Skip to main content
Log in

Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this study, carnosine (0‒0.20%, w/v) was introduced to improve the dispersibility of myosin under a low-salt condition (0.1 M NaCl). The underlying dispersion mechanism was investigated. Carnosine has positive effects on the dispersibility of myosin, as evidenced by the significantly improved solubility and turbidity. After the addition of carnosine, the average particle size in each sample remarkably decreased, and the mole mass of the aggregates decreased from 6.74 × 107 g/mol to 4.00 × 107 g/mol as the carnosine increased from 0.10 to 0.20%. Changes in protein secondary structure, ζ-potential, and ITC (Isothermal titration calorimetry) results indicated that electrostatic interaction is the main force between myosin and carnosine. Moreover, carnosine may hinder the formation of large aggregates by affecting the structure and charge distribution of the myosin tail when carnosine was ≤ 0.10%. However, excess carnosine (˃ 0.10%) had a negative effect on the long-term stability of the protein solution. Turbiscan stability index, visual appearance, and hydrophobicity analyses showed that the instability of the system was possibly due to increase in the hydrophobicity of myosin head after excess carnosine was applied. Our research may contribute to the improvement of the functional properties of myosin under low-salt condition and regulation of protein behavior.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P.M. de Castro, C. Pereira, A.F. dos Reis Baltazar Vicente, Meat Sci 93, 586–592 (2013)

    Article  Google Scholar 

  2. H. Liu, H. Zhang, Q. Liu, Q. Chen, B. Kong, Ultrason. Sonochem. 67 (2020)

  3. L.D. Yates, M.L. Greaser, J. Mol. Biol. 168, 123–141 (1983)

    Article  CAS  PubMed  Google Scholar 

  4. X. Zhao, T. Xing, X. Xu, G. Zhou, Food Chem. 319, 126574 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. Z. Bolger, N.P. Brunton, J.G. Lyng, F.J. Monahan, Food Rev. Int. 33, 143–166 (2017)

    Article  CAS  Google Scholar 

  6. E.S. Inguglia, Z. Zhang, B.K. Tiwari, J.P. Kerry, C.M. Burgess, Trends in Food Sci Technol 59, 70–78 (2017)

    Article  CAS  Google Scholar 

  7. N.J. Aburto, A. Ziolkovska, L. Hooper, P. Elliott, F.P. Cappuccio, J.J. Meerpohl, BMJ 346 (2013)

  8. Y. Ma, F.J. He, Q. Sun, C. Yuan, L.M. Kieneker, G.C. Curhan, G.A. MacGregor, S.J.L. Bakker, N.R.C. Campbell, M. Wang, E.B. Rimm, J.E. Manson, W.C. Willett, A. Hofman, R.T. Gansevoort, N.R. Cook, F.B. Hu, NEJM 386, 252–263 (2021)

  9. T. Hayakawa, T. Ito, J. Wakamatsu, T. Nishimura, A. Hattori, Meat Sci. 82, 151–154 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. E. Takai, S. Yoshizawa, D. Ejima, T. Arakawa, K. Shiraki, Int. J. Biol. Macromol. 62, 647–651 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. X.Y. Guo, Z.Q. Peng, Y.W. Zhang, B. Liu, Y.Q. Cui, Food Chem. 170, 212–217 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. R. Liu, Q. Liu, S. Xiong, Y. Fu, L. Chen, Ultrason. Sonochem 37, 150–157 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Wang, Y. Zhou, P.J. Li, X.X. Wang, K.Z. Cai, C.G. Chen, Food Chem. 269, 236–243 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Z.Y. Zhang, Y.L. Yang, P. Zhou, X. Zhang, J.Y. Wang, Food Chem. 217, 678–686 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. X. Chen, X.L. Xu, M.Y. Han, G.H. Zhou, C.G. Chen, P.J. Li, Food Res. Int. 85, 1–9 (2016)

