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was accommodated in a state-space model. A good rela-
tionship between sEMG activities and 3D lip movement 
was established with an average root mean square error 
of 2.43 mm for the first-order system and 2.46 mm for the 
second-order system. This information can be incorporated 
into biomechanical models to further personalise functional 
outcome assessment after treatment.

Keywords  Oral cancer · Surface electromyography · 
Lips · State-space estimation · Kalman filter · Principal 
component analysis

1  Introduction

Oral cancer, including that of the lips, is the sixth most 
common cancer worldwide [15]. Surgery is still standard 
care [14] and can lead to deterioration of speech, swallow-
ing and mastication with serious consequences on quality 
of life [6]. If surgical resection of a tumour results in an 
unacceptable loss of function, the tumour is designated 
as functionally inoperable, and other curative treatment 
options such as chemoradiotherapy or radiotherapy can 
serve as alternative treatments [7].

Accurate prediction of the functional consequences 
of surgery is an urgent need to make the right choice of 
treatment [19]. Functional prediction using virtual sur-
gery is complex and involves several aspects of patient-
specific anatomical geometry, biomechanical tissue prop-
erties, branching and distribution pattern of the nervous 
system and the muscle activation signals that control a 
particular function. Biomechanical modelling, includ-
ing the muscular system, in the oral and oropharyngeal 
region, has been the subject of ongoing research [10, 16, 
18, 23].

Abstract  In oral cancer, loss of function due to surgery 
can be unacceptable, designating the tumour as function-
ally inoperable. Other curative treatments can then be 
considered. Currently, predictions of these functional con-
sequences are subjective and unreliable. We want to cre-
ate patient-specific models to improve and objectify these 
predictions. A first step was taken by controlling a 3D lip 
model with volunteer-specific sEMG activities. We focus 
on the lips first, because they are essential for speech, oral 
food transport, and facial mimicry. Besides, they are more 
accessible to measurements than intraoral organs. 3D lip 
movement and corresponding sEMG activities are meas-
ured in five healthy volunteers, who performed 19 instruc-
tions repeatedly, to create a quantitative lip model by estab-
lishing the relationship between sEMG activities of eight 
facial muscles bilaterally on the input side and the corre-
sponding 3D lip displacements on the output side. The rela-
tionship between 3D lip movement and sEMG activities 
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This paper focuses on the lips, since these are essential 
for speech, oral food transport and facial mimicry. To cre-
ate a predictive model, a continuum of 3D lip shapes is 
needed ultimately to perform virtual surgery on a model. 
Former research on lip modelling, utilising surface electro-
myography (sEMG) of facial muscles, is more phonetic in 
nature and is mainly focused on the categorisation of facial 
expressions [4], categorisation of vowels [1] and words [2].

To our knowledge, only two studies have described lip 
shape modelling in combination with quantitative lip pose 
estimation using facial electromyography (EMG). Honda 
et  al. [5] recorded lip motion in the 2D frontal projection 
of the face and sEMG signals from only one side. They 
used a direct linear mapping of EMG to the lip coordinates 
based on multiple regression analysis. A visual comparison 
between the measured and modelled lip shapes was made. 
Lucero and Munhall acquired intramuscular EMG data, 
using hooked-wire bipolar electrodes, of one side of the 
face, and simultaneously measured lip and face displace-
ments on the other side [9]. The relationship between EMG 
activity and marker displacements was based on a facial 
finite element model and the connection between EMG 
feature and the steady-state force generated by the corre-
sponding muscle was presumed to be linear. The quantita-
tive evaluation was expressed in terms of cross-correlation 
between model-predicted and measured displacements of 
the individual markers. For markers on the lips, these cross-
correlations were rather low (mean values: 0.0–0.91) with 
very low cross-correlation for protrusion. The instructions 
in these studies differed, Honda et  al. used five Japanese 
vowels, and the subject in the study of Lucero and Munhall 
was asked to produce an English sentence. Both models 
were tested on one volunteer.

