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ventilation synchronization failures based on the evolution 
of monitored bioparameters. Principal component analy-
sis is employed for the transformation into a small number 
of features and the investigation of repeating patterns and 
clusters within measurements. Using these features, non-
linear prediction models based on support vector machines 
regression are explored, in terms of what past knowledge 
is required and what is the future horizon that can be pre-
dicted. The proposed model shows good correlation (over 
0.74) with the actual outputs, constituting an encourag-
ing step toward understanding of ICU ventilation dynamic 
phenomena.

Keywords ICU · Assisted ventilation · SVM regression · 
Nonlinear model · PCA cluster

1 Introduction

The intensive care unit (ICU) is a challenging environment, 
as a multitude of patient biosignals is continuously moni-
tored. These physiological and intervention-related data, 
continuously displayed to experts, have to be combined 
with clinical and laboratory data in order to early recognize 
unusual, unstable and deteriorating or improving trends, 
alarming events, and adapt interventions accordingly.

It has to be taken into account that a human, even expert, 
would find it difficult to interpret more than 3–4 variables 
at any given time. Thus, the human factor steps in with 
inadequacy in situations where sound critical decisions 
cannot simply be made without risks unless clinicians are 
assisted by ICT tools. These critical expectations raise the 
need to support clinicians in analyzing and interpreting this 
multitude of data with tools which can handle fast changing 
multi-dimensional functions of variables and display useful 

Abstract In the context of assisted ventilation in ICU, 
it is of vital importance to keep a high synchronization 
between the patient’s attempt to breath and the assisted 
ventilation event, so that the patient receives the ventilation 
support requested. In this work, experimental equipment 
is employed, which allows for unobtrusive and continuous 
monitoring of a multiple relevant bioparameters. These are 
meant to guide the medical professionals in appropriately 
adapting the treatment and fine-tune the ventilation. How-
ever, synchronization phenomena of different origin (neu-
rological, mechanical, ventilation parameters) may occur, 
which vary among patients, and during the course of moni-
toring of a single patient, the timely recognition of which 
is challenging even for experts. The dynamics and complex 
causal relations among bioparameters and the ventilation 
synchronization are not well studied. The purpose of this 
work is to elaborate on a methodology toward modeling the 
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information in an easy-to-understand manner, which will 
facilitate fast and timely decisions. Currently, most ICUs in 
Europe are not necessarily equipped with these facilities to 
critically save lives.

Along these lines, the ultimate aim of this work is to 
set the basis for the management and analysis of large and 
complex ICU data. In this respect, a series of engineering 
challenges emerge in the ICU setting, including (a) pre-
processing of signals to verify data and reduce false alarms; 
(b) processing of multiparameter data to continuously track 
physiological states and early detect critical events, includ-
ing physiological and ventilation-related events such as 
sepsis [15, 16], significant hypotension and tissue hypoxia 
development, readiness to liberate from mechanical venti-
lation, or changes in ventilation synchronization; and (c) 
interpretation of findings according to pathophysiological 
models of critical illness. A worth-mentioning effort in the 
direction of ICU–DSS is Artemis [2], a platform tested in 
neonatal ICU that supports automated or clinician-driven 
knowledge discovery of new relationships between physi-
ological data stream events and latent medical conditions, 
as well as refinement of existing analytics.

In the context of mechanical ventilation, multiparamet-
ric signal processing has presented some success, for exam-
ple, in predicting successful weaning from mechanical 
ventilation (MV) [15]. Other efforts included decision sup-
port in ICU ventilation actions and the control of mechani-
cal ventilation. An ICU decision support system, based on 
fuzzy logic and expert knowledge, has been proposed [12] 
concerning mechanical ventilation options with respect to 
different disease states. In [9], computerized physiologi-
cal models and utility/penalty functions were employed 
as separate factors of the system. The case of assisted (as 
opposed to controlled) ventilation is now receiving more 
attention, due to the evidence of benefits [13]. In controlled 
ventilation, there is no need for patient’s respiratory effort, 
nor for patient–ventilator coupling, as ventilation is forced. 
In assisted ventilation, it is patient effort that triggers the 
ventilator and there is need for patient–ventilator coupling. 
In some cases of triggering, patient’s effort does not trigger 

the ventilator at all. The basic concept in assisted ventila-
tion is depicted in Fig. 1.

