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1 Introduction

Proteins can express their biological activity by achieving a 
special stable three-dimensional (3D) structure. This para-
digm, however, has been challenged recently and appears 
to be not entirely accurate for all proteins. In the last dec-
ades, a large number of individual proteins, having no fixed 
3D structures but still able to express important biological 
functions, have been discovered. These proteins were called 
intrinsically disordered (ID) proteins. There are stable and 
ordered as well as flexible regions within the structures of 
ID proteins. These ID regions can vary significantly in size. 
As reported, more than one-third of eukaryotic proteins 
have been shown to contain ID regions of over 30 amino 
acids in length in their structures. This structural flexibil-
ity, as was shown in experimental studies, leads to a major 
functional advantage for ID proteins [15, 18, 31].

Research studies demonstrated that proteins with ID 
regions in their structures are involved in the biological 
processes such as cell-cycle control, regulation, recogni-
tion, and signalling [22, 33, 43, 45, 46]. Due to existence of 
the “unlocked” regions within their structures, which pre-
sent flexible large surface areas for interactions, the ID pro-
teins can bind to a broad range of ligands (other proteins, 
small molecules, membranes, and nucleic acids) [3, 16, 24, 
36]. Moreover, they can simultaneously interact with mul-
tiple proteins. Since interactions are controlled by protein 
concentration, dynamic interactions of ID proteins with 
multiple partners result in significant changes to their con-
centrations. The multiple interactions of ID proteins with 
their targets are characterized by relatively high specificity 
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and low affinity. This binding mechanism allows ID pro-
teins to rapidly initiate a signalling process. The disordered 
regions enable ID proteins to mediate specific recognition 
of their interactive partners and also regulate the interaction 
in space and time [34]. Importantly, ID proteins, upon bind-
ing to a target molecule, become structured and stable [16].

The interactive capabilities of ID proteins have attracted 
much scientific interest, and thus, their characterization has 
become one of the fastest growing areas of protein science. 
Due to ID proteins being overexpressed in major disease 
pathways, they present desirable targets for inhibition. 
Understanding protein–protein interactions and possibili-
ties of their inhibition has been improved in recent years 
[15, 31]. It was shown that the energy of protein–protein 
interaction is not evenly distributed over a large contact 
area but rather is focused in regions, whose areas are bet-
ter accessible for contact/binding by a small molecule [43]. 
Therefore, overexpression of ID proteins in particular dis-
eases, i.e. cancer, can be inhibited by targeted interactions 
of specific small molecules that can bind with high speci-
ficity to the disordered regions within the ID proteins.

There is a large number of computational software tools 
developed for predictions of disordered regions in ID pro-
teins. Over 60 methods for computational prediction of 
protein disorder from sequence have been made publicly 
available. These prediction methods aim to identify dis-
ordered regions in ID proteins through analysis of amino 
acid sequences using mainly the physico-chemical proper-
ties of the amino acids, sequence complexity, amino acid 
composition or evolutionary conservation [12, 14, 37, 38]. 
Disorder prediction algorithms take into account the char-
acteristic features of unstructured proteins and have been 
shown to be successful (almost 80 % accuracy), especially 
in the case of large regions [38]. The available prediction 
algorithms are based on different approaches: analysis of 
primary sequence composition; neural networks trained on 
X-ray structure data; local amino acid composition, flex-
ibility, and hydropathy; neural networks trained on NMR 
solution-based data; cascaded support vector machine clas-
sifiers trained on Position-Specific Iterated Basic Local 
Alignment Search Tool (PSI-BLAST) profiles, etc. Accord-
ing to the results of CASP11 (11th Community-Wide 
Experiment on the Critical Assessment of Techniques for 
Protein Structure Prediction), the best prediction groups 
successfully identified 50–70 % of the disordered residues 
with false-positive rates from 3 to 16 % [23].