The goal of this study is twofold. First we want to dem-
onstrate that sEMG signals contain enough information 
for controlling 3D dynamic models of facial expressions, 

particularly lip movements. The second goal is to estab-
lish the optimal processing configuration to extract infor-
mation from facial sEMG data. To avoid the complexity 
and pitfalls of detailed biomechanical models, we first 
focus on an empirical model. If the results of this empiri-
cal model are promising, the premise is justified that sEMG 
signals are very useful to solve the ambiguity problems in 
inverse dynamic modelling [17]. In addition, our study also 
should reveal which sEMG processing configuration, e.g. 
sEMG feature type and time window, is most promising 
for sEMG-based inverse modelling. The ambiguity prob-
lem of inverse dynamic modelling stems from the fact that 
a desired movement can be accomplished in various ways 
[17]. The activation pattern that causes the desired move-
ment is not unique. The addition of the sEMG could pro-
vide further information about a patient-specific activation 
pattern.

2 � Methods

2.1 � Volunteers and data acquisition

Data were obtained from five healthy volunteers 
(k = 1, . . . , 5) consisting of two males and three females, 
age ranging from 21 to 30. The recording sites of the skin 
were cleansed with NuPrep abrasive gel and alcohol. The 
sEMG signals were recorded using a TMSi® Porti™ system 
(TMSi®, Oldenzaal, the Netherlands). The micro-sEMG 
sintered disc-shaped surface electrodes (1.5 mm diameter, 
Ag/AgCL, with shielded cables) were placed above eight 
muscles on both sides of the face (n = 1, . . . , 16), as shown 
in Fig.  1. The locations were chosen based on human lip 
anatomy and a study of Lapatki et  al. [8] showing the 
effects on lip shapes. Additionally, a common ground ref-
erence electrode was applied with a self-adhesive button 

Fig. 1   Left locations of elec-
trodes, orientation markers and 
lip markers. Right measured 
facial muscles (excluding the  
digastric muscle) [16]  
© Springer, with permission of 
Springer
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electrode on the left wrist. In Table 1, the measured mus-
cles, their functions and electrode number, corresponding 
to the numbering in Fig. 1, are given. Sixteen facial mark-
ers were defined using a skin marker. Ten markers covered 
the lip contour (m = 1, . . . , 10). The other six markers 
(mOR = 1, . . . , 6) were located on the face (cheeks, nose 
and forehead; see Fig. 1) and were used to compensate for 
head movement. The volunteers were positioned in front of 
a triple-camera set-up consisting of three cameras (Basler 
avA1000-100gc), which recorded the lip movement at 100 
frames per second.

2.2 � Instructions to volunteers

A study of van Son et al., showed that Dutch (experienced) 
lip readers were able to recognise five consonantal and five 
vowel visemes [21]. Visemes are groups of speech sounds 
that are visually indistinguishable. These Dutch viseme 
instructions were used in this study. Besides these visemes, 
six facial expressions that maximised independent contrac-
tion of the measured muscles were included. These selected 
expressions were based on the work of Lapatki et  al. [8]. 
Lastly, two asymmetric motions were performed from left 
to right to left with closed lips, and with open lips, and one 
dynamic motion transfer between two expressions; purse 
lips to voluntary smiling to purse lips. Each volunteer was 
asked to repeat the 19 instructions (i = 1, . . . , 19) five times 
(r = 1, . . . , 5). The instructions are shown Table 2.

2.3 � Data processing and analysis

2.3.1 � sEMG preprocessing

The sEMG signals sn(t, i, r) were recorded in bipolar con-
figuration with a sample frequency of 2048 Hz. Here, t is 
the time index, i is the instruction and r is the repetition 
number. All recorded signals were band-pass filtered with a 
high- and low-pass fourth-order Butterworth filter with cut-
off frequencies of, respectively, 15 and 500 Hz, in accord-
ance with van Boxtel [20].