    Article  PubMed  Google Scholar 

  16. X. Chen, X.L. Xu, G.H. Zhou, Innov. Food Sci. Emerg. Technol. 33, 170–179 (2016)

    Article  CAS  Google Scholar 

  17. H. Saeki, K. Inoue, J. Agric. Food Chem. 45, 3419–3422 (1997)

    Article  CAS  Google Scholar 

  18. A.E. Thalacker-Mercer, M.E. Gheller, Benefits and adverse effects of Histidine supplementation. J Nutr 150, 2588S-2592S (2020)

    Article  PubMed  Google Scholar 

  19. J. Moro, D. Tomé, P. Schmidely, T.C. Demersay, D. Azzout-Marniche, Nutrients 12, 1414 (2020)

  20. H. Liu, H. Zhang, Q. Liu, Q. Chen, B. Kong, Trends Food Sci. Technol. 112, 25–35 (2021)

    Article  CAS  Google Scholar 

  21. Boldyrev, A. Alexander, G. Aldini, W. Derave, Physiol. Rev. 93, 1803–1845 (2013)

  22. J.W. Wu, K.N. Liu, S.C. How, W.A. Chen, S.S. Wang, PLoS ONE 8, e81982 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  23. S. Craig, C. Bryan,, H. SaundersRoger, Amino Acids 39, 321–333 (2010)

    Article  Google Scholar 

  24. G. Wu, Amino Acids 52, 329–360 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Courten, H. Barbora, R. Alan, E. Baye, Maturitas 93, 28–33 (2016)

    Article  PubMed  Google Scholar 

  26. H. Daniel, M. Boll, U. Wenzel, In: Vith International Symposium on Digestive Physiology in Pigs, Proceedings 1 and 2, 1–7 (1994)

  27. A.H. Keeble, P. Turkki, S. Stokes, I.N.A.K. Anuar, M. Howarth, PNAS 116, 26523–26533 (2019)

  28. A.H.Y. Tong, B. Drees, G. Nardelli, G. Bader, Science 295, 321–324 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Lei, S. Li, Z. Liu, F. Wan, T. Tian, S. Li, D. Zhao, J. Zeng, Nat. Commun. 12, 5465 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R.L. Sohn, K.L. Vikstrom, M. Strauss, C. Cohen, A.G. SzentGyorgyi, L.A. Leinwand, J. Mol. Biol. 266, 317–330 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. T. Hayakawa, T. Ito, J. Wakamatsu, T. Nishimura, A. Hattori, Meat Sci. 84, 742–746 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. G. Wang, M. Liu, L. Cao, J. Yongsawatdigul, S. Xiong, R. Liu, Food Biosci. 24, 1–8 (2018)

    Article  Google Scholar 

  33. R.C. Thompson, M. Buvoli, A. Buvoli, L.A. Leinwand, FEBS Lett. 586, 3008–3012 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Cohen, D.A.D. Parry, J. Struct. Biol. 122, 180–187 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. A.D. McLachlan, J. Karn, J. Mol. Biol. 164, 605–626 (1983)

    Article  CAS  PubMed  Google Scholar 

  36. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem. 193, 265–275 (1951)

    Article  CAS  PubMed  Google Scholar 

  37. S. Li, Y. Zheng, P. Xu, X. Zhu, C. Zhou, Food Chem. 242, 22–28 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. X. Chen, Y. Zou, M. Han, L. Pan, T. Xing, X. Xu, G. Zhou, Food Chem. 196, 42–49 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. R. Cowan, R.G. Whittaker, Pept. Res 3, 75–80 (1990)

    CAS  PubMed  Google Scholar 

  40. J. Chen, X. Zhang, S. Xue, X. Xu, Int. J. Biol. Macromol. 163, 1768–1779 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. S. Xue, H. Yang, X. Yu, C. Qian, M. Wang, Y. Zou, X. Xu, G. Zhou, Food Chem. 240, 59–66 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. Y. He, C. Zhou, C. Li, G. Zhou, Food Chem. 346, 128976 (2021)

