ICG template (dashed
blue) and an approximation of two tones of the Fourier model (red).
Characteristic points B, C, and X are marked on the ICG curve

Fig. 1 Five most frequent patterns in an ICG recording calculated with a
correlation threshold of 0.85

1762 Med Biol Eng Comput (2018) 56:1757–1770



EMBD, and Fig. 6c shows the theoretical IFs and the resulting
IFs located on the TFDs. Some features of these kernels can be
easily seen in Fig. 6. The non-negativity characteristic of the
spectrogram provides zero-valued cross-term and secondary
term amplitudes easy to locate.

However, in Fig. 6, the frequency width of the IFs is larger
for the spectrogram than for other kernels such as the MBD
and the WVD. It is also noticeable how the spectrogram and
the EMBD kernels provide a softer TFD with fewer cross-
terms between the two frequencies, which are prominent in
the case of the CWD. A large number of undulations appear in
addition to the two main ridges which represent the sum of the
two frequency-modulated signals. In the basic WVD, the
cross-terms are located midway between the interacting com-
ponents, oscillate proportionally to the distance between the
auto-terms and in a direction orthogonal to the line connecting
these auto-terms. Quadratic TFDs in which cross-terms are
attenuated relative to the auto-terms in often named a reduced
interference distribution (RID), and it is a well-studied topic in

the literature [26, 44]. In general, since auto-terms in the (t,f)
plane are usually smooth, their corresponding version in the
(ν, τ) plane tends to be concentrated in the origin. On the
contrary, Fig. 6 shows that cross-terms tend to be oscillatory
in the (t,f) plane which lead to terms far away from the origin
in the (ν, τ) plane. Choosing the right kernel in the (ν, τ) plane
can filter out information far from the center and can thus
attenuate cross-terms. In addition, the starting and final sec-
onds of the TFD seem fuzzier than the rest of the TFD. This
fact is to be taken into account when calculating the IFs of the
distributions.

Finally, the analysis of the robustness of the different ker-
nels in relation to the signal-to-noise ratio (SNR) is summa-
rized in Fig. 7. Noise in TFDs has been previously analyzed in
depth, and the bias and variance for different types of additive
andmultiplicative noise have been determined [45]. The study
of the additive Gaussian noise influence on TFDs has led to
the design of robust TF distribution using the robust minimax
Huber M-estimates [46, 47].

Fig. 4 Periodograms of the
synthetized ICG signals with no
frequency variation (a) and with a
linear frequency variation (b).
Each instantaneous frequency is
plotted individually (in color) and
the total resulting spectra are also
included (in black)

(a)

(b)

Fig. 3 ICG signals with a
constant IF (a) and a linear
frequency variation (b)
synthetized with two tones
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(a) (b)

(c) (d)

(f)(e1) (e2) (e3) (e4)

Fig. 5 Performance optimization
results: the resulting performance
P of the spectrograms (a), ZAM
distribution (b), CWD (c), MBD
(d), SM (e), and EMBD (f) for
varying parameters is plotted. The
SM is optimized for a rectangular
(e1), Hamming (e2), Hanning
(e3), and Bartlett (e4) windows

Table 2 TFD optimization results
Parameters MSE (%) PRD (%)