Many different sEMG feature types have been proposed in 
the literature. Based on the results of Phinyomark et al., who 
examined 37 feature types, and our results of a preliminary 
experiment, we chose to investigate four feature types given in 
Table 3 [11]. Thresholds for the WAMP feature (xlim) were set 
to 10 and 20 mV. With all 16 sEMG channels stacked in a vec-
tor the result is denoted: gf (t, i, r) ∈ R

16, with f = 1, . . . , 5 
the feature type. Features were calculated over a sliding win-
dow with maximum overlap. The different window lengths 
examined were: 50, 100, 150, 200, 250 and 300 ms.

The videos were recorded concurrently with the 
sEMG. To synchronise the recorded sEMG signals with 
the video recordings a synchronisation pulse was fed to 
the TMSi® Porti™ system when the cameras started their 
recordings. Thereafter the sEMG signals were cut and 
resampled to 100 Hz, equivalent to the frame rate of the 
cameras.

There is a small time delay between a sEMG activity and 
the corresponding muscle activation. It is difficult to define 
a default value for this delay. Honda et al. [5] used 70 ms, 
whereas Vatikiotis et al. [22] used different delays varying 
from 0 to 100 ms. By minimising the estimation errors of 
the lip marker positions, we empirically determined a mean 
muscle activation delay of 30 ms, which we compensated 
in all records.

2.3.2 � Video preprocessing

The facial markers were tracked in the images of the three 
cameras, and the 2D coordinates were reconstructed to a 
set of 3D coordinates. The root mean square (RMS) error 
of the 3D localisation of markers, obtained via the leave-
one-out method, was 0.73 mm. The resulting 3D positions 
of the ten markers on the lip, corrected for head movement, 
are denoted by X(t, i, r) ∈ R

30.

2.3.3 � The measurement model

State-space estimation requires the availability of 
a measurement model that links the sEMG features 

Table 1   Muscle, muscle function and corresponding electrode number

Muscle Function Electrodes number 
(right/left)

Zygomaticus major (ZYG) Elevates the corners of the mouth in lateral direction 11, 12/27,28

Risorius (RIS) Retracts angle of mouth 9, 10/25, 26

Orbicularis oris superior (OOS) Narrows orifice of mouth, purses lips and puckers lip edges 1, 2/17, 18

Orbicularis oris inferior (OOI) Narrows orifice of mouth, purses lips and puckers lip edges 3, 4/19, 20

Mentalis (MEN) Draws up the skin of the chin and causes the lower lip to protrude 13, 14/29, 30

Depressor anguli oris (DAO) Draws the corners of the mouth downwards and laterally 7, 8/23, 24

Levator labii superioris (LLS) Elevates and everts upper lip 5, 6/21, 22

Digastricus (DIG) Depresses mandible, opening mouth and/or elevates larynx 15, 16/31, 32
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gf (t, i, r) to marker positions X(t, i, r). The relationship 
between these quantities is nonlinear, whereas a linear 
model was preferred. To arrive at a linear approximation, 
a truncated Taylor series in gf (t, i, r) up to order two was 
used. For this, the 16D feature vector gf (t, i, r) was aug-
mented with all the 136 quadratic terms and cross prod-
ucts of its elements yielding a 152× D vector g

−
f

(t, i, r).

To establish the measurement model, first a prin-
cipal component analysis (PCA) was applied. Sup-
pose that a training set consisting of J observed sEMG 

Table 2   Instructions: visemes 
(1–10), facial expressions (11–
17) and asymmetric movements 
(18–19)

Table 3   sEMG features

f Feature Formula

1 RMS
√

1

N

∑N
i=1

x2i

2 MAV 1

N

∑N
i=1

|xi|

3 WL
∑N−1

i=1
|xi+1 − xi|

4 xlim = 10 mV WAMP
∑N−1

i=1

[

f (|xn − xn+1|)
]

5 xlim = 20 mV
with f (x) =

{

1 if x ≥ xlim
0 otherwise
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features g
−
(j) and corresponding marker positions X(j), with 

j = 1, . . . , J , is available. The exact construction of this 
training set will be explained later. PCA was applied to the 
concatenation of these vectors:

The dimension of the vectors z(j) is 182. The set was nor-
malised with respect to mean and variance of each element 
before applying the PCA, because the sEMG features and 
the 3D coordinates present two different physical dimen-
sions. The PCA resulted in a 182× D-dimensional orthogo-
nal matrix Y containing the first D principal components of 
the set. Encoding of a vector z in a D-dimensional coefficient 
vector b, and subsequent decoding, occurs according to:

The mean of the coefficient vector b is zero, and the 
covariance matrix Cb is diagonal with the elements sorted 
in descending order.