    Article  CAS  PubMed  Google Scholar 

  43. C. Sun, C. Xu, L. Mao, D. Wang, J. Yang, Y. Gao, Food Chem. 228, 656–667 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. D. Xu, J. Zhang, Y. Cao, J. Wang, J. Xiao, LWT 66, 590–597 (2016)

  45. X. Zhao, T. Xing, X. Xu, G. Zhou, Food Chem. 319 (2020)

  46. S. Hooper, J. Hughes, D. Parker, M. Finke, R.G. Newcombe, M. Addy, N. West, J. Dent. 35, 541–546 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. M. Bertoni, F. Oliveri, M. Manghetti, E. Boccolini, M.G. Bellomini, C. Blandizzi, F. Bonino, M. Del Tacca, Pharmacol. Res. 46, 525–531 (2002)

  48. L.C. Sun, Y.C. Lin, W.F. Liu, X.J. Qiu, K.Y. Cao, G.M. Liu, M.J. Cao, Food Hydrocoll. 93, 137–145 (2019)

    Article  CAS  Google Scholar 

  49. A. Golebiowski, P. Pomastowski, A. Rodzik, A. Krol-Gorniak, T. Kowalkowski, M. Gorecki, B. Buszewski, Int. J. Mol. Sci. 21, 9711 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. L. Nilsson, Food Hydrocoll. 30, 1–11 (2013)

    Article  CAS  Google Scholar 

  51. K.G. Wahlund, J.C. Giddings, Anal. Chem. 59, 1332–1339 (1987)

    Article  CAS  PubMed  Google Scholar 

  52. G. Yohannes, M. Jussila, K. Hartonen, M.L. Riekkola, J. Chromatogr. A 1218, 4104–4116 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. X. Chen, W. Zhang, Y. Dou, T. Song, S. Shen, H. Dou, J. Chromatogr. A 1635, 461726 (2021)

    Article  CAS  PubMed  Google Scholar 

  54. M.-H. Morel, J. Pincemaille, E. Chauveau, A. Louhichi, F. Violleau, P. Menut, L. Ramos, A. Banc, Food Hydrocoll. 103, 105676 (2020)

    Article  CAS  Google Scholar 

  55. D. de Guibert, M. Hennetier, F. Martin, T. Six, Y. Gu, C. Le Floch-Fouere, G. Delaplace, R. Jeantet, J. Food Eng. 264, 109675 (2020)

    Article  Google Scholar 

  56. T. Loiseleux, A. Rolland-Sabate, C. Garnier, T. Croguennec, S. Guilois, M. Anton, A. Riaublanc, Food Hydrocoll. 74, 197–206 (2018)

    Article  CAS  Google Scholar 

  57. A. Castro, F. Vilaplana, L. Nilsson, Food Chem. 223, 76–81 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. G. Krebs, T. Becker, M. Gastl, Anal. and Bioanal Chem. 409, 5723–5734 (2017)

    Article  CAS  Google Scholar 

  59. N.J. Greenfield, TrAC, Trends Anal Chem 18, 236–244 (1999)

    Article  CAS  Google Scholar 

  60. Y. Cao, Y.L. Xiong, Food Chem. 180, 235–243 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. L. King, S.S. Lehrer, Biochemistry 28, 3498–3502 (1989)

    Article  CAS  PubMed  Google Scholar 

  62. H.G. Kristinsson, H.O. Hultin, J. Agric. Food Chem. 51, 7187–7196 (2003)

    Article  CAS  PubMed  Google Scholar 

  63. T. Nakasawa, M. Takahashi, F. Matsuzawa, S. Aikawa, Y. Togashi, T. Saitoh, A. Yamagishi, M. Yazawa, Biochemistry 44, 174–183 (2005)