Heat-shock proteins (HSPs) are large proteins present 
in all living cells and play important functions in cell-cycle 
control and signalling. They also protect cells against stress 
(apoptosis). For example, HSPs are activated when a cell 
undergoes an environmental stress, such as oxygen depri-
vation, or is affected by temperature change (heat or cold 
stress). If there are no stress conditions, HSPs function as 

chaperones by preventing protein’s misfolding or refold 
distorted or denaturated proteins, and help new proteins to 
fold into a shape required for their biological activity. HSPs 
also reshuffle proteins within a cell and transport old pro-
teins to “garbage disposals” inside the cell. Extracellular 
HSPs are also important in immune defence as they recog-
nize diseased cells and alert the immune system. Twenty-
five years ago HSPs were identified as the key elements 
responsible for protecting animals from cancer, with anti-
tumour vaccine development studies continuing today. It 
is known that HSPs are overexpressed in a wide range of 
human cancers. They are involved in tumour cell prolifera-
tion, differentiation, invasion, metastasis, and death. HSP-
based immunotherapy is believed to be one of the most 
promising areas of developing cancer treatment technology 
that is characterized by a unique approach to every tumour 
[4–8, 19].

Considering their functional importance, this study is 
aimed to determine computationally the active/binding 
sites and ID regions in cancer-related HSP family (HSP27, 
HSP60, HSP70, and HSP90 proteins) by employing signal 
processing analysis methods. Our computational predic-
tions for these selected HSP sequences are compared with 
the experimental data and predictions obtained using the 
selected predictors, MobiDB [13] and PONDR [32], the 
gold-standard tools in computational analysis of protein 
disorder. PONDR tool presents a series of neural network 
predictors (NNPs) that use amino acid sequence data to 
predict disorder in a given region. These neural networks 
use sequence attributes (fractional composition of par-
ticular amino acids, hydropathy, or sequence complexity) 
taken over windows of 9–21 amino acids. The attributes 
are averaged over these windows, and then the averaged 
values are used to train the neural network during pre-
dictor construction; the same values are used as inputs to 
make predictions. The NNPs are trained on selected sets of 
ordered and disordered protein sequences to enable them 
to generalize to new sequences. NNP output values are 
then smoothed over a sliding window of 9 amino acids. If 
an amino acid value exceeds or matches a certain thresh-
old, then this residue is considered disordered. Another 
predictor selected for this study, MobiDB, presents a cen-
tralized resource for annotations of intrinsic protein dis-
order and includes three levels of annotation: manually 
curated, indirect and predicted. By combining all three 
levels into a consensus annotation, MobiDB tool provides 
the best possible picture of the “disorder landscape” of a 
given protein of interest. The recently updated MobiDB 
2.0 tool [30] uses three biophysical predictors (IUPred-
short, IUPred-long, and GlobPlot) and seven machine 
learning predictors (DisEMBL-465, DisEMBL-HL, 
Espritz-DisProt, Espritz-NMR, Espritz-xray, JRONN and 
VSL2b). Consensus prediction is formed by applying a 
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majority vote on the 10 predictors, when there is no high-
quality information available from NMR, X-ray or DisProt 
data. Some of the predictors used in the MobiDB tool are 
[30]:

•	 IUPred is based on analysis of the pairwise energy con-
tent estimated from amino acid composition,

•	 DisEMBL and GlobPlot are based on alignment with 
known ID sequences,

•	 ESpritz is based on bidirectional recursive neural net-
works that are trained on three different flavours of dis-
order (including a novel NMR flexibility predictor),

•	 VSL2b and JRONN, also based on neural networks, 
can calculate consensus in the results of different algo-
rithms applied to extract the most probably disordered 
amino acids regions.

In this study, the predictive capabilities of the proposed 
RRM-SPWVD approach are compared with the predictions 
generated by MobiDB2.0 and PONDR using the selected 
cancer-related HSPs as protein examples.

2  Materials and methods

2.1  Resonant recognition model

Signal processing methods have been used successfully 
in analysis of biological signals (ECG, EEG, EMG, pro-
teins, etc.) [11, 17]. Of particular importance to this study 
is the possibility of applying signal processing techniques 
to analysis of macromolecules, i.e. proteins and DNA. 
The resonant recognition model (RRM) [9] belongs to 
the computational methods that aim at elucidating protein 
biological function from analysis of its protein primary 
structure—a polypeptide chain of amino acids. The RRM 
is a physico-mathematical approach designed for analysis 
of structure–function relationships in different proteins and 
their mutual interactions (theory can be applied to analysis 
of DNA and RNA). It is generally understood that protein’s 
biological function can be described as its ability to bind to 
a specific ligand. This selective interaction of a protein with 
its target presents a multistage process that includes spe-
cific biorecognition, chemical binding, and energy transfer. 
The RRM [9, 25] concepts state that the selectivity of pro-
tein interaction is defined within a protein’s primary struc-
ture, an amino acid sequence. According to the RRM prin-
ciples, by analysing a protein primary structure, the critical 
information about its functionality can be obtained. The 
RRM postulates that protein (DNA) interactions present a 
resonant energy transfer between the interacting molecules 
at the frequency specific for each observed function/inter-
action [10, 26–29].