To arrive at a (pseudo-) linear measurement model, we 
constructed the matrix Yg from Y by leaving out the first 30 
rows corresponding to the positions X. We then have:

Suppose that the residuals of ĝ
−
 are given by v, such that 

g
−
= ĝ

−
+ v, then:

This can be regarded as a linear measurement model 
of b with g

−
 the measurement vector, Yg the measurement 

matrix and v the measurement noise. The covariance matrix 
Cv of v is a 152× 152-dimensional matrix which can eas-
ily be estimated from the training set. Due to augmentation 
of g with quadratic terms, the measurement noise is not 
guaranteed to be uncorrelated, and the matrix Cv might be 
non-diagonal.

2.3.4 � State‑space modelling

For dynamic modelling, two state-space models were 
implemented, a first-order and a second-order system. 
In the first-order system, a time series b(t) was modelled 
dynamically with:

b(t) is the D-dimensional state vector, and F is the D× D 
system matrix. The process noise w(t) was assumed to 
be zero mean and uncorrelated in time. Its covariance 
matrix is Cw. The system matrix F was estimated from 
the training set using E

[

b(t + 1)bT (t)
]

= F E
[

b(t)bT (t)
]

 . 

(1)z(j)
def=

[

X(j)

g
−
(j)

]

(2)
b = YTz (encoding)

ẑ = Yb (decoding)

(3)ĝ
−
= Ygb

(4)g
−
= Ygb+ v

(5)b(t + 1) = Fb(t)+ w(t)

Here, E[] is the expectation operator; hence, 

F̂ = b(t + 1)bT (t)
(

b(t)bT (t)
)−1

. The covariance 

matrix Cw can be estimated from the training set using 

w(t) = b(t + 1)− Fb(t). Preliminary experiments showed 

that both F and Cw are diagonal. This was expected as the 
PCA decorrelated the coefficients b(t). In addition, the sys-
tem matrix F appeared to approximate the identity matrix I .  
This was also expected as the sampling period, 10 ms, is 
rather small compared to the expected time constant of lip 
motions.

In the second-order system, the state vector was defined as:

with associated state equation:

Preliminary experiments showed that the submatrices F1 
and F2 are diagonal which again is in line with the uncor-
relatedness of the coefficients b(t). Equation (7) models D 
decoupled second-order autoregressive (AR) models, one 
for each coefficient bn(t) in b(t), i.e.

where αn is a diagonal element from F2 and βn a diagonal 
element from F1. The AR models represent second-order 
differential equations in the continuous time that are char-
acterised by their natural frequencies fn and relative damp-
ing ζn given by:

where T  is the sampling period. The natural frequency 
determines the bandwidth of the corresponding coefficient. 
The damping determines the spectrum of the signal around 
the natural frequency. We used these parameters to fine-
tune the state-space model during training.

The process noise w(t) has zero elements in the first D 
elements. Thus, the covariance matrix is built as follows:

C22 is a diagonal matrix as the coefficients of a PCA are 
uncorrelated. Preliminary results showed that this was 
indeed the case. To determine the influence of dynamic 
modelling we also performed static modelling by enforc-
ing the Kalman filter, which is described below, to use only 
measurements, and to ignore the predictions. This was 
effectuated by setting the standard deviation of the process 
noise to almost infinity.

