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Abstract Weaning is important for patients and clinicians
who have to determine correct weaning time so that pa-
tients do not become addicted to the ventilator. There are
already some predictors developed, such as the rapid shal-
low breathing index (RSBI), the pressure time index
(PTI), and Jabour weaning index. Many important dimen-
sions of weaning are sometimes ignored by these predic-
tors. This is an attempt to develop a knowledge-based
weaning process via fuzzy logic that eliminates the disadvan-
tages of the present predictors. Sixteen vital parameters listed
in published literature have been used to determine the
weaning decisions in the developed system. Since there are
considered to be too many individual parameters in it, related
parameters were grouped together to determine acid-base bal-
ance, adequate oxygenation, adequate pulmonary function,
hemodynamic stability, and the psychological status of the
patients. To test the performance of the developed algo-
rithm, 20 clinical scenarios were generated using Monte
Carlo simulations and the Gaussian distribution method.
The developed knowledge-based algorithm and RSBI pre-
dictor were applied to the generated scenarios. Finally, a
clinician evaluated each clinical scenario independently.
The Student s t test was used to show the statistical

differences between the developed weaning algorithm,
RSBI, and the clinician’s evaluation. According to the re-
sults obtained, there were no statistical differences between
the proposed methods and the clinician evaluations.

Keywords Weaning . Fuzzy logic .Monte Carlo algorithm .

Gaussian distributionmethod . RSBI

1 Introduction

The weaning process is used to discontinue the use of
mechanical ventilators (MVs) for patients with respiratory
distress in intensive care units (ICUs). It depends on the
strength of patient’s respiratory systems [1]. Twenty per-
cent of ventilated patients will fail at their first attempt at
weaning [2, 3]. Thus, the patients must spend more time
in ICU before they can be weaned off MVs. Prolonged
MV use may cause some complications such as infection,
pneumonia, and barotraumas [4–10]. However, if the cli-
nicians cannot predict the right time to start weaning, the
patients may need reintubation, and this failure may in-
crease the percentage of morbidity and mortality [4,
11–13]. Many researchers have attempted to reduce the
duration of MV use. The studies on the ventilator-
weaning process have proposed reducing the weaning
times via their defined protocols rather than the usual
intensive care protocols [14–19].

There are three weaning predictors commonly de-
scribed in published literature. These are the rapid shallow
breathing index (RSBI), the pressure time index (PTI),
and the Jabour weaning index (JWI) [19]. Owing to its
ease of calculation, RSBI is widely used in ICUs. Over a
period of 1-min spontaneous breathing by the patient,
RSBI calculates the ratio of frequency to tidal volume.

* Hasan Guler
hasanguler@firat.edu.tr

Ugur Kilic
ugurkilic@anadolu.edu.tr

1 Electrical-Electronics Engineering Department, Firat University,
Elazig, Turkey

2 Department of Avionics, Anadolu University, Eskisehir, Turkey

Med Biol Eng Comput (2018) 56:373–384
DOI 10.1007/s11517-017-1698-7

mailto:hasanguler@firat.edu.tr
http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-017-1698-7&domain=pdf


If this value is below the threshold of 100 (breaths per/
min)/L, RSBI predicts weaning success with an accuracy
of up to 97% [20]. However, prolonged MV decreases the
sensitivity of RSBI, and the state of the disease influences
its specificity [21]. The other predictors used in the
weaning process require more detailed respiratory param-
eters, and so, they are not preferred by the staff of an ICU.

It is known that if physicians decide the weaning from
MV, the success of weaning is only 35–60% [22]. Some
researchers developed their predictor algorithms to in-
crease weaning success above predictors described in

published literature. Nemoto et al. implemented a process
to wean patients’ off ventilator with fuzzy logic by using
parameters such as heart rate, tidal volume, breathing rate,
and the percentage of oxygen saturation of arterial blood
(SaO2) [23]. They tested their developed algorithm on 13
patients with severe chronic obstructive pulmonary dis-
ease (COPD). They compared their algorithm with the
decisions made by a physician. Hsu et al. developed a
clinical decision support system by using a support vector
machine (SVM) to predict the right weaning time [24]. In
their study, frequency to tidal volume ratio, inspiratory
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Fig. 1 The schematic outline of
the developed algorithm

Fig. 2 The membership function
for PaCO2, pH, and SpO2
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tidal volume, expiratory tidal volume, and respiration rate
were used to determine the weaning time. Kilic and Kilic
developed a fuzzy decision support system for weaning
off mechanical ventilators; their fuzzy input variables
were hemoglobin, mean arterial pressure, arterial oxygen
saturation, arterial CO2 partial pressure (PCO2), arterial
pH, fractional inspired oxygen (FiO2), negative inspirato-
ry pressure, and tidal volume of spontaneous ventilation.
They compared its results against weaning predictors
found in published literature [25].