The model employs signal processing methods to ana-
lyse protein primary structures. Firstly, the original protein 
primary sequence is converted into a numerical sequence 
by assigning to each amino acid in the sequence a physical 
parameter value relevant to the protein’s biological activ-
ity. Electron ion interaction potential (EIIP) is used as a 
physical property. The EIIP parameter describes the aver-
age energy states of all valence electrons in a particular 
amino acid, and its values for each amino acid were cal-
culated from the general model of pseudopotentials [39]. 
The resultant numerical series is then analysed using digital 
signal processing, Fourier transform, which transform the 
signal into a single spectrum. To determine the common 
frequency components in the spectra for a group of pro-
teins, the multiple cross-spectral function is used. Peaks 
in this function denote common frequency components for 
the protein sequences analysed (block diagram of the RRM 
approach is shown in Appendix IV, Supplementary Mate-
rials). The normalized intensity of the prominent peaks 
represents a signal-to-noise ration and depends on a length 
and a number of proteins used in the multiple cross-spectral 
function. The RRM postulates that there is a significant cor-
relation between spectra of the numerical presentation of 
amino acids and their biological activity [9, 25]. Through 
extensive computational studies utilizing the RRM theory, 
it was found that the RRM frequencies present the charac-
teristic features of different protein biological functions or 
interactions [9, 10, 25–29]. These characteristic RRM fre-
quencies were shown to be relevant parameters for mutual 
recognition between biomolecules and are important in 
describing the selectivity of interaction between proteins 
and their substrates or targets but are not chemical binding 
[9, 10, 25–29]. To be regarded as the characteristic feature 
of a particular protein biological function, the RRM fre-
quency should satisfy the following criteria:

1. single frequency/peak only can be observed for a group 
of protein sequences sharing the same biological activ-
ity;

2. if no significant or prominent peak in the spectrum can 
be seen, then these protein sequences are biologically 
unrelated; and

3. different peak frequencies observed in cross-spectrum 
correspond to different biological functions.

Once the RRM characteristic frequency for a particular 
protein function or interaction is determined, it is possible 
then to proceed with further calculations:

1. by using inverse Fourier transform (IFT), defined as:

 xn =
N−1
∑

i=0

Xke
i∗2πnk/N n ∈ Z
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where N, number of frequencies analysed; n, amino 
acid considered; xn, value of the signal at the position 
corresponding to the amino acid; k, current frequency 
we are considering (0 up to N − 1); Xk, amount of fre-
quency k in the signal. By using inverse Fourier trans-
form (IFT) it is possible to determine the so-called 
hot spot amino acids that contribute mostly to this fre-
quency and, thus, to the observed function can be pre-
dicted/defined within the protein sequence.

2. by employing wavelet transform, the locations of a pro-
tein’s active/binding sites can be predicted. In general, 
wavelet transformation of the signal can be described 
as: 

Ψa,b is calculated using a scaling function Ψ  by time b 
and scale a.

In RRM analysis, the Morlet wavelet function is used 
and defined as:

3. de novo design short bioactive peptide analogues (on 
the basis of determined frequency and phase) express-
ing the same biological activity as the original protein 
sequence. The biological activities of computationally 
designed bioactive peptides were successfully evalu-
ated in a number of experimental studies [1, 20, 40].

In a number of different protein examples it was shown 
that proteins and their targets (other proteins or small mol-
ecules) have the same characteristic frequency in their mul-
tiple cross-spectral functions defined as the magnitude of 
the normalized vector (signal-to-noise) product of RRM 
spectra in complex domain as follows [9]:

where M1 and M2 are RRM spectra of two proteins, M̄ 
means complex conjugate.

Despite the fact that a protein and its target have differ-
ent biological functions, they still can interact or partici-
pate in the same biological process, which is defined by the 
same RRM frequency [10, 25–29].