(6)x(t)
def=

[

b(t − 1)

b(t)

]

(7)x(t + 1) = Fx(t)+ w(t) with F =
[

0 I

F1 F2

]

(8)
bn(t + 1) = αnbn(t)+ βnbn(t − 1)+ wn(t)

with n = 1, . . . ,D

(9)fn =
√
1− αn − βn

2πT
and ζn =

−αn − 2

2
√
1− αn − βn

(10)Cw =
[

0 0

0 C22

]
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2.3.5 � Estimation

The estimation of the coefficients of the PCA was done 
with a discrete Kalman filter. The dimension of the state 
vector is in the first-order system D and in the second-order 
system 2× D. In practice, D, being the result of the PCA, 
is much smaller than the dimension of the measurement 
vector, g

−
(t), which is 152. Therefore, the Kalman filter was 

used in the following form:

This is computationally more efficient than the typical 
form. In Eq.  (11), H is the measurement matrix, which 
equals Yg in the first-order system and 

[

0 Yg

]

 in the sec-
ond-order system.

2.3.6 � Training and testing

The algorithm needs training data to find the PCA compo-
nents Y, the covariance matrices Cv and Cw and in case of 
the first-order system the system matrix F and in case of the 
second-order system, its submatrices F1 and F2. The dimen-
sion D of the PCA is a design parameter. Additional design 
parameters were introduced to fine-tune the models. These 
were as follows:

•	 The measurement noise covariance matrix Cv was cor-
rected with a regularisation parameter cv. Instead of Cv , 
the matrix (1− cv)Cv + cvCv(ℓ, ℓ) I, with Cv(ℓ, ℓ) the 
average of the diagonal elements, was used.

•	 The process noise covariance matrix Cw was cor-
rected with a regularisation parameter cw. That 
is, the submatrix C22 was replaced by the matrix 
(1− cw)C22 + cwdiag(C22(ℓ, ℓ)). Here, diag(C22(ℓ, ℓ)) 
is the diagonal matrix that is built with a smoothed ver-
sion of the diagonal elements of C22.

(11)

x̂(t|t − 1) = Fx̂(t − 1|t − 1)

C(t|t − 1) = FC(t − 1|t − 1)FT + Cw

�

prediction

C(t|t) =
�

C−1(t|t − 1)+HTC−1
v H

�−1

x̂(t|t) = C(t|t)
�

C−1(t|t − 1)x̂(t|t − 1)+HTC−1
v g

−
(t)

�







updating

•	 The diagonal matrices F1 and F2, which holds the sec-
ond-order AR parameters αn and βn, respectively, were 
corrected by application of a proportionality constant to 
the corresponding natural frequencies and damping by 
constants cf  and cd. So, instead of fn and ζn, the param-
eters cf fn and cdζn were used.

This resulted into three design parameters, D, cv and cw , 
for the first-order system and five design parameters, D, cv , 
cw, cf  and cd, for the second-order system. These param-
eters were optimised using training data.

We performed cross-validation for training and testing. 
The procedure is depicted in Fig. 2. It was applied per vol-
unteer, per feature type and per window size. Data from 
the various instructions were pooled by concatenating the 

data: g
−
f

(t, r) =
[

g
−
f

(t, 1, r) · · · g
−
f

(t, 19, r)
]

. The data 

from four repetitions were pooled to get the training data: 

g
−
f

(t) =
[

g
−
f

(t, 1) · · · g
−
f

(t, 4)
]

. Testing was performed on 

the fifth repetition. Cross-validation took place by rotating 
the repetitions. The final evaluation criterion was defined as 
the RMS of the error calculated over all marker coordinates 
and all repetitions. The design parameters were obtained by 
minimisation of the RMS error by varying these parameters 
one by one and applying successive parabolic optimisation. 
The one-sided paired Wilcoxon test was used to test for sig-
nificant differences between the static and the two dynamic 
systems. The one-sided test was justified because the static 
model is in fact included in the dynamic model as a spe-
cial case, and as such the optimised performance of the 
dynamic model cannot be less than the static model.