As can be seen, the developed algorithms and protocols
in literature have generally ignored some parameters such
as hemodynamic stability and the psychological status of
patients. It is not possible to start weaning without evalu-
ating these parameters. The predictors used in the literature
are based on mathematical formulas. However, it is known
that weaning process requires human experience and
knowledge instead of certain mathematical formulas.
Thus, there is no weaning protocol broadly accepted by

everyone. Fuzzy logic which is an expert knowledge-based
system is more suitable to determine weaning process. In this
paper, the goal is to develop a new knowledge-based weaning
algorithm that eliminates the disadvantages of the current pre-
dictors. Twenty clinical scenarios were generated using
Monte Carlo simulations and Gaussian distribution
methods to test the performance of the developed algo-
rithm. The developed knowledge-based algorithm and
RSBI predictor were applied to the generated scenarios.
In addition, a clinician evaluated each generated scenario
independently according to the 16 parameters generated.
The Student s t test was used to show statistical differences
between these results. According to the results obtained,
there is no statistical difference for a 96.1% probability
between the proposed methods and the clinician’s evalua-
tion. However, there is a statistical difference at a proba-
bility of 25.2% between the proposed methods and RSBI
and a statistical difference at a probability of 30.6% be-
tween the clinician’s evaluation and RSBI.

Fig. 3 The output membership
function for acid–base balance,
and histogram of acid–base
balance

Fig. 4 The membership function
for PaO2/FiO2, PEEP, SaO2, and
Hb
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2 Methods

The system designed contains 16 parameters, which are
easy to collect in practice, and use them to evaluate acid–
base balance, adequate oxygenation, adequate pulmonary
function, hemodynamic stability, and psychological status
for weaning. Here, a knowledge-based weaning algorithm
was designed using Fuzzy-LabVIEW software for deci-
sion making when weaning patients off MVs. To test
and show effectiveness of the algorithm, clinical scenarios
were generated using Monte Carlo simulations and
Gaussian distribution methods for 16 vital parameters.
These parameters are pH, carbon dioxide partial pressure
(PaCO2), oxygen saturation (SpO2), PaO2/FiO2, PEEP, the
oxygen saturation (SaO2), hemoglobin (Hb), maximum inspi-
ratory pressure (MIP), tidal volume in spontaneous breathing
(TVS), respiratory minute volume (VE), heart rate, the respi-
ratory rate per minute (RPM), body temperature, mean arterial

blood pressure (MAP), glasgow coma scale (GCS), and sleep
level. Fuzzy logic-based algorithms were designed to predict
weaning probability, and the performance of the algorithm
was tested using a Monte Carlo simulation in which random
values for fuzzy inputs were taken fromGaussian distributions
[26]. The Gaussian distribution equations used in this algo-
rithm are given in eqs. 1, 2 and 3,

f x;μ;σ2
� � ¼ 1

σ
ffiffiffiffiffiffi
2π

p *e
− x−μð Þ2
2σ2 ð1Þ

z ¼ x−μ
σ

ð2Þ

x ¼ zσþ μ ð3Þ

where x is the new data, z is the standard normal distribu-
tion, μ is the mean value, σ2 is the variance random value, and
σ is the standard deviation. The fuzzy system development

Fig. 5 The output membership
function for adequate
oxygenation and histogram of
adequate oxygenation

Fig. 6 The membership function
for MIP, TVS, and VE
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was designed in LabVIEW software. The reason for preferring
the LabVIEW program is its graphic-based structure and the
ease with which a user can interface to it. The schematic out-
line of the developed algorithm is given in Fig. 1.

2.1 Acid–base balance

In the developed algorithm, pH, PaCO2, and SpO2 were used
to determine the acid–base balance for patients. The input
membership functions of PaCO2, SpO2, and pH are shown
in Fig. 2. Twelve rules were created for the acid–base balance.
The membership function and histogram for the acid–base
balance are given in Fig. 3.

2.2 Adequate oxygenation

The four parameters of PaO2/FiO2, PEEP, SaO2, and Hb were
used to determine the oxygenation levels of patients. The

input membership functions for PaO2/FiO2 rate, PEEP,
SaO2, and Hb are illustrated in Fig. 4, and Fig. 5 shows the
output for adequate oxygenation and a system histogram.

2.3 Adequate pulmonary function

MIP, TVS, and VE parameters were chosen as fuzzy inputs for
adequate pulmonary function. The membership functions for
input are shown in Fig. 6, and the output membership function
and system histogram are given in Fig. 7.