An emerging problem in this context that deserves more 
attention is the analysis of ventilation synchronization 
(between patient breath attempt and ventilation event), and 
the respective continuous prediction of synchronization 
failure, i.e., dysynchrony, based on the sequence of physi-
ological and ventilation-related events under monitoring.

The problem of ventilation synchronization has been 
reported before, for example, as regards incidences of inef-
fective triggering [8]. Studies have shown that patients with 
frequent ineffective patient–ventilator synchronization, i.e., 
ineffective efforts (IEs), have worse outcome, i.e., mortal-
ity and duration of mechanical ventilation (MV). Ineffec-
tive triggering (IT) is common, but factors affecting IT vary 
considerably, among factors related to the patient condition 
(secretions, suctioning, atelectasis, fluid status, VAP, sep-
sis, patient positioning, coma, delirium, sedatives) and fac-
tors related to the ventilation system (ventilation mode & 
settings).

As previously reported [1], most patients have small 
(5 min) periods with high presence of IEs, sometimes with 
events highly concentrated in time. However, up to now, it 
is yet to be answered whether the cumulative effect of IE 
exposure (IEs with respect to breaths in 24 h) or the tem-
poral patterns of IEs (periods of high IEs in 24 h) play a 
different role. Ineffective triggering of the ventilator is 
frequent but highly variable among patients and during 
the course of mechanical support for each patient. Study-
ing these variable conditions throughout the course of MV, 
in a real life setup, presents a real challenge with a high 
impact, as IEs can be immediately treatable upon warning, 
either by changing ventilator’s parameters (e.g., pressure 
rising time, level of pressure assist, expiratory threshold) 
or by changing medication (e.g., sedatives). In this work, 
a methodology for reliable compact description as well as 
estimation of this asynchrony based on short past observa-
tion periods in correlation with physiological parameters is 
investigated. Among the challenges pertaining to this prob-
lem and the proposed approach are:

Fig. 1  Assisted ventilation. 
a Mechanical support, as 
expressed by pressure, follows 
patient effort both in terms 
of timing and magnitude, so 
patient successfully triggers 
the ventilator, b problematic 
patient–ventilator coupling. The 
inspiratory effort does not trig-
ger the ventilator and results in 
an ineffective inspiratory effort
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a. The related physiological parameters are typically 
not available by noninvasive methods. In our case, an 
experimental device is employed making available a 
multitude of ventilation and physiological parameters 
noninvasively. A basic principle for such analysis is 
that these signals cannot really be regarded indepen-
dently, as they express systems and their interactions 
in stable or deteriorating states. The use of principal 
component transformation is proposed, previously suc-
cessful in biosignal multiparametric analysis [17] and 
in ventilator variability analysis [5].

b. The ventilation-related parameters are difficult to inter-
pret by non-experts or in a 24-h workload. Automated 
short-term prediction of dysynchrony based on the 
monitored parameters is proposed, employing data-
driven modeling based on SVM nonlinear regression 
[6, 19, 21].

c. There is little (or at least not conclusive) clinical evi-
dence on how different parameters effect on dysyn-
chrony and how in turn this affects clinical outcome. 
The proposed approach is based on a large number of 
data and proposes a causal model predicting the num-
ber of IEs based on the multiparametric monitoring 
ICU data.

2  Methods

The methodology presented in the following subsections 
aims at describing multiparametric patterns related to IEs 
and at predicting the number of IEs based on the mul-
tiparametric ICU data. Specifically, the method includes 
preprocessing and homogenization of data, PCA-based 
data transformation to reduce dimensionality and extract 
robust features, investigation of potential clusters within 
the dataset to reveal observation clusters and within 
subject dynamics and application of a model that can 
predict the future output based on the previous known 
conditions.