3 � Results

The best results for the static, first-order and second-
order state-space models are summarised in Table  4 
for the individual subjects and on average. The first-
order system for state-space modelling performed best 
on average, with a RMS error of 2.43 mm on average. 
The first-order and the second-order system showed 

Fig. 2   Optimisation and evalu-
ation of design parameters using 
cross-validation
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statistically significant better results than the static 
system (p  =  0.03). No significant difference was 
found between the two dynamic systems. Four sub-
jects showed the best results when the WAMP feature 
was used. The optimal threshold xlim differed between 
the subjects. A window length of 200  ms performed 
best on average. The average RMS error was 2.46 mm 
for the second-order state-space model, also using the 
WAMP feature with xlim = 10 mV and a window length 
of 200 ms. As expected, static modelling showed poorer 
results, but performed also best when the WAMP fea-
ture was used.

The RMS errors for the different features for the first-
order and second-order system are presented in Table 5. It 
can be seen that for both xlim = 10 mV and xlim = 20 mV 
the WAMP feature performance was comparable. Regard-
ing the other features, the WL performed slightly worse 
compared to the WAMP. RMS and MAV showed the poor-
est results.

The influence of the different parameters and win-
dow length on the error in the second-order system can 
be seen in Fig. 3. Each graph shows the influence of one 
parameter on the RMS error while the others are set to 
values which lead to the optimal results on average. The 
dimension of the PCA, D, shows a plateau after 20 com-
ponents. Optimal values of 0.1 and 3.4 were found for 
cv and cf , respectively. The regularisation parameter cd 
had the minimum error at a factor of 0.7. The constant 

cw showed little influence but had an optimum on aver-
age at 0.2. The window lengths showed a similar trend 
in all subjects, with the best results for medium length 
windows. For the first-order system, comparable values 
were found.

Table 4   RMS error, optimal feature and window, found per volunteer and on average for the static, first-order and second-order dynamic model

Volunteer 1 2 3 4 5 Average

Static

 RMS error (SD) (mm) 2.34 (0.21) 2.55 (0.21) 3.02 (0.12) 2.32 (0.15) 2.92 (0.14) 2.70 (0.19)

 Feature WAMP (20 mV) WAMP (20 mV) WAMP (20 mV) WAMP (10 mV) WAMP (10 mV) WAMP (10 mV)

 Window (ms) 200 200 300 250 300 250

First-order system

 RMS error (SD) (mm) 2.10 (0.17) 2.29 (0.19) 2.64 (0.17) 2.10 (0.19) 2.66 (0.19) 2.43 (0.18)

 Feature WAMP (20 mV) WL WAMP (20 mV) WAMP (10 mV) WAMP (10 mV) WAMP (10 mV)

 Window (ms) 200 200 200 250 250 200

Second-order system

 RMS error (SD) (mm) 2.02 (0.19) 2.42 (0.18) 2.58 (0.18) 2.13 (0.21) 2.66 (0.21) 2.46 (0.18)

 Feature WAMP (20 mV) WL WAMP (20 mV) WAMP (10 mV) WAMP (10 mV) WAMP (10 mV)

 Window (ms) 200 250 150 200 200 200

Table 5   Optimal settings 
averaged over the volunteers 
obtained per feature and system 
order

RMS MAV WL WAMP10 WAMP20

System order First Second First Second First Second First Second First Second

RMS error (mm) 2.74 2.70 2.67 2.64 2.50 2.50 2.43 2.46 2.45 2.46

Window (ms) 200 200 250 200 200 200 200 200 200 200

Fig. 3   Dependence of the RMS error on the various parameters and 
window length in the second-order system
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4 � Discussion

For the prediction of the functional and aesthetic conse-
quences of treatment in oral cancer, dynamic models of the 
lips are required. Biomechanical modelling is physics based 
and as such the most direct method to predict these conse-
quences. However, finding the patient-specific muscle activa-
tion signals needed for the biomechanical models is difficult 
[24]. sEMG signals may contain information to help in find-
ing these patient-specific activations signals. To find the opti-
mal sEMG processing configuration and to prove that sEMG 
signals contain sufficient information to do so, the current 
study describes an empirically derived model that is able 
to estimate the dynamics of lip displacements with an aver-
age RMS error of 2.43 mm. This empirical model is sEMG 
driven, which incorporates volunteer-specific information. 
As far as we know, we are the first who expressed distance 
errors of lip motion prediction based on sEMG features.