2.2  Time–frequency analysis

The Wigner function has been introduced to describe a 
phase space distribution for applications in both classical 
physics and quantum mechanics areas [44]. Thus, convo-
lution of the Wigner functions of quantum state and fil-
tered state can represent a phase space distribution of the 

Ψa,b =
1

√
|a|

Ψ

(

t − b

a

)

ω(t) = Ce

(

−t2

2
+jω0t

)

M =
∣

∣M1 ∗ M̄2

∣

∣

analysed system [2, 21]. Moreover, the Wigner–Ville distri-
bution (WVD) can be used to describe the changes in fre-
quency content over a period of time. In the special case of 
a linear polymer (a protein sequence as an example), the 
WVD may represent the distribution of the energy of vari-
ous frequency components of the signal at particular posi-
tions along the protein (distance between an amino acid is 
set at an arbitrary value d = 1).

The main problem in practical calculations, using con-
volution of the signal, is the cross-term that represents 
interference of the signals. To overcome loss of resolution 
due to cross-terms, we replaced the WVD by the smoothed 
pseudo Wigner–Ville distribution (SPWVD). Supposing 
EIIP[i], i = 1, 2, …, N is the numerical sequence of the 
electron ion interaction potentials (EIIP) of amino acids 
along the polypeptide chain, then the SPWVD of the EIIP 
is given by [41]:

where z(s) is a complex signal (in our case a sequence of 
potentials) generated from the numerical sequence EIIP[i] 
by using a Hilbert transform; z(s)* is a complex conjugated 
from the signal; and h(τ) and g(τ) represent kernel func-
tions (in our case windows function for frequency and time 
(space) smoothing); t represents a time/spatial coordinate; f 
is a frequency

In discrete form, the SPWVD can be calculated as:

where k is the unit in the frequency domain, p is the point 
in the time/spatial domain, while n and m are the coordi-
nates in t–f plane corresponding to the position and fre-
quency, respectively. The h(k) and g(p) represent independ-
ent frequency and time/spatial smoothing, respectively.

In this study, as the smoothing functions, we used the 
Gauss filters, which are defined as:

σ is the standard deviation and k and p are the mean fre-
quency and distance. The resulting SPWVD is shown in a 
t–f plane as a contour plot regarding the values of S(t, f). 
Furthermore, the values of S(t, f) are normalized by divid-
ing calculated values with the average value calculated 
over all t–f plane. It can be assumed that S(t, f) represents 
the distribution of energy carried by a signal in the space 
domain [41]. In our previous studies, the SPWVD was 

S(t, f ) =
∫ ∞

−∞
h(τ )

∫ ∞

−∞
g(s− t)z(s+ τ/2)z(s+ τ/2)∗ds e−j2πvτ

dτ

W(n,m) =
1

2
N

N+1
∑

k=−N+1

|h(k)|2

M−1
∑

p=−M+1

g(p)z(n+ p+ k)z∗(n+ p− k)e−
2iπkm
M

h(k) = e
(−k2/2σ)/(σ

√
2π); g(p) = e

(−p2/2σ)/(σ
√
2π)
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incorporated in the RRM approach to predict the locations 
of active sites in selected proteins [41, 42].

In this study, we investigated the applicability of the 
SPWVD in prediction of ID regions in selected cancer-
related HSPs as well as the locations of the active/binding 
sites within these proteins. SPWVD is not a new method 
in signal processing analysis. However, its application to 
protein structure–function analysis is novel. We found that 
the features of SPWVD are suitable for analysis of a signal 
derived from one-dimensional distribution of electron ion 
interaction potentials (EIIP) along a protein sequence. It is 
highly efficient for detection of the irregularities in charge 
density distribution along the protein [41]. Efficiency of the 
fast Fourier transformation (FFT) for n points is defined as 
n*Log(n). A number of calculations in the SPWVD depend 
on a number of points, n (amino acids), in a given protein 
and are lower than n2. Most proteins are less than 1000 
amino acids in length; therefore, computational cost (pro-
cessing time) is not an issue.

3  Results

3.1  Determination of RRM characteristic frequency 
for selected HSP proteins

In this study the standard RRM approach was used to deter-
mine RRM characteristic frequencies of HSPs that were 
grouped on the basis of their biological functions. ID mam-
malian HSP sequences were selected from the Database of 
Protein Disorder (DisProt http://www.disprot.org/).