2.1  Data description and preprocessing

In our assisted ventilation setup employing the PVI moni-
tor [10, 24], the ventilator data per patient under ventilation 
support consist of continuous 24-h recordings of ventilation 
events streamed data (about 1 sample per second), includ-
ing the ineffective ventilation synchronization efforts, 
onsets of inspiration efforts, central apneas, mechanical 
compliance, timings and pressures and secretions. The 17 
parameters included in this analysis are:

a. Kv, Kf, Kfv: estimations of mechanical elastance and 
resistance of the respiratory system and their ratio.

b. Peepi and P01: intrinsic peep (positive end-expiratory 
pressure) and the strength of neural input or stimuli for 
respiration.

c. Vent_Ti, Vent Ttot, Patient_Ttot and younesratio: 
inspiratory and total time of a ventilation cycle and of 
patient cycle. younesratio = Vent_Ti./Patient_Ttot.

d. Vt and BR: respiration volume and breathing rate.
e. Peak_effort and Pressure_assist: maximum patient-

generated pressure and the assist pressure produced 
from the ventilator.

f. Cycling off: delay time (in sec) between opening of 
expiration value and end of patient effort.

g. Central_apnea, Auto_trigger and Secretion. Apnea 
(absence of patient breathing), automated triggering of 
ventilator without patient breathing and high presence 
of secretion.

h. IEs between two respirations.

More detailed description of some characteristic param-
eters of the ventilation monitoring setup is presented in 
Table s1 of the supplementary file.

In the current setup, data were provided from the ICU 
clinic of the University Hospital of Heraklion, Crete (http://
icu.med.uoc.gr/), from 110 patients, with one up to three 
24-h recordings during the first week on assisted MV per 
patient. Treating physicians had no access to these data, 
which were later downloaded and analyzed offline, leading 
to 2946 h of recording, with median valid recording dura-
tion/patient: 22.8 h (range 3.4–69.7 h) and 4,456,537 valid 
breaths. The study was approved by the human studies sub-
committee, and informed consent was obtained from sur-
rogates. The study did not involve any change from usual 
clinical practice, and informed consent was related only to 
permission to obtain and use (anonymously) the data.

In the raw data, each sample consists of a breathing 
event and related physiological and ventilator parameters. 
Some details with respect to the initial data are included in 
the supplementary file Figure s1. This sequence of event 
tuples was transformed to sampled signals at 60 s, which 
expresses the number of IE events per 60 s and their res-
ampled–interpolated values for each of the other biopa-
rameters. Very short files (less than 120 samples, i.e., 2 h 
long) were excluded from the dataset, and for the rest, 
missing and erroneous values (outliers) were replaced by 
mean value. Eventually, 178 cases remained, with 173,743 
observations total (at 60 s/sample). An example of recorded 
parameters time series is depicted in Fig. 2.

2.2  Principal component analysis, feature extraction 
and descriptive model

Taking into account that the monitored bioparameters are 
expected to present some degree of correlation, principal 

http://icu.med.uoc.gr/
http://icu.med.uoc.gr/
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component analysis (PCA) was applied [17], in order to 
decrease the dimensionality in this vector of parameters 
and convert the observations set into a new set consisting 
of linearly uncorrelated variables of usually lower dimen-
sion. The number of principal components that explained 
95 % of the variance was kept. The set of parameter values 
used as input for the PCA consisted of <pararameteri, dpa-
rameteri>, for i = 1,…17, where dparameter denotes the 
derivative in time of a parameter. The reason for including 
derivatives is that not only absolute values, but also their 
change with time conveys important information in this 
problem and needs to be taken into account during pattern 
analysis. This resulted in an initial dataset of 34 parameters 
per observation.

As some of the variables were actually binary, having 
values 0 or 1, corresponding to the occurrence or not of an 
event (e.g., central apnea, secretion, autotrigger), a choice 
was made to handle separately the continuous and binary 
datasets. The reason is twofold: (a) computationally to 
avoid any bias introduced by the binary variables and their 
obvious lack of normality and (b) physiologically to sepa-
rate continuous gray zone intertwined phenomena from 
direct drivers of ventilator asynchrony (e.g., autotrigger). 
Thus, the data set was split in two subsets: (a) subset A in 
which all categorical parameters had zero value, and (b) 
subset B, including the observations where at least one of 
the categorical values had value 1. PCA was applied sepa-
rately for each of the two subsets. Before PCA, data were 
normalized (subtraction of mean value, division by stand-
ard deviation).

PCA allowed us to extract two pieces of information, (a) 
which initial parameters were the most important along the 
main principal components and (b) how were the observa-
tions clustered in the principal component space. The lat-
ter also allowed exploring the transition among clusters 
in each single case. Clustering of observations took place 
via k means (with Euclidean distance and 10 repetitions), 
and the optimal number of clusters was decided based on 
the mean silhouette (measure of intra-group similarity as 
compared to similarity with other groups). The transition 
among clusters within the same subject was employed as a 
means to study the dynamics in each subject’s recordings.