2.4 Hemodynamic stability

Heart rate, RPM, body temperature, and MAP were used to
determine hemodynamic stability in the developed system.
The membership functions of these four parameters are illus-
trated in Fig. 8, and membership function of hemodynamic
stability and system histogram is shown in Fig. 9.

Fig. 7 The output membership
function for adequate pulmonary
function and histogram of
adequate pulmonary function

Fig. 8 The membership function
for heart rate, RPM, body
temperature, and MAP

Med Biol Eng Comput (2018) 56:373–384 377



2.5 Psychological status of patient

The GCS and sleep level for the patient were chosen to
determine the patient’s psychological status. The input
membership functions for GCS and sleep level of the pa-
tient and the output membership function and system his-
togram are shown in Fig. 10.

2.6 Blood gas level and body function

Acid–base balance and adequate oxygenation were chosen
to determine blood gas level percentage of the patient, and
adequate pulmonary function and hemodynamic stability
were used to evaluate body function percentage. Figure 11
shows the output membership function for blood gas
levels and the output membership for body function.

The developed algorithm description involves many block
diagrams and front panels. Some of these front panels and
block diagrams are shown in Figs. 12, 13, 14, and 15.

Sixteen parameters are used to estimate the percentage
probability for weaning of patients. Some of these pa-
rameters have been grouped together in the developed
system; otherwise, the fuzzy system would have nearly
300,000 rules. Such unmanageable rule tables could not
possibly be generated by an expert clinician. In the de-
veloped system, the numbers of total rules generated are
135. Grouping some related parameters together de-
creases the huge rule tables for the system. The final rule
table for the weaning probability for a patient is given in
Table 1. In the system, all the rules are created by an
expert clinician.

3 Results

Twenty clinical scenarios were randomly generated using
Monte Carlo simulations and Gaussian distribution
methods to test the weaning probability. Each clinical

Fig. 9 The output membership
function for hemodynamic
stability and histogram of
hemodynamic stability

Fig. 10 The membership
function for GCS and sleep level
of patient and the output
membership function for for
psychological status of patient. b
Histogram of psychological status
of patient
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scenario represented a patient in the system. Sixteen vital
parameters for each scenario were used to make a deci-
sion about weaning in the developed predictor. The
weaning probabilities obtained, RSBI results, and the
percentages obtained from the clinician’s evaluations for
each scenario are given in Table 2.

Figure 16 shows box and whisker plots for the devel-
oped algorithm, RSBI, and the clinician’s evaluation. In

this figure, it can be shown that the developed algorithm
performs better than the RSBI predictor’s results in terms
of the median value and the upper and lower ends of the
boxes. In addition, the developed algorithm produces re-
sults that are very close to the clinician’s evaluation ac-
cording to the generated scenario.

The results show that the developed algorithm gave a
different decision than RSBI for the 3rd, 6th, 7th, 11th,

Fig. 11 a The output
membership function for blood
gas level. b The output
membership function for body
function
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Fig. 12 The developed front panel for acid–base balance



Fig. 14 The developed fuzzy systems for adequate oxygenation
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Fig. 13 The developed final front panel of the system



Fig. 15 The developed fuzzy systems for weaning probability

Table 1 The final rule table for
weaning probability of patient Blood gas level Body function Psychological condition Weaning probability

Low Low Low Low

Low Low Medium Low

Low Low High Low

Low Medium Low Low

Low Medium Medium Medium

Low Medium High Medium

Low High Low Low

Low High Medium Medium

Low High High High

Medium Low Low Low

Medium Low Medium Medium

Medium Low High Medium

Medium Medium Low Medium

Medium Medium Medium Medium

Medium Medium High High

Medium High Low Medium

Medium High Medium High

Medium High High High

High Low Low Medium

High Low Medium Medium

High Low High High

High Medium Low Medium

High Medium Medium High

High Medium High High

High High Low High

High High Medium High

High High High High
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13th, and 19th scenarios. In these scenarios, when the
algorithm developed and clinician decided to start
weaning process, it was not possible to wean the patient
from MV according to the RSBI results. The developed
algorithm’s results and the clinician’s evaluation were the
same for those scenarios. The Student’s t test for p < 0.05

was applied to the percentage of weaning probability ob-
tained, the RSBI result, and the percentage from clini-
cian’s evaluation. The Student’s t test was used to determine
statistical difference because it assesses whether the means of
the three groups are statistically different from each other. This
test is appropriate whenever a person wants to compare the

Table 2 The obtained results
from the developed algorithm and
clinician’s evaluation

Patient data (P.D.) The percentage of developed
weaning probability (%)

RSBI results The percentage of
clinician probability (%)