The following sequences were used to determine the 
characteristic frequency of the ID HSP group (Table 1):

1. DisProt|DP00142|uniprot|P14602|unigene|Mm.13849|s
p|HSPB1_MOUSE_2

2. DisProt|DP00358|uniprot|Q15185|unigene|Hs.50425|sp
|TEBP_HUMAN_3

3. DisProt|DP00444|uniprot|P02489|unigene|Hs.184085|s
p|CRYAA_HUMAN_alpha_crystaline_4

4. DisProt |DP00445|uniprot |P02511|sp|CRYAB_
HUMAN_5

5. DisProt|HSPB8_human_Hsp22_13_6.

Small HSPs have low molecular masses (13–43 kDa) 
and contain a conservative α-crystallin domain (about 90 
residues) that consists of several β-strands forming two 
β-sheets packed in immunoglobulin-like manner. The 
α-crystallin domain plays an important role in formation 
of stable small HSP dimers, which are the building blocks 
of the large HSP oligomers. The N-terminal domain and 
C-terminal extension are flexible and susceptible to prote-
olysis and post-translational modifications and are predom-
inantly intrinsically disordered. These disordered N- and 
C-terminal sequences play important roles in the structure, 
regulation, and functioning of small HSP [35]. The RRM 
was applied here to analyse 5 mammalian ID HSPs (shown 
above), and their RRM characteristic frequency (most 
prominent) was identified at fRRM = 0.081 (Table 1) and 
shown in Figs. 1a and 2a.

To determine the characteristic frequencies for cancer-
related proteins from the HSP family (35 mammalian 
sequences), HSP27, HSP60, HSP70, and HSP90 pro-
tein sequences were selected from the UniProt database 
(Table 1). It was reported that several HSPs are involved 
with the prognosis of specific cancers. In particular, HSP27 
are overexpressed in gastric, liver, and prostate carcinoma 
and osteosarcomas. HSP70 are found to be overexpressed 
in breast, endometrial, uterine cervical, and bladder carci-
nomas. HSP90 plays a particularly versatile role in cell reg-
ulation by forming complexes with a large number of cel-
lular kinases, transcription factors, and other molecules. A 
role of HSP60 in cancer is uncertain; however, its upregula-
tion or downregulation has been reported in various tumour 
series correlating with disease outcome [19].

According to the EMBL-EBI (http://www.ebi.ac.uk/
interpro/protein/database), for each particular HSP group, 
the following domains were identified as functionally 
important:

HSP27—have 2 domains: HSP20-like chaperon and 
alpha-crystalline domain 76–83;
HSP60—have mostly chaperonin structure;
HSP70—have protein-binding domain 439–586 and 
heat-shock terminal 570–652;
HSP90—N-terminal 17–225 looks like a protein kinase, 
and 295–547 is ribosomal protein-like region.

Table 1  RRM frequencies, 
fRRM, and normalized 
intensities, Nin*, calculated 
for each analysed HSP group 
(ordered by the normalized 
intensity value)

Protein group fRRM Nin* fRRM Nin* fRRM Nin*

ID HSP 0.081 34.6 0.267 13.5 0.42 9.5

HSP27 0.285 18.2 0.267 14.5 0.489 13.5

HSP60 0.103 20.4 0.065 13.2 0.341 12.9

HSP70 0.169 14.9 0.354 13.3 0.267 5.4

HSP90 0.267 46.0 0.366 18.0 0.080 9.5

HSP (cancer related) 0.355 29.0 0.065 26.5 0.267 6.5

http://www.disprot.org/
http://www.ebi.ac.uk/interpro/protein/database
http://www.ebi.ac.uk/interpro/protein/database
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For the RRM analysis, we formed the following func-
tional groups of HSPs: HSP27 (7 sequences), HSP60 (5 
sequences), HSP70 (13 sequences), HSP90 (10 sequences), 
and all HSP cancer related (35 sequences). Using the RRM, 
the characteristic frequency of HSP27 was identified at 
fRRM = 0.285 (Table 1; Fig. 3), for HSP60—at fRRM = 0.103 
(Table 1; Fig. 4), for HSP70—at fRRM = 0.169 (Table 1; 

Fig. 5), and for HSP90—at fRRM = 0.267 (Table 1; Fig. 6). 
We also analysed the combined group of HSP27, HSP60, 
HSP70, and HSP90 (all HSP cancer related, 35 sequences), 
and the RRM frequency for these cancer-related HSPs 
was identified at fRRM = 0.355 (Table 1; Fig. 7). Interest-
ingly, the frequency fRRM = 0.267 is common for HSP27, 
HSP70, HSP90, HSP cancer-related and ID HSP (Table 1). 