The approach used here, incorporated the dynamics of 
the system by means of a state-space model. To test whether 
dynamical modelling was superior to static modelling, we 
implemented both. As expected, incorporation of dynamics 
improved the model. In comparison with the static system 
RMS errors decreased in every volunteer, with an average 
of 0.27 mm for the first-order system and 0.24 mm for the 
second-order system. An advantage of a dynamic system 
is that bandwidth can be sacrificed to improve the signal-
to-noise ratio. Apparently, in the current application such a 
sacrifice pays off, but not drastically.

The difference between the first-order and second-order 
system is negligible. A higher-order system has more param-
eters which have to be estimated, making the filter more sensi-
tive for deviations in those parameters to the optimum settings. 
An optimal equilibrium has to be found between modelling 
accurate dynamic behaviour for which higher-order systems 
are beneficial, and confining the impact of errors in the esti-
mated parameters for which a lower-order system is preferred. 
In this study, the advantages of a second-order system over a 

first-order system did not outweigh the errors induced by the 
deviations in the estimated parameters.

The fudging parameters were used to optimise the model 
per volunteer and hence make it volunteer-specific. Only the 
regularisation parameter cw for the process noise covariance 
matrix Cw did not have much influence. For each parame-
ter, a similar trend was seen regarding the optimal values, 
but the level of influence differed per volunteer. The opti-
mal values found in this study can be used to set the lim-
its for future volunteers, thereby decreasing computational 
time of the parabolic optimisation. The dimension of the 
PCA reached a plateau at 20, four dimensions more than the 
original 16 dimensions, suggesting that the cross products 
of the sEMG provided additional information. Preliminary 
experiments indicated that leaving out all the nonlinear 
cross products seriously deteriorated the results. Hence, the 
nonlinearity of the system is substantial. Finally, window 
length was optimal at medium lengths. A possible explana-
tion is that short window lengths are prone to noise, whereas 
longer window lengths smooth the signals too much.

The different features also had a noticeable influence 
on the RMS error. The WAMP features with xlim = 10 and 
xlim = 20 mV were most promising. Perhaps that thresh-
olds in-between these values could perform better. One 
can also think of optimising xlim per muscle channel for 
optimal results. The widely used RMS feature performed 
worse. This was also found by Phinyomark et al. [11].

Because of different error assessments, the differences of 
our model compared to studies in the literature will be dis-
cussed qualitatively. The main differences are stated in Table 6. 
The current model showed results for a more extensive set of 
instructions, including asymmetric movements. Furthermore, 
more 3D lip markers and more muscles were included. Our 
model predicts 3D movement of the lips based on measure-
ments on both sides of the face and therefore is more realistic. 
Honda et al. used a linear statistical approach, which is inad-
equate for modelling nonlinear soft tissue changes. To allow 
the model to cope with nonlinear behaviour, we calculated the 

Table 6   Differences in experimental set-up in related studies

Current study Honda et al. [5] Lucero and Munhall [9]

Dimension 3D 2D 3D

Measurement Bilateral Unilateral Unilateral

Muscles 16 6 7

Lip markers 10 7 5

EMG Surface Surface Hooked-wire

Jaw movement Digastric muscle Omitted Manual

Model PCA MMSE + Kalman Multiple regression FEM

Instructions Visemes and facial expressions (19) Japanese vowels (5) English sentence