P CC IF1 IF2 IF1 IF2

WVD 0.698 – 0.013 0.029 0.952 0.727

BJD 0.698 0.557 0.117 0.286 2.907 2.274

SM Rect. w = 929, LP=1 0.769 0.588 0.000 0.000 1.092 0.902

Ham. w = 999, LP=2 0.764 0.492 0.000 0.000 0.763 0.409

Han. w = 999, LP=1 0.757 0.471 0.000 0.000 0.775 0.424

Bart. w = 999, LP=2 0.765 0.498 0.000 0.000 0.804 0.461

Spect. Rect. w = 919 0.764 0.506 0.019 0.060 1.176 1.043

Ham. w = 1569 0.781 0.495 0.048 0.139 1.870 1.584

Han. w = 1779 0.780 0.501 0.020 0.066 1.194 1.092

Bart. w = 999 0.780 0.448 0.009 0.021 0.795 0.617

CWD σ = 4.12 0.715 0.600 0.077 0.149 2.359 1.638

ZAM a = 2.3 0.618 0.603 0.023 0.086 1.290 1.248

MBD β = 0.0026 0.765 0.686 0.072 0.107 2.272 1.392

EMBD α = 0.002, β = 0.988 0.778 0.577 0.077 0.114 2.362 1.432

Best performance P and correlation CC of TFDs with their parameter values;MSE and PRD for the resulting and
theoretical IFs for the first (IF1) and second (IF2) tones
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In this study, all kernels except ZAM, CWD, and BJD
present similar performance P between 0.76 and 0.78 when
SNR = 20 dB, and such performance decreases at a similar
speed for all cases until reaching a performance P between
0.73 and 0.76 when SNR = − 5 dB although the case at which
the P decreases is slightly higher for EMBD and MBD.
Regarding Fig. 7c, the MSE values are not similar for all
kernels and vary from 0.01 to 0.12 for SNR = 20 dB and from
0.02 to 0.22 for SNR = − 5 dB. However, the evolution of the
decrease in MSE with decreasing SNR is similar for all ker-
nels, and the MSE values remain constant after 10 dB.

3.3 Testing of the selected TFDs

The most frequent pattern has been extracted from every
patient with a correlation coefficient of th = 0.85 between
ICG beats, as in the case for the first synthetized ICG
signal described above. All patterns are included in
Fig. 8. These patterns have been used to create synthetic
ICG signals with known linear time-frequency variations in
order to calculate their TFDs with different kernels and test
their performances. Table 4 includes the performance P,
performance at central time Pt = 5s, cross-correlation perfor-
mance CC, and IF MSE and PRD errors. The performance
P is best for the spectrogram when either Hanning or
Hamming windows are used and for the EMBD, while
the WVD and the ZAM offer the worst results. However,
the WVD also offers some of the best results for the loca-
tion of the instantaneous frequency.

4 Discussion

In this work, the primary key finding is the proposal of
an innovative methodology for choosing a suitable TFD
for a real biomedical signal. On the one hand, several
authors have previously addressed the complexity of
selecting kernels for TFDs by using visual methods or
charac ter i s t i cs of the s ignals to ana lyze [26] .
Nevertheless, this work takes into account that such char-
acteristics are often partially unknown, and the proposed
methodology has been applied to ICG signals. On the
other hand, some authors have used wavelet transforms
for denoising ICG signals and for locating the character-
istic points of the ICG curve [11, 12, 48, 49]. The main
difference is that wavelet analysis uses some given ana-
lyzing wavelets (such as the so-called Mexican hat or
Morlet wavelets) while the objective of this work was
to investigate the overall time-frequency content of the
ICG signals.

Taking the most characteristic pattern of a patient’s ICG sig-
nal, a signal with a pre-defined linearly variant time-frequency
characteristics has been constructed and used to calculate the
goodness of several TFDs. The goodness has been calculated
using the geometrical characteristics of the TFD according to
formulation adapted from prior publications [28, 29, 39], and the
MSE (mean square error) and the PRD (percentile root mean
square difference) between the expected and the theoretical IFs
of the TFDs. Furthermore, a new performancemeasure has been
introduced taking into account the fact that the IF (instantaneous
frequency) detected in a WVD for a frequency linearly variant

Table 3 Slice optimization results

Characteristic points in TF slice

Pt = 5s As1 IF1 V1 Ax V2 IF2 A2 As2

WVD 0.668 − 0.229 1.19 39.4 0.358 46.4 2.35 0.420 − 0.076
BJD 0.522 − 0.172 1.22 198.4 0.074 247.8 2.29 0.374 − 0.103
SM Rect. 0.770 0.028 1.19 56.1 − 0.003 59.7 2.35 0.384 0.022

SM Ham. 0.763 0.000 1.19 75.8 0.000 82.7 2.35 0.395 0.000

SM Han. 0.754 0.000 1.19 85.6 0.000 87.5 2.35 0.420 0.000

SM Bart. 0.767 0.000 1.19 74.5 0.000 80.0 2.35 0.408 0.000

Spect.Rect. 0.757 0.022 1.19 166.0 0.030 178.8 2.38 0.346 0.059

Spect. Ham. 0.776 0.000 1.19 159.3 0.000 286.9 2.35 0.263 0.000

Spect. Han. 0.781 0.000 1.19 174.6 0.000 217.3 2.35 0.333 0.000

Spect. Bart. 0.768 0.000 1.19 228.0 0.000 246.9 2.35 0.402 0.000

CWD 0.716 − 0.072 1.19 176.1 0.094 243.8 2.35 0.338 − 0.051
ZAM 0.605 − 0.456 1.19 86.1 − 0.109 109.3 2.35 0.285 − 0.167
MBD 0.753 − 0.014 1.19 65.00 0.173 83.0 2.35 0.244 0.016

EMBD 0.782 0.004 1.19 119.6 0.037 177.0 2.35 0.267 − 0.003

Amplitudes As1 1;Ax;A2;As2 and frequency bands V1 and V2 (in mHz) of the IF1 and IF2 (in Hz) for the calculation of the instant performance Pt = 5s.
Amplitude A1 is always the unit
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signal is the best approximation of the instantaneous frequency
of the signal. Thus, the CC (cross-correlation) of several TFDs
and the summation of theWigner-Ville distributions of the input
tones have been calculated.