Fig. 1  a Cross-spectral function of 5 mammalian ID HSP sequences; b t–f plane contour plot for human alpha-crystalline A chain P02489. Resi-
due 138 is susceptible to oxidation, C-terminal extension: residues 140-175, determined by X-ray crystallography (UniProt data)

Fig. 2  a Cross-spectral function of 5 mammalian ID HSP sequences; b t–f plane contour plot for P14602 HSPB1_MOUSE_2. Long-term orien-
tation (LTO) ID region at 192–209, determined by X-ray crystallography (UniProt data)
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This implies that all proteins within these groups have this 
frequency component (with different amplitude ratios) 
in common. According to the RRM theory, it means that 
they share the same biological activity. Each particular 
biological function or interaction is characterized by a 
unique RRM characteristic frequency [9, 10, 25–29]. From 
Figs. 3, 4, 5, 6, and 7 we can see that there are a number 
of prominent peaks in the cross-spectral functions of the 
corresponding protein groups. It reveals the multifunc-
tional roles these proteins play, i.e. they can participate in 

different biological processes and/or interact with other 
partners.

3.2  Application of SPWVD for prediction of ID regions, 
active/binding sites in selected HSP sequences

The SPWVD transformation was used to identify locations 
of protein’s active/binding sites on the basis of the deter-
mined RRM frequencies. Only four sequences with the ID 
regions were selected for analysis. These sequences were 

Fig. 3  Cross-spectral func-
tion of 7 mammalian HSP27 
sequences

Fig. 4  Cross-spectral func-
tion of 5 mammalian HSP60 
sequences
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analysed using SPWVD, PONDR, and MobiDB, with the 
results compared with the ID regions, determined experi-
mentally by X-ray crystallography (where data are avail-
able), and regions predicted by the above-mentioned 
computational methods. SPWVD was applied to predict 
the location of active/binding sites for four selected ID 

HSP sequences. The results are presented in Table 2 and 
Figs. 1b, 2b, 8, and 9:

3.2.1  Human Alpha‑crystalline A chain P02489

P02489 HSP sequence was selected as an example for 
prediction of its disordered regions. Our calculations, 

Fig. 5  Cross-spectral func-
tion of 13 mammalian HSP70 
sequences

Fig. 6  Cross-spectral func-
tion of 10 mammalian HSP90 
sequences
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Fig. 7  Cross-spectral function 
of the combined group (HSP27, 
HSP60, HSP70, and HSP90): 
35 mammalian cancer-related 
sequences

Table 2  ID regions predicted in selected HSPs: X-rays, RRM-SPWVD, MobiDB, and PONDR data

Protein code X-rays data RRM-SPWVD MobiDB PONDR

P02489 140–175 125–175 144–173 1–3; 160–175

P14602 192–209 187–209 188–209 140–209; 110–125

P07900 NA 125–175; 380–407 163–184 + a few very short (2–3 aa) 52–59;183–189; 225–300; 385–405 
many very short (2–3 aa)

P0DMV8 NA 270–340 NA 270–290 and 310–340

Fig. 8  t–f plane as a contour 
plot long-term orientation 
(LTO) for P0DMV8 HSP_70_
HS71A (UniProt data)
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performed using the SPWVD, showed that the amino 
acids mostly contributing to the ID HSPs characteristic 
frequency fRRM = 0.081 (Table 1; Fig. 1a) are located at 
125–175, and this region covers the functionally important 
residue 138 and partially covers the intrinsically disordered 
C-terminal extension (Table 2; Fig. 1b). The experimentally 
determined disordered region is located at 140–175 (X-ray 
data). The analysis of P02489 protein sequence, using 
the MobiDB 2.0 tool, reveals that the disordered region 
is located at 144–173. In addition, a few, short disordered 
regions were also identified using this predictor (please 
refer to Supplementary material, Appendix I). The applica-
tion of the PONDR tool predicted two segments, 160–175 
and 1–3 (Fig. 10), as the positions of disordered regions in 
P02489 protein (Table 2).