2.3  Predictive modeling

The purpose of modeling was to formulate a prediction 
method that would estimate the vector of the future n inef-
fective efforts index Yin = (y(i),… y(i + n − 1)) at times 
i, i + 1,…i + n − 1, InEf(i), based on the k previous val-
ues of the feature vector X, of the previous values of Y, and 
their derivatives, as expressed in Eq. 1.

where the feature vector Xi is based on the l first principal 
components, as described in the previous section. In other 
words, the model was meant to test if k previous input–out-
put values can predict n future output values Y, where Y 
denotes the ineffective effort (IE). In this work, maximum 
k was 5, i.e., a maximum history of 5 min of previous val-
ues was employed, and the maximum n was also 5, i.e., the 
number of future prediction window was 5 min. Predict-
ing IEs in a short-term window is expected to provide an 
opportunity for timely preventing/mitigating the IE adverse 
impact.

A nonlinear SVM regression model was adopted in 
order to implement the function f, following a least-squares 
support vector machine (LS-SVM) model implementation. 
LS-SVM supports regression problems and is computation-
ally efficient. The main idea behind LS-SVM is described 
by [19], and the implementation in MATLAB was adopted 
from the toolbox (http://www.esat.kuleuven.ac.be/sista/
lssvmlab).

The nonlinear kernel function employed was the radial 
basis function (RBF), which was chosen, rather than a lin-
ear kernel, so that the potential nonlinearity in this complex 
modeling problem could be better described. The LS-SVM 
model parameters used were gam, the regularization param-
eter, determining the trade-off between the training error 
minimization and smoothness of the estimated function and 
sig, a kernel function parameter. For each run, the model 
parameters were fine-tuned via simplex method with leave-
one-out-validation on a smaller subset of the full training set.

(1)

Yin = f (X(i − 1), X(i − 2), . . .X(i − k),

y(i − 1), . . . y(i − k), dy(i − 1), . . . dy(i − k))
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Fig. 2  An example of parameter evolution of parameters during a 
patient’s recording. Kv and Kf stand for mechanical properties of the 
lungs, elastance and resistance. It can be seen that their variation pat-
terns may at some points precede the onset of IEs
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In order to assure robustness, the following proce-
dure was repeated ten times. In each run, a random set of 
cases was picked to create the training set, consisting of 
10–11 recordings summing up a total length of no less 
than 8000 observations. SVM model was trained based on 
these data, for the combinations {(k = 1, n = 1), (k = 2, 
n = 1,2), (k = 3, n = 1,2,3), (k = 4, n = 1,2,3,4), (k = 5, 
n = 1,2,3,4,5)}. The rest of the unseen cases were used 
as test set. It has to be noted that using not only unseen 
observations, but unseen patient cases (full records) is con-
sidered as a more realistic testing scenario, ensuring that 
the model was not built on data neighboring to the ones it 
was tested on. The measures used to assess goodness of fit 
between the estimated regression model Y and the actual 
IEs, in each run, include mean absolute error, mean error, 
standard deviation of the error, Rsq = 1 − error2/sum(IE-
mean)2, and linear correlation coefficient between real and 
predicted values. The average of these measures for all ten 
runs was eventually considered and compared among the 
different (k,n) combinations. Additionally, as a preliminary 
indicator of this approach’s potential to contribute toward 
ICU alarming mechanisms, the classification accuracy 
when setting the cutoff threshold = 2, i.e., when attempting 
detection of times with less than 2 IEs (practically clean) 
against the rest, was assessed.

3  Results

3.1  PCA analysis and clustering

In the investigation of PCA transformation, only the time 
points with IE ≥ 1 were employed. This resulted in 17,645 
samples in subset A and 3299 samples in subset B (apnea, 
secretion, autotrigger events). The PCs explaining 95 % of 
the variance were selected, and in this manner, subset A 
was described with 5 PCs, and so did subset B, which now 
could represent the initial 34 intertwined variables.

Figure 3 presents a biplot with the PC loadings and 
scores of all observations.