The second key finding relates to the different TFDs ana-
lyzed. In our results, neither the spectrogram nor the newer
MBD and EMBD are clearly superior to the other. According
to the results in Table 2, the kernels with best P performances
are the EMBD and the spectrogram when used with

Hamming, Hanning, or Bartlett windows (approximately
0.8). The S-Method provides results similar to the spectro-
gram although slightly inferior. The MBD and the spectro-
gram with the rectangular windows also present high P per-
formance, but it should be noted that the spectrogram is more
sensitive to the length of the rectangular window than to the
length of the rest of the windows, as it can be seen in Fig. 5a.
Figure 5f also shows that the EMBD provides a stable perfor-
manceP for a large variety of values for the parametersα and β.

Fig. 6 a A time slice at t = 5 s of the TFD with the characteristic points
As1 ;Ax;A2;As2, and frequency bands V1 and V2 in red of the two tones
and the cross tones for the calculation of the performance P. b The
resulting optimized TFD. c Location of the resulting first (in blue) and

second (in red) IFs, IF1, and IF2 against the theoretical results (in black),
for each type of analyzed TFD: spectrogram with a Bartlett window (1),
CWD (2), and EMBD (3)
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The correlation CC is best for MBD and worst for the spectro-
gram and the S-Method. However, this seems not to define the
ability to detect the IF as predicted since the bestMSE for both
IF1 and IF2 is for the spectrogramwith the Bartlett window. The
MSE and PRD for the WVD are also very low, which is in line
with the theoretical description of theWVD having a perfect IF
when the signal tone changes in a linear fashion.

Regarding the performance P in the central time slice of the
TFDs, the best performance P is such of EMBD followed by
the Hanning spectrogram. It is important to note that there are
almost no secondary and cross lobes. Nevertheless, the thinnest
tone is detected by MBD (after the WVD for the reasons ex-
plained above). In fact, the spectrogram provides the widest
tones irrespective of the window in use. This is detrimental
for the location of instant tones such as the ones used in this
work. Moreover, the cross-correlation performance CC has of-
fered poor results for the spectrograms while the resultingCC is
best for MBD.

In general, the robustness of the spectrogram is related to
the lack of undesirable artifacts present in other TFDs since
the non-linearity is introduced in the final step of the spectro-
gram computation (when taking the squared magnitude).
Nonetheless, the spectrogram does not satisfy the instanta-
neous frequency criterion of the quadratic class of TFDs,
and hence, it does not allow the exact extraction of the signal
IFs from its dominant peaks [26].

Regarding the noise test, the results have shown that no
TFD stands out for its resistance to noise. The performance
of the spectrogram seems to decrease at a slower speed than
the performance of other TFDs with similar performance such
asMBD and EMBD. The root mean square errors between the
expected IF and the calculated IF follow the same pattern for
all TFDs and start to rise for SNR less than 2 dB. Finally, the
tests on the whole database of patients confirm the above-
mentioned discussion, since the results have been very similar,
according to Table 4.

Fig. 8 Main ICG pattern for all
patients in the data base. X-axis is
normalized time and Y-axis is
normalized ICG. Patterns have
been normalized to the same time
duration in the X-axes

Fig. 7 Results to noise tests. a and b show the performance P of several TFDs to different SNR rates and c shows the root mean square error (MSE) in the
detection of the first instantaneous frequency
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5 Conclusion

This new technique sheds light on the methodological
aspects of the selection of the most adequate kernel to
analyze ICG signals. In this case, some traditional ker-
nels such as BJD could be discarded due to the results of
this work, and kernels such as the spectrogram with ei-
ther Hanning or Hamming windows and the extended
modified beta distribution are recommended. As a guide-
line for future research, the final choice of a time-
frequency kernel must follow a thorough evaluation of
the measurements described in this paper and the user’s
experience on the type of signals to analyze. Advances in
the time-frequency characterization of ICG signals may
lead to an increase knowledge of the morphology of
these signals and their use to characterize patient’s he-
modynamic situation.
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