3.2.2  P14602 hspb1_mouse_2

We also applied SPWVD transformation to analysis of 
another protein, P14602. The results reveal that the amino 
acids mostly contributing to the ID HSPs characteristic fre-
quency fRRM = 0.081 are located at 187–209, and this loca-
tion covers the functionally important ID region 192–209, 
which was determined experimentally by X-ray crystal-
lography (Table 2; Fig. 2b). For P14602 protein, the pre-
dicted positions of the disordered regions vary significantly 
depending on the specific predictor used in the analysis. 
For example, MobiDB consensus tool predicted several 
short segments and one longer segment of the disordered 
properties located close to the C end of the protein, 188–
209 (Table 2; Supplementary material, Appendix II). By 

Fig. 9  t–f plane as a contour 
plot long-term orientation 
(LTO) for P07900 HS90A_
HUMAN (UniProt data)

Fig. 10  PONDR score for P02489 protein sequence was generated 
by PONDR tool

Fig. 11  PONDR score for P14602. The figure was generated using 
PONDR tool
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using the RRM-SPWVD method, we achieved very similar 
results with the predicted disordered region to be at 187–
209, while the X-ray experimental data (www.disprot.org) 
determined the region of 192–209 to be disordered. Inter-
estingly, the PONDR tool revealed the segments 140–209 
and 110–125 as the disordered regions in the P14602 pro-
tein sequence (Table 2; Fig. 11).

3.2.3  P07900 heat‑shock protein HSP 90‑alpha

P07900 protein is an important molecular chaperone. The 
RRM-SPWVD method predicted the location of two segments 
to be disordered, namely 125–175 and 380–470 (Table 2; 
Fig. 9). MobiDB 2.0 tool predicted the disordered region to 
be at 163–184, with a few additional short segments (Table 2; 
Supplementary material, Appendix III). Application of the 
PONDR tool resulted in the prediction of a number of disor-
dered regions, with the main ID region positioned at 225–300. 
There are also two short regions, predicted by PONDR, that 
are located at 52–59 and 183–189 (Fig. 12). These predicted 
regions do not overlap with the locations predicted by the 
RRM-SPWVD. However, the last region predicted by PONDR 
and located at 385–400 is overlapping with the larger region 
380–407 predicted by the RRM-SPWVD (Table 2; Fig. 9).

3.2.4  P0DMV8 heat‑shock 70 kDa protein 1A

Using the RRM-SPWVD, we predicted the disordered 
regions in P0DMV8 protein located at 270–340 (Table 2; 
Fig. 8). Application of the PONDR tool resulted in the pre-
dicted disordered regions positioned at 270–290 and 310–
340 (Table 2; Fig. 13). We cannot provide data for analysis 
of P0DMV8 protein using MobiDB 2.0 prediction tool as 
this particular protein is not available in the database. X-ray 
data are also unavailable.

4  Discussion

The RRM was used in this study to analyse the existence 
of patterns specific for the selected HSP proteins. Using the 
model, the characteristic frequencies for the ID and cancer-
related HSPs were determined. The RRM is based on Fou-
rier transform. The main disadvantage of the Fourier trans-
form is that the information about frequency characteristic 
along the series is hidden, and only averaged time and fre-
quency content of the analysed signal can be obtained. As 
was mentioned above, on the basis of the RRM charac-
teristic frequency determined for the particular biological 
function or interaction, it becomes possible to identify the 
individual “hot spot” amino acids that contributed most to 
this specific characteristic frequency and thus, possibly to 
the observed biological behaviour of the protein. This can 
be achieved by using the IFT. Our previous studies showed 
that the identified “hot spot” amino acids are clustered in 
and around a protein’s active sites.

In the last 20 years, the time–frequency distribution 
methods have become powerful alternative tools for sig-
nal analysis. A time–frequency transform presents energy 
distribution of a signal over the time and frequency 
domains. In this study, we applied the time–frequency sig-
nal processing technique to the selected HSPs, aiming to 
demonstrate how a signal’s energy is distributed over the 
time–frequency space. By incorporating smoothed pseudo 
Wigner–Ville distribution (SPWV) in the standard RRM 
approach, we overcome the problem of non-localized 
events currently present in the model. In particular, we have 
shown that by knowing a protein’s specific RRM character-
istic frequency and applying the SPWVD to an individual 
protein sequence, it becomes possible to predict the posi-
tion of this protein’s active sites (functional epitopes) in the 
protein. Here, we compared the predictive capability of the 

Fig. 12  PONDR score for P07900. The figure was generated using 
PONDR tool

Fig. 13  PONDR score for P0DMV8. The figure was generated using 
the PONDR tool

http://www.disprot.org
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RRM-SPWDV and the computational tools, MobiDB2.0 
and PONDR, in analysis of ID regions and protein active/
binding site of the HSPs.