Volunteers 5 1 1

Error assessment RMS distance Visual Visual and cross-correlations
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cross products of the sEMG signal features to add nonlinear-
ity. The model of Honda et al. did not include the factor of jaw 
movement, making the estimation of vertical movement prone 
to errors. Lucero and Munhall controlled jaw movement by 
tracking an optical marker instead of EMG signals. Non-sur-
prisingly, the modelled facial tissue followed this movement 
well. We added sEMG measurements of the digastric muscle 
to make the prediction of jaw movement possible. Both Honda 
et al. and Lucero and Munhall measured EMG signals on one 
side of the face, disregarding asymmetry in facial morphology 
and lip movement as described by Campbell [3]. The use of 
hooked-wire, as used by Lucero and Munhall, or needle elec-
trodes is attractive to overcome the problem of crosstalk, but 
for clinical applications this will be impractical because they 
are invasive and consequently patient-unfriendly. Therefore, in 
generating future personalised 3D models controlled by EMG 
signals, sEMG will have our preference, being easy applicable 
and patient-friendly. Furthermore, we tested our model in five 
subjects, indicating it is general applicable.

A limitation of the proposed set-up is the high number of 
required sEMG electrodes. This makes the current approach 
time-consuming which is inconvenient in future clinical prac-
tice. Monopolar derivations can be used to halve the number 
of electrodes; however, this configuration does not reduce 
unwanted noise from the recordings by using the differential 
amplifier design [12]. Another approach to lessen the number 
of electrodes is to identify less influential muscle channels for 
the estimation of motion, and include only those channels that 
affect motion prediction most.

Another difficulty is the variability in muscle anatomy, 
and overlying soft tissue, which makes standardisation of 
the measurements difficult. Additionally, physiological oro-
facial functions usually require simultaneous contraction of 
various muscles. These muscles therefore lack training in 
isolated contractions, resulting in relatively high co-con-
traction of muscles. Also volunteers can use different mus-
cle activation patterns to perform the same instruction. We 
saw similar results when facial expressions were performed 
as described by Schumann et al. [13]. Most volunteers were 
able to selectively activate the LLS, whereas most volun-
teers had difficulty in pulling their lip corners down (DAO). 
Purse lips, pout lips and voluntary smiling all induced mul-
tiple muscle activations, showing the difficulty in selective 
muscle activation of facial muscles.

The two main pillars of our study were to demonstrate that 
sEMG signals contain sufficient information to control 3D 
dynamic models of lip movements and to determine the best 
sEMG processing configuration for this purpose. These two 
steps are necessary for our ultimate goal to enable inverse 
biomechanical modelling of the lips, oral cavity and tongue, 
in order to retrieve patient-specific muscle activation signals 
inducing oral functions. These activation signals are needed 
to enable prediction of functional consequences after surgery. 

Besides patient-specific activation signals, patient-specific ana-
tomical information and tissue parameters are required for sim-
ulating treatment effects. The current model does not account 
for these aspects yet. However, a biomechanical model should 
incorporate this physical relationship and patient-specific 
parameters before mimicking performed treatments. The simu-
lated activations controlling the biomechanical model should 
be similar to the actual muscular control of the patient. sEMG 
is an instrument to provide the information for these simulated 
activations. Unfortunately, sEMG is a rough estimate, because 
of a nonlinear relationship, crosstalk, misplacement of elec-
trodes and other artefacts. We showed that the relationship 
between 3D lip motion and sEMG can be accurately described 
by a statistical model. So it can be expected that with our 
approach the ambiguity problem of inverse modelling can be 
solved. Our next studies will focus on the relationship between 
activation signals and sEMG in biomechanical models.

5 � Conclusion

This study presented a next step towards the personalisa-
tion of the functional outcome assessment after treatment 
of oral cancer. The two dynamic modelling methods proved 
that a continuum of 3D lip positions can be predicted based 
on volunteer-specific sEMG features. The discrete Kalman 
filter with a first-order state estimation performs slightly 
better than a second-order system, with a mean RMS error 
of 2.43 mm. The optimal sEMG processing configuration 
was found to be the WAMP feature with xlim = 10 mV and 
a window length of 200 ms. In future studies, this method 
may be used to solve the problems concerning inverse 
modelling in biomechanical models, by reduction in the 
solution space and including patient-specific information.
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