The parameters mostly expressed in each PC, accord-
ing to the parameter loadings, are depicted in Table 1, in an 
ordered manner (only five most important loadings shown 
here). It can be observed that in each PC, the parameters 
present some relevance. For example, in subset A, PC1 
involves parameters related to rhythms (predominantly 
tachypnea) and event timings, while PC2 involves more 
physiological parameters, related to mechanical/neurologi-
cal properties of the patient (increased expiratory resist-
ance), PC3 ventilation over-assistance, etc. It is also worth 
noting that some derivative features (dx) are important, 
which justified the initial option to include them in the 
dataset.

Based on the PCA scores, k means separated subset A 
observations (17,645) in three clusters (NAi, i = 1…3), 
with sizes 10,989, 4678 and 1978. The mean silhouette 
value of this clustering was 0.3681. Similarly, subset B 
(3299) resulted in five clusters (Ai, i = 1–5) with sizes 117, 
1301, 376, 1128 and 377. The mean silhouette was 0.5209 
in this case. Detailed figures of clusters are available in the 
supplementary file, Figure s2. For each cluster, the mean 
values of the PC scores and the mean values of the initial 
bioparameters are summarized in the supplementary file 
Tables s2 and s3, respectively.

As the observations for the generation of PCA trans-
form came from multiple cases and patients, it was consid-
ered important to investigate whether these clusters corre-
sponded to different patients, each patient belonging to a 
single cluster, or the clusters vary on an intra-patient and 
inter-patient basis, reflecting a more non-uniform and non-
stationary situation. Analysis proved the second hypothesis 
(each patient case contains many clusters, and this distribu-
tion of IE time in clusters varies among patients), as can be 
seen in the visual representation of the percentage of the IE 
time per case spent in each cluster, depicted in Fig. 4a. This 
is further illustrated in the example presented in Fig. 4b. 
For a single patient with COPD exacerbation, sequential 
time segments with IEs may stay in the same cluster. This 
could suggest that a single phenomenon may pertain (e.g., 
not fully addressed by treatment). As seen in Fig. 4b, while 
the first IEs relate to cluster NA1 (increased expiratory 
resistance, slow breathing), following there is persistence 
in the second PC cluster (NA2), related to tachypnea (see 
also Table s2 and Table s3). There are also numerous transi-
tions among clusters, in this case, spontaneous transitions 
from NA2 to NA3 (ventilation over-assistance), to A1, A2 
and A4 (related to secretion and ventilation over-assis-
tance), which point at cases where a phenomenon not prop-
erly addressed builds up other physiological phenomena, or 
the treatment of a problem in a wrong manner would create 
other problems, all potentially building up reasons for IEs. 
Other examples with different dynamics are available in the 
supplementary file, Figure s4. It has to be noted that here 
observations without IEs were not taken into account, so 
exact temporal neighborhood is not strictly preserved. This 
example is characteristic of the complexity in predicting 
IEs and also attributing them to a specific causality, being 
of mechanical nature, or wrong ventilation timings/pres-
sures, etc.

3.2  Prediction of future IEs

The IE prediction employed a feature set consisting of (a) 
PC features (signals*coefficients) based on the PCA coef-
ficients that were produced by subset A (see previous sec-
tion), and (b) previous IE and dIE. An initial small-scale 
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statistical analysis, based on low–medium–high level of IEs 
(<2, 2–6, ≥6 IEs, respectively), showed that the PC fea-
tures are informative of the IE level and also have distinct 
values in segments with minimal or no IEs (<2). Relevant 
results can be found in supplementary file Figure s3.

The ability to predict the IEs in the future 1–5 min 
was evaluated, as model order also varied from 1 to 5 
(past 1–5 min). Figure 5 presents the average correla-
tion (among 10 runs) between real and model-predicted 

IEs for the test data. It can be seen that prediction perfor-
mance falls when the prediction window increases from 
1 to 5 min, still preserving acceptable results (cc > 0.74, 
Rsq > 0.53). Additionally, for models of order higher or 
equal to the future prediction window, the correlation val-
ues tend to be similar. For example, the model of order 5 
does not seem to succeed better correlation than the one 
of order 1, for the prediction of next 1-min value (future 
window 1).

Fig. 3  PCA biplot, with the parameter loadings and the scores for all the observations. a Subset A, b subset B (apnea, secretion, autotrigger). 
Note the D* denotes the derivative of the initial parameter
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The performance measures are summarized in Table 2. 
It can be seen that the standard deviation among runs is 
small. All performance metrics decrease with future predic-
tion window, however, not dramatically.