    Article  CAS  PubMed  Google Scholar 

  64. R. Liu, S.M. Zhao, S.B. Xiong, B.J. Xie, L.H. Qin, Meat Sci. 80, 632–639 (2008)

    Article  CAS  PubMed  Google Scholar 

  65. T. Shi, L. Yuan, J. Mu, R. Gao, CyTA - J Food 17, 656–660 (2019)

    Article  CAS  Google Scholar 

  66. L. Zhang, P. Wang, Z. Yang, F. Du, Z. Li, C. Wu, A. Fang, X. Xu, G. Zhou, Food Hydrocoll. 101 (2020)

  67. D. Wu, C. Wu, W. Ma, Z. Wang, C. Yu, M. Du, Food Hydrocoll. 89, 707–714 (2019)

    Article  CAS  Google Scholar 

  68. K. Li, L. Fu, Y.Y. Zhao, S.W. Xue, W. Peng, X.L. Xu, Y.H. Bai, Food Hydrocoll. 98, 105275 (2020)

    Article  CAS  Google Scholar 

  69. A. Zhou, L. Lin, Y. Liang, S. Benjakul, X. Shi, X. Liu, Food Chem. 156, 402–407 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. S. Soares, M.S. Silva, I. Garcia-Estevez, E. Brandao, F. Fonseca, F. Ferreira-da-Silva, M. Teresa Escribano-Bailon, N. Mateus, V. de Freitas, Food Chem. 276, 33–42 (2019)

    Article  CAS  PubMed  Google Scholar 

  71. R.A. Frazier, A. Papadopoulou, R.J. Green, J. Pharm. Biomed. Anal. 41, 1602–1605 (2006)

    Article  CAS  PubMed  Google Scholar 

  72. A. Romano, C. Lajterer, A. Shpigelman, U. Lesmes, Food Chem. 352, 129306 (2021)

    Article  CAS  PubMed  Google Scholar 

  73. P.D. Ross, S. Subramanian, Biochemistry 20, 3096–3102 (1981)

    Article  CAS  PubMed  Google Scholar 

  74. E. Hückel, Z. für Physik Hadrons Nucl. 70, 204–286 (1931)

    Article  Google Scholar 

  75. L. Zhao, S. Zhang, J. Lu, J. Lv, LWT 132, 109878 (2020)

  76. G. Chen, S. Wang, B. Feng, B. Jiang, M. Miao, Food Chem. 277, 632–638 (2019)

    Article  CAS  PubMed  Google Scholar 

  77. N.M. Nunes, Y.L. Coelho, J.S. Castro, M.C. Teixeira Ribeiro, T.A. Vidigal, L.H.M. Oliveira Mendes, da Silva, A.C.S. Pires, Food Chem. 331, 127337 (2020)

  78. A.D. Mclachlan, J. Karn, Nature 299, 226–231 (1982)

    Article  CAS  PubMed  Google Scholar 

  79. A. Ozog, J.A. Béchet, Eur. J. Biochem. 234, 501–505 (1996)

    Article  Google Scholar 

  80. L. Zhang, J. Sun, Y. Qi, Y. Song, Z. Yang, Z. Li, L. Liu, P. Wang, X. Xu, G. Zhou, Colloid Surf. A 607, 125415 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 32172243) and China Agriculture Research System (CARS-41).

Funding

This work was supported by National Natural Science Foundation of China (No. 32172243) and China Agriculture Research System (CARS-41).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YQ performed protein characterization experiments and analyzed the data. XX put forward the methodology of the article. HD prepared the materials and provided software support analysis. ZY explained thermodynamics and mechanism analysis. PW modified and polished the paper. The first draft of the manuscript was written by YQ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Ethics Approval

The chickens used in this study were obtained from standard commercial hatching and rearing, and the slaughtering process strictly complied with the national standard of the People’s Republic of China (GB/T 19478 − 2018: Operating procedure of livestock and poultry slaughtering ‒ chicken). Carbon dioxide stunning method was adopted to meet the requirements of animal welfare.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Xu, X., Dong, H. et al. Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism. Food Biophysics 18, 71–81 (2023). https://doi.org/10.1007/s11483-022-09747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09747-6

Keywords

Navigation