1st P.D. 60,344865 22,168606 65

2nd P.D. 62,853257 79,795868 60

3rd P.D. 21,083112 72,890881 30

4th P.D. 92,244709 41,874702 95

5th P.D. 24,120369 118,880876 25

6th P.D. 33,029932 40,194912 30

7th P.D. 22,120784 78,100778 25

8th P.D. 82,593178 31,596923 85

9th P.D. 65,942224 40,000000 65

10th P.D. 90,308333 19,716028 95

11th P.D. 92,244709 154,880245 95

12th P.D. 63,660654 40,000000 70

13th P.D. 23,663961 58,193893 30

14th P.D. 62,782238 20,481709 65

15th P.D. 90,645022 56,970112 90

16th P.D. 92,244709 18,333333 95

17th P.D. 62,853257 53,333333 55

18th P.D. 60,552843 86,065177 60

19th P.D. 22,593178 46,235371 30

20th P.D. 27,111227 124,599032 25

Fig. 16 Box-and-whisker plots of
the developed algorithm, RSBI,
and clinician’s evaluation
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means of two or more groups [27–29]. Equations 4, 5, and 6
were used to calculate the statistical difference.

X ¼ ∑x
n

ð4Þ

s2 ¼
∑ x−�x
� �2

n−1
ð5Þ

t ¼
x1−x2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21

n1−1
þ s22

n2−1

s ð6Þ

where �x is the arithmetic mean, S2 is the variance, t is the test
formula, x is the investigated group, and n is the number of
data points in the group. According to the results from the t
test, there is no statistical difference for 96.1% probability
between the percentage of developed algorithm results and
evaluations by the clinician. In addition, there are statistical
differences at 25.2 and 30.6% between the percentages of the
developed algorithm results and the RSBI results and between
the RSBI results and the percentages from the clinician’s eval-
uation, respectively.

4 Discussion

In ICUs, clinicians try to promptly withdraw ventilator sup-
port when patients no longer need this support. This decreases
complications, costs, and prolonged mechanical ventilation.
Thus, many studies about weaning prediction algorithms and
protocols have been carried out. Currently, there are many
weaning protocols such as RSBI, PTI, and JWI. RSBI is a
widely used protocol for weaning patients off MVs. Since
these algorithms and protocols have generally ignored some
parameters such as hemodynamic stability and the psycholog-
ical status of patients, there is no weaning protocol broadly
accepted by everyone. In this study, all the individual param-
eters used in literature were taken into account to estimate the
weaning probability percentage for patients. Sixteen vital pa-
rameters were used to determine the weaning decision in the
fuzzy systems. Since there were so many parameters used in
this study, related parameters were grouped together to de-
crease the numbers of rule tables in the fuzzy system. Three
parameters, pH, carbon dioxide partial pressure (PaCO2), and
oxygen saturation (SpO2), were used to determine acid–base
balance percentage. Four other parameters were used to deter-
mine the percentage for adequate oxygenation. These param-
eters were PaO2/FiO2 rate, the oxygen saturation (SaO2), the
hemoglobin (Hb), and the positive end-expiratory pressure
(PEEP). The three parameters, maximum inspiratory pressure
(MIP), tidal volume in spontaneous breathing (TVS), and re-
spiratory minute volume (VE), were used to determine the

percentage required for adequate pulmonary function. In ad-
dition, heart rate, the respiratory rate per minute (RPM), the
body temperature, and MAP were used to determine the per-
centage of hemodynamic stability. The Glasgow Coma Scale
(GCS) and sleep level were used to evaluate a percentage for
the psychological status of the patients. After this calculation,
the acid–base balance and oxygenation determined the blood
gas level. Adequate pulmonary function and hemodynamic
stability were used to determine the level of body function.
Then, the blood gas level, the level of body function, and
psychological status of patients were used to determine the
percentage probability to commence weaning. The all algo-
rithms were implemented in LabVIEW software. In this study,
the generated clinical scenarios were firstly applied to the
developed algorithm and RSBI, and then, a clinician deter-
mined the weaning probability percentage for patients accord-
ing to each scenario. According to the results obtained, the
developed algorithm and the clinician’s evaluation gave near-
ly identical results, but RSBI failed to accurately estimate the
weaning probability. The results show valuable proof of con-
cept for the role of fuzzy logic in the management of the
weaning process.

5 Conclusion

The weaning process is an important issue for patients and
clinicians. If clinicians do not start the weaning process at
the right time, it may result in prolonged mechanical ventila-
tion, and it may cause some complications including infection,
pneumonia, and barotraumas. Thus, the knowledge-based
weaning process can determine the right time to start weaning,
and it can be said that the developed algorithm may create a
future research-driven protocol for weaning patients off the
ventilators.
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