In comparison with the predictors, MobiDB2.0 and 
PONDR, our method, RRM-SPWVD, is based on analysis 
of charge distribution along the whole polypeptide chain 
(as opposed to the short windows of amino acids regions) 
characterized or presented by the EIIP of each amino acids. 
The important feature of our approach is that it is not 
using neural network training, which is based on similarity 
between the studied protein of interest and known intrin-
sically disordered proteins. Instead, the RRM-SPWVD 
approach allows determining disordered regions within a 
protein sequence by analysing the information written in 
its whole primary structure. To retrieve information about 
disruption in periodicity in charge density along the protein 
sequence, that can match ID regions along the protein mol-
ecule, we use space frequency analysis.

The results obtained show that our computational pre-
dictions using the RRM-SPWVD method correspond 
closely with the experimentally identified locations 
(where available) and are in agreement with the locations 
of the ID regions determined by the MobiDB 2.0 and 
PONDR tools (Table 2). In particular, the RRM-SPWVD-
predicted ID regions are similar to the longer regions 
identified by these standard predictors. The findings also 
revealed that our method could not identify very short 
regions of ID (1–2 amino acids in length) when compared 
to the results obtained by MobiDB 2.0 and PONDR com-
putational tools (Table 2). On the other hand, prediction 
of very short ID regions by these two tools shows a high 
degree of variability in results and significant differences 
in predicted locations, when compared with the experi-
mental X-ray data (please refer to Figs. 10, 11, 12, 13, 
and Appendix 1).

In essence, the incorporation of the SPWVD in the 
RRM: (1) enables not only prediction of the function-
ally important amino acids (the so-called point mutations 
as done in the standard RRM using the inverse Fourier 
transform (IFT) [9, 25]) but prediction of the regions of 
functional importance, such as active/binding sites and 
ID regions along the analysed HSP sequences; (2) allows 
reducing a number of proteins required for efficient analy-
sis in order to get an accurate computational prediction. In 
particular, we can calculate the RRM frequency by using 
a limited number of protein sequences (from one to three 
proteins sequences).

5  Conclusion

Our previous computational studies, employing the 
RRM approach, demonstrated that digital signal 

processing methods can be applied successfully to analy-
sis of the informational content of different protein primary 
sequences. Fourier transform has been used in the RRM to 
determine a protein’s characteristic frequency correspond-
ing to its particular biological activity. However, in pro-
tein structure–function analysis studies, it is of particular 
importance to be able to predict accurately the locations 
of active and/or binding sites within these proteins. Due 
to limitations of the classical non-localized spectral trans-
formations, we applied here the SPWVD instead of the 
one-dimensional Fourier transform previously used within 
the RRM. Up to date this new tool has been tested on the 
selected proteins such as cytochrome C, glucagon, hae-
moglobin, and oncogene protein Ha-ras p21 [41, 42]. In 
this study, the SPWVD, incorporated into the RRM, was 
used to predict the locations of intrinsic and binding sites 
in the selected cancer-related HSPs. The findings clearly 
show that substitution of the Fourier transform with the 
SPWVD within the RRM improves the prediction of pro-
tein active/binding sites allocation, as opposed to predic-
tion of individual “hot spot” which found to be clustered 
in and around the active site. Incorporation of the SPWVD 
in the RRM enabled to address its limitation. The SPWVD 
spectrum allows presenting the identified disordered region 
as a t–f plane (the region is presented in the frequency and 
time/space domains). The prediction accuracy depends on 
the size of a given protein, and it is defined in terms of a 
resolution of spectra, 1/N.

The selected HSP sequences were also analysed using 
the standard predictors, MobiDB 2.0 and PONDR, with the 
results being compared with the predictions obtained by 
the RRM-SPWVD method. Our predictions are in agree-
ment with the locations of the ID regions determined by 
MobiDB 2.0 and PONDR. Our results correspond closely 
with the experimental data obtained by X-ray crystallogra-
phy. The findings of this computational study suggest that 
the proposed RRM-SPWVD method based on signal pro-
cessing techniques can be used for accurate predicting the 
locations of the ID regions and active/binding sites in the 
selected HSP sequences.
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