Figure 6 depicts a sequence of real and predicted IEs, as 
well as the predicted versus real IEs scattergram. Although 
the latter (Fig. 6b–c) shows a tendency for underestimation 
of actual spike values (e.g., predicted spikes have a lower 
value, and fitted line is below y = x), the general tendency 
for high/low IEs is preserved, in the sense that areas with 
rare IEs and areas with dense IEs are visible.

Finally, as regards the ability to predict periods of practi-
cally no IEs from the periods with IEs, by setting a thresh-
old on the predicted values (class 1 = no IEs if IEs ≤ 2, 
class 2 = IEs > 2), average specificity was around 93 % in 
all cases. This means that the proportion of no IEs which 
are correctly identified as is high, i.e., periods of no IEs 
are predicted, even for future windows of 5 min. Table 3 
presents results on sensitivity, which ranges from 67 to 
58 %. While this is not a perfect outcome, it highlights the 

Table 1  Parameters with highest loadings per PC, in the first five PCs

In italics, potential phenomena that may be related with variations in these parameters

Subset A Subset B

PC1. PatientTtot, VentTot, breathrate, VentTi, Peepi
predominantly tachypnea—or the opposite
PC2. Kfv, kf, Peepi, P01, VentTi
predominantly increased expiratory resistance
PC3. Younesratio, Vt, PeakEffort, Dyounesratio,  

Cyclingoff
ventilation over-assistance
PC4. Dyounesratio, DVentTi, kf, kfv, Younesratio
predominantly change in lung mechanics
PC5. Dkfv, Dkv, kf, Cyclingoff, DCyclingoff
predominantly bad cycling off in ventilation

PC1. AutoTrigger, Secretion, PeakEffort, Younesratio, DAutoTrigger
autotrigger because of secretion
PC2. VentTi, VentTot, DVentTi, breathrate, Cyclingoff
apnea
PC3. Dkfv, kf, kfv, kv, DPeepi
change in lung mechanics because of secretion
PC4. Vt, kv, Peepi, PressureAssist, DPeakEffort ventilation ventilation over-

assistance
PC5. Dyounesratio, DPressureAssist, kf, breathrate, VentTot
change in expiratory resistance
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Fig. 4  a Stacked view of the percentage of each PCA cluster per 
case, i.e., for each case (bar), considering only times with IE, the per-
centage of time spent in each of the clusters. NA1-3: cluster 1–3 of 
subset A, A1–5: cluster 1–3 of subset (discrete events of apnea, high 
secretion, autotrigger). b For a single patient case, a sequential view 
of the samples with IE, and the cluster to which each sample belongs, 
suggests the type of phenomenon that may take place during each IE

Fig. 5  Linear correlation between real and predicted values, for vari-
ous model orders and future prediction windows



448 Med Biol Eng Comput (2016) 54:441–451

1 3

potential for generating a prediction scheme that could pre-
dict and alarm for future events in ICU environment.

4  Discussion

The complexity of monitoring in an ICU environment is a 
challenging task with major impacts. In the case of assisted 
ventilation and the evaluation of the interaction (or syn-
chronization) between the ventilation device and the patient 
respiration dynamics, a continuous multichannel recordings 
of ineffective effort events have to be employed in a way 
to provide valuable input to the clinicians, toward achiev-
ing optimal patient–ventilator synchrony [4]. This flow 
of continuous, multiparametric and correlated data, with 
complex causal relations, reflecting the dynamic interac-
tion between ventilator and patient’s physiology, is of vital 
importance for the understanding of ventilation dynamics 
[24], toward recognition of ventilation dysynchrony prob-
lems and application of intervention adjustments, e.g., in 
ventilatory parameters or sedative therapy. This approach, 
via predicting IE events and shedding light on the related 
phenomena with clustering, is expected to contribute in 
avoiding overexposure to IEs with the respective short-term 
effects (dyspnea, hypercapnia, discomfort, sleep fragmen-
tation, muscle overload) and long-term effects (increased 
duration of mechanical ventilation, shorter ventilator-free 
survival, increased length of stay, lower likelihood of home 
discharge, unsuccessful weaning and discomfort). Thus, it 
is considered as an example where modeling the dynamic 
procedure can lead to the prediction and prevention of criti-
cal events, as well as timely intervention and adaptation of 
therapy for each patient during the ICU stay.

The proposed methodology contributes to the under-
standing of ICU ventilation dynamics, toward a frame-
work for ICU biosignal and bioparameter analysis, extend-
ing the initial work [7]. A basic concept proposed in this 
work is the use of a multiparametric approach, to investi-
gate the dynamic and non-uniform phenomena occurring 
in assisted ventilation. In order to deal with multiple inter-
twined parameters, as well as the importance of their tem-
poral evolution, the observed parameters and their deriva-
tives are transformed via PCA into a more compact set of 

5 PCs. These group together parameters that are relevant 
overall, for example, PC1 in subset A relates to inspira-
tory and total time of ventilation and of patient cycle (e.g., 
possible tachypnea-related event). Additionally, based on 
Table s2 and Table s3, the PCA clusters could link to spe-
cific and recognizable phenomena related to ventilation 
dysynchrony, for example, in subset A, (a) cluster 1 con-
centrates in PC1 (negative) and PC2 (positive) and presents 
high kvf and low breathing rate, which may be interpreted 
as predominantly increased expiratory resistance, lead-
ing to increased expiratory times and low breathing rate, 
(b) cluster 2 concentrates mainly along PC1 and could 
relate to tachypnea, and (c) cluster 3, with mainly nega-
tive PC2, negative PC1 and positive PC3, also presenting 
high breathing rate and Peepi, probably relates to ventila-
tion over-assistance. Yet, a wider clinical interpretation and 
evaluation are on the way to further and systematically link 
the proposed PCs with their actual clinical relevance.

It has to be noted that at the moment, this PCA pro-
cedure is performed separately under the presence or not 
of specific events (e.g., apnea) which are expressed with 
categorical values. There is a potential physiological rea-
son for separating specific events that directly affect syn-
chrony (e.g., an incidence of apnea is directly linked to lack 
of breath and lack of coupling with assisted ventilation), 
from the other ‘gray zone’ time points where multiple fac-
tors contribute to the variation of synchrony. Besides that, 
these event parameters being categorical cannot be normal-
ized and handled as the other continuous ones. However, a 
method to handle in a unified manner the continuous and 
categorical parameters and thus the whole set, with or with-
out the presence of specific important events, would be a 
preferable future option.

Additionally, while the addition of parameter deriva-
tives in the initial feature set proved a successful decision, 
regarding their role in the most important PCs, one could 
better tackle these phenomena of temporal evolution in 
multiple scales by introducing a wavelet analysis before 
PCA [20, 22]. This might then lead to parameters at differ-
ent scales being together expressed in PCs and thus to the 
different scales of interwoven phenomena. Multiscale PCA 
has been applied in different biosignal feature extraction 
tasks [23].

Table 2  SVM prediction 
performance expressed as 
mean ± standard deviation 
among the ten runs

Measure Model order/future prediction window

1/1 2/2 3/3 4/4 5/5

Mean abs error 0.84 ± 0.06 0.90 ± 0.06 0.96 ± 0.10 0.95 ± 0.06 0.98 ± 0.06

Mean error −0.06 ± 0.09 −0.06 ± 0.11 −0.06 ± 0.14 −0.02 ± 0.12 −0.06 ± 0.14

Standard deviation of error 1.72 ± 0.07 1.86 ± 0.04 1.96 ± 0.10 1.97 ± 0.06 2.02 ± 0.07

Rsq 0.67 ± 0.02 0.61 ± 0.02 0.57 ± 0.04 0.56 ± 0.03 0.54 ± 0.04

Correlation coefficient 0.82 ± 0.01 0.79 ± 0.01 0.76 ± 0.03 0.76 ± 0.02 0.74 ± 0.03
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Fig. 6  a Real and predicted IEs 
overlapped sequences, for test 
data, model order 3 and future 
window 5. b, c Real versus pre-
dicted IEs scattergram. X-axis: 
Real IE. Y-axis: predicted IEs 
(y-axis). Model order and future 
window (1,1) and (3,3) as in (b) 
and (c), respectively
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A second important part of the proposed approach 
includes the dynamics of the event. After clustering the 
observations, based on the PC scores, a fragmentation in 8 
clusters is illustrated, expressing different states, and poten-
tially of different origin (patient or ventilator factors). More 
importantly, upon studying these clusters and their transi-
tions in each patient case, one can see the great variability 
of the synchrony phenomena, being non-stationary within 
each patient case and non-uniform among them. Thus, 
clustering together cases [7] is a less realistic option than 
clustering segments of cases. In other words, one important 
aspect could be the segmentation of signals and the study 
of causality in these segments. Additional analysis can be 
investigated based on different signal transformations and 
similarity methods, e.g., based on wavelet transform that 
has already shown promising results in the ICU biosignal 
analysis [16] and other complex multiparametric problems 
[18]. Upon further elaboration on different clusters and 
transitions among clusters, as well as their physiological 
characterization, a means to predict the ventilation deterio-
ration and its potential cause and alarm the health profes-
sionals accordingly could be considered.

More advanced physiological characterisations could be 
achieved if the ventilation measurements based on the PVI 
monitor were combined with other noninvasive or mini-
mally invasive physiological measurements, for example 
heart rate and respiration rate variability [15] and electrical 
impedance tomography [14].

The proposed work has also investigated the problem of 
predicting future IEs and concluded that this is possible up 
to a degree and based on short history. Long history, i.e., 
history window much longer than future prediction win-
dow, is not performing better. Besides the consequences of 
long history in increasing the feature set and the training 
needs, it is possible that the time scales of temporal correla-
tions and causalities are varying. In addition, the PC coef-
ficients were based only on subsetA (the observations with-
out apnea, secretion, autotrigger events). Again, employing 
wavelet-based parameters in a future more sophisticated 
model might help investigating what are the best history 
options. Furthermore, although the SVM-based approach 
proved credible, various modeling methods can be tested 

via continuous system approaches (state space, nonlinear 
autoregressive, Volterra models) [11]. In any case, the pro-
posed modeling approached reached a good level of predic-
tion, even for up to 5 min.

Besides regression, results illustrated the value of pre-
dicting a low/high IE classification. In our case, with the 
simple thresholding of the regression output, specificity is 
high, yet sensitivity would need to be improved, provided 
a more optimized classification scheme is put in place. A 
future direction would be to provide a classification scheme 
for low to high or high to low transitions, i.e., event onsets 
and offsets.

Combining the clustering and prediction methods, espe-
cially in time windows where IEs raise from very low to 
some significant value, can lead to ICU applications with: 
(a) warnings and alerts in a timely fashion [3], (b) presenta-
tion of the necessary information that can guide the clini-
cian on what is the most probable reason of dysynchrony at 
that specific time and what ventilation parameter needs to 
be changed, or what other intervention needs to take place, 
as corrective action. Alerts can be based on the IEs predic-
tive models. Guiding interventions require depicting and 
visualizing the etiology, and PCA clustering constitutes a 
preliminary contribution in this direction, along with a rule-
based system for the actions according to etiology.

5  Conclusion

In conclusion, various methodological aspects are tackled 
in this work, along with their future directions for improve-
ment. The assisted ventilation bioparameters and their 
derivatives are transformed via PCA in five components, 
and their distribution in clusters is investigated. Further-
more, these transformed features are then employed in 
short-term prediction ineffective ventilation efforts via a 
nonlinear autoregressive exogenous model (nonlinear svm 
regression), where the model relates the current value of a 
time series with its past values and past values of the influ-
encing series. Based on the encouraging results, a detailed 
clinical validation and interpretation with respect to the 
pathophysiology and known progress of each patient is of 
major importance as a future step. The impact of such anal-
ysis lies in the optimized management of assisted ventila-
tion, toward not only understanding the mechanisms and 
patterns of assisted ventilation events, but also attempting 
short-term predictions of problematic synchronizations and 
alerting the clinicians accordingly.

There is a big technological potential in improving 
monitoring of ventilation bioparameters, both as regards 
sensing and multiparametric analysis. Incorporating such 
complex biosignal processing scenarios in an ICU setup is 
indeed interesting and challenging, and relevant efforts are 

Table 3  Model sensitivity in separating future IEs from no IEs

Previous inputs 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

Future IEs

1 67.20 67.22 67.48 67.59 67.90

2 62.12 62.71 63.44 63.72

3 60.66 61.08 61.26

4 59.16 59.16

5 57.96
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now being tested worldwide [2]. ICU intelligence can be a 
case for big data analytics technologies toward large-scale 
new knowledge discovery and toward real-time perfor-
mance. Furthermore, these approaches may present a wider 
interest for cases of analysis in large and variable datasets, 
beyond ICU.
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